Skip to main content

Efficient Robust Design with Stochastic Expansions

  • Chapter
Surrogate-Based Modeling and Optimization

Abstract

This chapter describes the application of a computationally efficient uncertainty quantification approach, non-intrusive polynomial chaos (NIPC)-based stochastic expansions, for robust design under mixed (aleatory and epistemic) uncertainties and demonstrates this technique on robust design of a beam and on robust aerodynamic optimization. The approach utilizes stochastic response surfaces obtained with NIPC methods to approximate the objective function and the constraints in the optimization formulation. The objective function includes the stochastic measures, which are minimized simultaneously to ensure the robustness of the final design to both aleatory and epistemic uncertainties. The results of the optimization case studies show the computational efficiency and accuracy of the robust design with stochastic expansions, which may be applied to any stochastic optimization problem in science and engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taguchi, G., Chowdhury, S., Taguchi, S.: Robust Engineering. McGraw-Hill, New York (2000)

    Google Scholar 

  2. Taguchi, G.: Taguchi on Robust Technology Development: Bringing Quality Engineering Upstream. ASME Press, New York (1993)

    Book  Google Scholar 

  3. Papadimitriou, D.I., Giannakoglou, K.C.: Third-order sensitivity analysis for robust aerodynamic design using continuous adjoint. Int. J. Numer. Methods Fluids (2012)

    Google Scholar 

  4. Wiebenga, J.H., Van Den Boogaard, A.H., Klaseboer, G.: Sequential robust optimization of a V-bending process using numerical simulations. Struct. Multidiscip. Optim. 46(1), 137–153 (2012)

    Article  Google Scholar 

  5. Du, X., Chen, W.: Efficient uncertainty analysis methods for multidisciplinary robust design. AIAA J. 40(3), 545–552 (2002)

    Article  Google Scholar 

  6. Karpel, M., Moulin, B., Idan, M.: Robust aeroservoelastic design with structural variations and modeling uncertainties. J. Aircr. 40(5), 946–954 (2003)

    Article  Google Scholar 

  7. Ramakrishnan, B., Rao, S.S.: A general loss function based optimization procedure for robust design. Eng. Optim. 25(4), 255–276 (1996)

    Article  Google Scholar 

  8. Patel, J., Kumar, A., Allen, J.K., Ruderman, A., Choi, S.K.: Variable sensitivity-based deterministic robust design for nonlinear system. J. Mech. Des. 132, 0645021 (2010)

    Article  Google Scholar 

  9. Choi, H., McDowell, D.L., Allen, J.K., Rosen, D., Mistree, F.: An inductive design exploration method for robust multiscale materials design. J. Mech. Des. 130(3) (2008)

    Google Scholar 

  10. Ruderman, A., Choi, S.-K., Patel, J., Kumar, A., Allen, J.K.: Simulation-based robust design of multiscale products. J. Mech. Des. 132(10) (2010)

    Google Scholar 

  11. Ray, T., Saha, A.: Practical robust design optimization using evolutionary algorithms. J. Mech. Des. 133 (2011)

    Google Scholar 

  12. Li, H.X., Lu, X.: Perturbation theory based robust design under model uncertainty. J. Mech. Des. 131, 1110061 (2009)

    Google Scholar 

  13. Beyer, H.-G., Sendhoff, B.: Robust optimization−a comprehensive survey. Comput. Methods Appl. Mech. Eng. 196(33–34), 3190–3218 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fishman, G.S.: Monte Carlo: Concepts, Algorithms, and Applications. Springer, New York (1995). ISBN 0-387-94527-X

    Google Scholar 

  15. Kroese, D.P., Taimre, T., Botev, Z.I.: Handbook of Monte Carlo Methods, p. 772. Wiley, New York (2011). ISBN 0-470-17793-4

    Book  MATH  Google Scholar 

  16. Siebert, B.R.L., Cox, M.G.: The use of a Monte Carlo method for evaluating uncertainty and expanded uncertainty. Metrologia 43(4), S178–S188 (2006)

    Article  Google Scholar 

  17. Zhao, L.Y., Zhang, X.Q.: Uncertainty quantification of a flapping airfoil with a stochastic velocity deviation based on a surrogate model. Adv. Mater. Res. 201–203, 1209–1212 (2011)

    Article  Google Scholar 

  18. Zhao, L., Zhang, X.: Uncertainty quantification of a flapping airfoil with stochastic velocity deviations using the response surface method. Open Mech. Eng. J. 5(1), 152–159 (2011)

    Article  Google Scholar 

  19. Du, X.: Unified uncertainty analysis by the first order reliability method. J. Mech. Des. 130(9), 0914011 (2008)

    Article  Google Scholar 

  20. Sujecki, S.: Extended Taylor series and interpolation of physically meaningful functions. Opt. Quantum Electron., 1–14 (2012)

    Google Scholar 

  21. Chen, Z.-J., Xiao, H.: The Taylor series multipole boundary element method (TSM-BEM) and its applications in rolling engineering. Chongqing Daxue Xuebao 35(5), 57–63 (2012)

    Google Scholar 

  22. Shu, C., Peng, Y., Zhou, C.F., Chew, Y.T.: Application of Taylor series expansion and least-squares-based lattice Boltzmann method to simulate turbulent flows. J. Turbul. 7, 1–12 (2006)

    Article  MathSciNet  Google Scholar 

  23. Rahman, S., Rao, B.N.: A perturbation method for stochastic meshless analysis in elastostatics. Int. J. Numer. Methods Eng. 50, 1961–1991 (2001)

    Article  Google Scholar 

  24. Waiboer, R.R., Aarts, R.G.K.M., Jonker, J.B.: Application of a perturbation method for realistic dynamic simulation of industrial robots. Multibody Syst. Dyn. 13(3), 323–338 (2005)

    Article  MATH  Google Scholar 

  25. Khattri, S.K.: Series expansion of functions with He’s homotopy perturbation method. Int. J. Math. Educ. Sci. Technol. 43(5), 677–684 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Lee, S.H., Chen, W.: A comparative study of uncertainty propagation methods for black-box-type problems. Struct. Multidiscip. Optim. 37(3), 239–253 (2009)

    Article  MathSciNet  Google Scholar 

  27. Eldred, M.S., Webster, C.G., Constantine, P.G.: Evaluation of non-intrusive approaches for Wiener-Askey generalized polynomial chaos. In: 10th AIAA Non-deterministic Approaches Forum, Schaumburg, IL (2008). AIAA-paper 2008-1892

    Google Scholar 

  28. Eldred, M.S., Burkardt, J.: Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification. In: 47th AIAA Aerospace Sciences Meeting, Orlando, FL, January (2009). AIAA 2009-0976

    Google Scholar 

  29. Veneziano, D., Agarwal, A., Karaca, E.: Decision making with epistemic uncertainty under safety constraints: an application to seismic design. Probab. Eng. Mech. 24(3), 426–437 (2009)

    Article  Google Scholar 

  30. Huang, H.-Z., Zhang, X.: Design optimization with discrete and continuous variables of aleatory and epistemic uncertainties. J. Mech. Des. 131(3), 0310061 (2009)

    Article  Google Scholar 

  31. Dolšek, M.: Simplified method for seismic risk assessment of buildings with consideration of aleatory and epistemic uncertainty. Struct. Infrastruct. Eng. 8(10), 939–953 (2012)

    Google Scholar 

  32. Swiler, L.P., Paez, T., Mayes, R.: Epistemic uncertainty quantification tutorial. In: SAND 2008-6578C, Paper 294 in the Proceedings of the IMAC XXVII Conference and Exposition on Structural Dynamics, Society for Structural Mechanics, Orlando, FL, Feb. (2009)

    Google Scholar 

  33. Swiler, L., Paez, T., Mayes, R., Eldred, M.: Epistemic uncertainty in the calculation of margins. In: 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, CA, May (2009). AIAA 2009-2249

    Google Scholar 

  34. Du, X.: Reliability-based design optimization with dependent interval variables. Int. J. Numer. Methods Eng. 91(2), 218–228 (2012)

    Article  MATH  Google Scholar 

  35. Ju, Y.P., Zhang, C.H.: Multi-point robust design optimization of wind turbine airfoil under geometric uncertainty. Proc. Inst. Mech. Eng. A, J. Power Energy 226(2), 245–261 (2012)

    Article  Google Scholar 

  36. Haro Sandoval, E., Anstett-Collin, F., Basset, M.: Sensitivity study of dynamic systems using polynomial chaos. Reliab. Eng. Syst. Saf. 104, 15–26 (2012)

    Article  Google Scholar 

  37. Didier, J., Faverjon, B., Sinou, J.-J.: Analysing the dynamic response of a rotor system under uncertain parameters by polynomial chaos expansion. J. Vib. Control 18(5), 712–732 (2012)

    Article  MathSciNet  Google Scholar 

  38. Cheng, H., Sandu, A.: Efficient uncertainty quantification with the polynomial chaos method for stiff systems. Math. Comput. Simul. 79(11), 3278–3295 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hosder, S., Walters, R.W., Balch, M.: Efficient sampling for non-intrusive polynomial chaos applications with multiple input uncertain variables

    Google Scholar 

  40. Hosder, S., Walters, R.W., Perez, R.: A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January (2006). AIAA 2006-891

    Google Scholar 

  41. Bettis, B., Hosder, S.: Quantification of uncertainty in aerodynamic heating of a reentry vehicle due to uncertain wall and freestream conditions. In: 10th AIAA Joint Thermophysics and Heat Transfer Conference, Chicago, IL, June (2010). AIAA 2010-4642

    Google Scholar 

  42. Eldred, M.S., Swiler, L.P., Tang, G.: Mixed aleatory-epistemic uncertainty quantification with stochastic expansions and optimization-based interval estimation. Reliab. Eng. Syst. Saf. 96(9), 1092–1113 (2011)

    Article  Google Scholar 

  43. Hosder, S., Bettis, B.: Uncertainty and sensitivity analysis for reentry flows with inherent and model-form uncertainties. J. Spacecr. Rockets 49(2), 193–206 (2012)

    Google Scholar 

  44. Eldred, M.S.: Design under uncertainty employing stochastic expansion methods. Int. J. Uncertain. Quantif. 1(2), 119–146 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Dodson, M., Parks, G.T.: Robust aerodynamic design optimization using polynomial chaos. J. Aircr. 46(2), 635–646 (2009)

    Article  Google Scholar 

  46. Youn, B.D., Choi, K.K., Du, L., Gorsich, D.: Integration of possibility-based optimization and robust design for epistemic uncertainty. J. Mech. Des. 129(8), 876–882 (2007)

    Article  Google Scholar 

  47. Eldred, M.S.: Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design (2009)

    Google Scholar 

  48. Du, X., Venigella, P.K., Liu, D.: Robust mechanism synthesis with random and interval variables. Mech. Mach. Theory 44(7), 1321–1337 (2009)

    Article  MATH  Google Scholar 

  49. Zhang, Y., Hosder, S., Leifsson, L., Koziel, S.: Robust airfoil optimization under inherent and model-form uncertainties using stochastic expansions. In: 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, TN, January 9–12 (2012). AIAA 2012-0056

    Google Scholar 

  50. Hosder, S., Walters, R.W., Balch, M.: Point-collocation nonintrusive polynomial chaos method for stochastic computational fluid dynamics. AIAA J. 48(12), 2721–2730 (2010)

    Article  Google Scholar 

  51. Wiener, N.: The homogeneous chaos. Am. J. Math. 60(4), 897–936 (1994)

    Article  MathSciNet  Google Scholar 

  52. Xiu, D., Karniadakis, G.E.: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187(1), 137–167 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  53. Walters, R.W., Huyse, L.: Uncertainty analysis for fluid mechanics with applications. Technical report, ICASE 2002-1, NASA/CR-2002-211449, NASA Langley Research Center, Hampton, VA (2002)

    Google Scholar 

  54. Najm, H.N.: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Annu. Rev. Fluid Mech. 41, 35–52 (2009)

    Article  MathSciNet  Google Scholar 

  55. Hosder, S., Walters, R.W.: Non-intrusive polynomial chaos methods for uncertainty quantification in fluid dynamics. In: 48th AIAA Aerospace Sciences Meeting, Orlando, FL, January 4–7 (2010). AIAA-paper 2010-0129

    Google Scholar 

  56. Hosder, S., Walters, R.W., Balch, M.: Efficient sampling for non-intrusive polynomial chaos applications with multiple input uncertain variables. In: 9th AIAA Non-deterministic Approaches Conference, Honolulu, HI, April (2007). AIAA-paper 2007-1939

    Google Scholar 

  57. Vanderplaats, G.N.: Numerical Optimization Techniques for Engineering Design, 3rd edn. Vanderplaats Research and Development, Colorado Springs (1999)

    Google Scholar 

  58. Anderson, J.D.: Fundamentals of Aerodynamics, 4th edn. McGraw-Hill, New York (2010)

    Google Scholar 

  59. Spalart, P.R., Allmaras, S.R.: A one equation turbulence model for aerodynamic flows. In: 38th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 6–9 (1992). AIAA-paper-92-0439

    Google Scholar 

  60. FLUENT, ver. 13.0. ANSYS Inc., Southpointe, 275 Technology Drive, Canonsburg, PA, 15317 (2011)

    Google Scholar 

  61. Abbott, I.H., Von Doenhoff, A.E.: Theory of Wing Sections. Dover Publications, Mineola (1959)

    Google Scholar 

  62. ICEM CFD, ver. 13.0. ANSYS Inc., Southpointe, 275 Technology Drive, Canonsburg, PA 15317 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serhat Hosder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhang, Y., Hosder, S. (2013). Efficient Robust Design with Stochastic Expansions. In: Koziel, S., Leifsson, L. (eds) Surrogate-Based Modeling and Optimization. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7551-4_11

Download citation

Publish with us

Policies and ethics