Skip to main content

Space Mapping for Electromagnetic-Simulation-Driven Design Optimization

  • Chapter
Surrogate-Based Modeling and Optimization

Abstract

Space mapping (SM) has been one of the most popular surrogate-based optimization techniques in microwave engineering to date. By exploiting the knowledge embedded in the underlying coarse model (e.g., an equivalent circuit), SM allows dramatic reduction of the computational cost while optimizing electromagnetic (EM)-simulated structures such as filters or antennas. While potentially very efficient, SM is not always straightforward to implement and set up, and may suffer from convergence problems. In this chapter, we discuss several variations of an SM optimization algorithm aimed at improving SM performance for design problems involving EM simulations. These include SM with constrained parameter extraction and surrogate model optimization designed to overcome the problem of selecting preassigned parameters for implicit SM, SM with response surface approximation coarse models that maintain SM efficiency when a fast coarse model is not available, and SM with sensitivity which takes advantage of adjoint sensitivity (which has recently become commercially available in EM simulators) to improve the convergence properties and further reduce the computational cost of SM algorithms. Each variation of the SM algorithm presented here is illustrated using a real-world microwave design example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bandler, J.W., Biernacki, R.M., Chen, S.H., Grobelny, P.A., Hemmers, R.H.: Space mapping technique for electromagnetic optimization. IEEE Trans. Microw. Theory Tech. 4, 536–544 (1994)

    Google Scholar 

  2. Bakr, M.H., Bandler, J.W., Georgieva, N.K., Madsen, K.: A hybrid aggressive space-mapping algorithm for EM optimization. IEEE Trans. Microw. Theory Tech. 47, 2440–2449 (1999)

    Article  Google Scholar 

  3. Bakr, M.H., Bandler, J.W., Biernacki, R.M., Chen, S.H., Madsen, K.: A trust region aggressive space mapping algorithm for EM optimization. IEEE Trans. Microw. Theory Tech. 46, 2412–2425 (1998)

    Article  Google Scholar 

  4. Amari, S., LeDrew, C., Menzel, W.: Space-mapping optimization of planar coupled-resonator microwave filters. IEEE Trans. Microw. Theory Tech. 54, 2153–2159 (2006)

    Article  Google Scholar 

  5. Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidynathan, R., Tucker, P.K.: Surrogate-based analysis and optimization. Prog. Aerosp. Sci. 41, 1–28 (2005)

    Article  Google Scholar 

  6. Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 45, 50–79 (2009)

    Article  Google Scholar 

  7. Koziel, S., Echeverría-Ciaurri, D., Leifsson, L.: Surrogate-based methods. In: Koziel, S., Yang, X.S. (eds.) Computational Optimization, Methods and Algorithms. Studies in Computational Intelligence, pp. 33–60. Springer, Berlin (2011)

    Chapter  Google Scholar 

  8. Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, M.H., Madsen, K., Sondergaard, J.: Space mapping: the state of the art. IEEE Trans. Microw. Theory Tech. 52, 337–361 (2004)

    Article  Google Scholar 

  9. Koziel, S., Ogurtsov, S.: Rapid design optimization of antennas using space mapping and response surface approximation models. Int. J. RF Microw. Comput.-Aided Eng. 21, 611–621 (2011)

    Article  Google Scholar 

  10. Ouyang, J., Yang, F., Zhou, H., Nie, Z., Zhao, Z.: Conformal antenna optimization with space mapping. J. Electromagn. Waves Appl. 24, 251–260 (2010)

    Article  Google Scholar 

  11. Zhu, J., Bandler, J.W., Nikolova, N.K., Koziel, S.: Antenna optimization through space mapping. IEEE Trans. Antennas Propag. 55, 651–658 (2007)

    Article  Google Scholar 

  12. Schantz, H.: The Art and Science of Ultrawideband Antennas. Artech House, Boston (2005)

    Google Scholar 

  13. Wu, K.: Substrate integrated circuits (SiCs)—a new paradigm for future GHz and THz electronic and photonic systems. IEEE Circuits Syst. Soc. Newsl. 3, 1 (2009)

    Google Scholar 

  14. Koziel, S., Bandler, S.W., Madsen, K.: A space mapping framework for engineering optimization: theory and implementation. IEEE Trans. Microw. Theory Tech. 54, 3721–3730 (2006)

    Article  Google Scholar 

  15. Koziel, S., Bandler, J.W., Madsen, K.: Quality assessment of coarse models and surrogates for space mapping optimization. Optim. Eng. 9, 375–391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bandler, J.W., Cheng, Q.S., Nikolova, N.K., Ismail, M.A.: Implicit space mapping optimization exploiting preassigned parameters. IEEE Trans. Microw. Theory Tech. 52, 378–385 (2004)

    Article  Google Scholar 

  17. Koziel, S., Bandler, J.W.: Space-mapping optimization with adaptive surrogate model. IEEE Trans. Microw. Theory Tech. 55, 541–547 (2007)

    Article  Google Scholar 

  18. Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  19. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45, 385–482 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Upper Saddle River (1989)

    MATH  Google Scholar 

  21. Koziel, S., Cheng, Q.S., Bandler, J.W.: Space mapping. IEEE Microw. Mag. 9, 105–122 (2008)

    Article  Google Scholar 

  22. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization. MPS-SIAM Series on Optimization. MPS-SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  23. Alexandrov, N.M., Dennis, J.E., Lewis, R.M., Torczon, V.: A trust region framework for managing use of approximation models in optimization. Struct. Multidiscip. Optim. 15, 16–23 (1998)

    Article  Google Scholar 

  24. Booker, A.J., Dennis, J.E. Jr., Frank, P.D., Serafini, D.B., Torczon, V., Trosset, M.W.: A rigorous framework for optimization of expensive functions by surrogates. Struct. Optim. 17, 1–13 (1999)

    Article  Google Scholar 

  25. Amari, S., LeDrew, C., Menzel, W.: Space-mapping optimization of planar coupled-resonator microwave filters. IEEE Trans. Microw. Theory Tech. 54, 2153–2159 (2006)

    Article  Google Scholar 

  26. Crevecoeur, G., Sergeant, P., Dupre, L., Van de Walle, R.: Two-level response and parameter mapping optimization for magnetic shielding. IEEE Trans. Magn. 44, 301–308 (2008)

    Article  Google Scholar 

  27. Koziel, S., Cheng, Q.S., Bandler, J.W.: Implicit space mapping with adaptive selection of preassigned parameters. IET Microw. Antennas Propag. 4, 361–373 (2010)

    Article  Google Scholar 

  28. Koziel, S., Bandler, J.W., Cheng, Q.S.: Constrained parameter extraction for microwave design optimization using implicit space mapping. IET Microw. Antennas Propag. 5, 1156–1163 (2011)

    Article  Google Scholar 

  29. Koziel, S., Bandler, J.W.: Coarse and surrogate model assessment for engineering design optimization with space mapping. In: IEEE MTT-S Int. Microwave Symp. Dig., pp. 107–110 (2007)

    Google Scholar 

  30. Koziel, S., Bandler, J.W., Cheng, Q.S.: Robust trust-region space-mapping algorithms for microwave design optimization. IEEE Trans. Microw. Theory Tech. 58, 2166–2174 (2010)

    Article  Google Scholar 

  31. Koziel, S., Bandler, J.W., Cheng, Q.S.: Adaptively constrained parameter extraction for robust space mapping optimization of microwave circuits. In: IEEE MTT-S Int. Microwave Symp. Dig., pp. 205–208 (2010)

    Google Scholar 

  32. Koziel, S., Bandler, J.W., Madsen, K.: Space-mapping based interpolation for engineering optimization. IEEE Trans. Microw. Theory Tech. 54, 2410–2421 (2006)

    Article  Google Scholar 

  33. Lee, H.-M., Tsai, C.-M.: Improved coupled-microstrip filter design using effective even-mode and odd-mode characteristic impedances. IEEE Trans. Microw. Theory Tech. 53, 2812–2818 (2005)

    Article  Google Scholar 

  34. FEKO User’s Manual. Suite 6.0. EM Software & Systems-S.A. (Pty) Ltd, 32 Techno Lane, Technopark, Stellenbosch, 7600, South Africa (2010)

    Google Scholar 

  35. Agilent ADS, Version 2011, Agilent Technologies, 395 Page Mill Road, Palo Alto, CA, 94304 (2011)

    Google Scholar 

  36. Kempbel, L.C.: Computational electromagnetics for antennas. In: Volakis, J.L. (ed.) Antenna Engineering Handbook, 4th edn. McGraw-Hill, New York (2007)

    Google Scholar 

  37. Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. Artech House, Boston (2005)

    Google Scholar 

  38. Jin, J.-M.: The Finite Element Method in Electromagnetics, 2nd edn. Wiley-IEEE Press, New York (2002)

    MATH  Google Scholar 

  39. CST Microwave Studio, ver. 2012. CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany (2012)

    Google Scholar 

  40. Kabir, H., Wang, Y., Yu, M., Zhang, Q.J.: Neural network inverse modeling and applications to microwave filter design. IEEE Trans. Microw. Theory Tech. 56, 867–879 (2008)

    Article  Google Scholar 

  41. Murphy, E.K., Yakovlev, V.V.: Neural network optimization of complex microwave structures with a reduced number of full-wave analyses. Int. J. RF Microw. Comput.-Aided Des. 21 (2010)

    Google Scholar 

  42. Gutiérrez-Ayala, V., Rayas-Sánchez, J.E.: Neural input space mapping optimization based on nonlinear two-layer perceptrons with optimized nonlinearity. Int. J. RF Microw. Comput.-Aided Eng. 20, 512–526 (2010)

    Article  Google Scholar 

  43. Tighilt, Y., Bouttout, F., Khellaf, A.: Modeling and design of printed antennas using neural networks. Int. J. RF Microw. Comput.-Aided Eng. 21, 228–233 (2011)

    Article  Google Scholar 

  44. Kabir, H., Yu, M., Zhang, Q.J.: Recent advances of neural network-based EM-CAD. Int. J. RF Microw. Comput.-Aided Eng. 20, 502–511 (2010)

    Article  Google Scholar 

  45. Siah, E.S., Ozdemir, T., Volakis, J.L., Papalambros, P., Wiese, R.: Fast parameter optimization using kriging metamodeling [antenna EM modeling/simulation]. In: IEEE Antennas and Prop. Int. Symp, pp. 76–79 (2003)

    Google Scholar 

  46. Siah, E.S., Sasena, M., Volakis, J.L., Papalambros, P.Y., Wiese, R.W.: Fast parameter optimization of large-scale electromagnetic objects using DIRECT with kriging metamodeling. IEEE Trans. Microw. Theory Tech. 52, 276–285 (2004)

    Article  Google Scholar 

  47. Shaker, G.S.A., Bakr, M.H., Sangary, N., Safavi-Naeini, S.: Accelerated antenna design methodology exploiting parameterized Cauchy models. Prog. Electromagn. Res. 18, 279–309 (2009)

    Article  Google Scholar 

  48. Xia, L., Meng, J., Xu, R., Yan, B., Guo, Y.: Modeling of 3-D vertical interconnect using support vector machine regression. IEEE Microw. Wirel. Compon. Lett. 16, 639–641 (2006)

    Article  Google Scholar 

  49. Lophaven, S.N., Nielsen, H.B., Søndergaard, J.: DACE: a Matlab kriging toolbox. Technical University of Denmark (2002)

    Google Scholar 

  50. Beachkofski, B., Grandhi, R.: Improved distributed hypercube sampling. American Institute of Aeronautics and Astronautics, Paper AIAA, 2002–1274 (2002)

    Google Scholar 

  51. Petosa, A.: Dielectric Resonator Antenna Handbook. Artech House, Boston (2007)

    Google Scholar 

  52. RO4000 series high frequency circuit materials, data sheet. Publication no. 92-004, Rogers Corporation, Chandler, AZ (2010)

    Google Scholar 

  53. El Sabbagh, M.A., Bakr, M.H., Nikolova, N.K.: Sensitivity analysis of the scattering parameters of microwave filters using the adjoint network method. Int. J. RF Microw. Comput.-Aided Eng. 16, 596–606 (2006)

    Article  Google Scholar 

  54. Koziel, S., Ogurtsov, S., Bandler, J.W., Cheng, Q.S.: Robust space mapping optimization exploiting EM-based models with adjoint sensitivity. In: IEEE MTT-S Int. Microwave Symp. Dig. (2012)

    Google Scholar 

  55. Alexandrov, N.M., Lewis, R.M.: An overview of first-order model management for engineering optimization. Optim. Eng. 2, 413–430 (2001)

    Article  MATH  Google Scholar 

  56. Dielectric resonator filter, Examples, CST Microwave Studio, ver. 2011. CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slawomir Koziel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koziel, S., Leifsson, L., Ogurtsov, S. (2013). Space Mapping for Electromagnetic-Simulation-Driven Design Optimization. In: Koziel, S., Leifsson, L. (eds) Surrogate-Based Modeling and Optimization. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7551-4_1

Download citation

Publish with us

Policies and ethics