Skip to main content

Ethnic Differences in Fertility and Assisted Reproduction: Ethnic Disparity in Stem Cell Availability and Research

  • Chapter
  • First Online:
Ethnic Differences in Fertility and Assisted Reproduction

Abstract

In addition to the great promise for tissue replacement therapies, research on human embryonic stem cells provides insights into developmental mechanism of disease. However, the lack of diversity in pluripotent stem cell lines limits the discovery for the mechanism of diseases with known ethnic disparities. It also reduces the chance for minority groups to be the recipients of stem cell treatments. In this article, we discuss the current status of the racial disparity in available stem cells, including hematopoietic stem cells from both bone marrow and cord blood, as well as pluripotent stem cells. The application of pluripotent stem cells, as tools for investigating the mechanism of racially implicated disease conditions is proposed. We also report the derivation of 12 African-American iPS cell lines as an initial effort to address the disparity in the availability of pluripotent stem cells for minority populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gratwohl A, Baldomero H, Aljurf M, et al. Hematopoietic stem cell transplantation: a global perspective. JAMA. 2010;303(16):1617–24.

    Article  PubMed  CAS  Google Scholar 

  2. Hansen JA, Yamamoto K, Petersdorf E, Sasazuki T. The role of HLA matching in hematopoietic cell transplantation. Rev Immunogenet. 1999;1(3):359–73.

    PubMed  CAS  Google Scholar 

  3. Cao K, Hollenbach J, Shi X, Shi W, Chopek M, Fernandez-Vina MA. Analysis of the frequencies of HLA-A, B, and C alleles and haplotypes in the five major ethnic groups of the United States reveals high levels of diversity in these loci and contrasting distribution patterns in these populations. Hum Immunol. 2001;62(9):1009–30.

    Article  PubMed  CAS  Google Scholar 

  4. Onitilo AA, Lin YH, Okonofua EC, Afrin LB, Ariail J, Tilley BC. Race, education, and knowledge of bone marrow registry: indicators of willingness to donate bone marrow among African Americans and Caucasians. Transplant Proc. 2004;36(10):3212–9.

    Article  PubMed  CAS  Google Scholar 

  5. Kurz RS, Scharff DP, Terry T, Alexander S, Waterman A. Factors influencing organ donation decisions by African Americans: a review of the literature. Med Care Res Rev. 2007;64(5):475–517.

    Article  PubMed  Google Scholar 

  6. Johansen KA, Schneider JF, McCaffree MA, Woods GL. Efforts of the United States’ National Marrow Donor Program and Registry to improve utilization and representation of minority donors. Transfus Med. 2008;18(4):250–9.

    Article  PubMed  CAS  Google Scholar 

  7. Laver JH, Hulsey TC, Jones JP, Gautreaux M, Barredo JC, Abboud MR. Assessment of barriers to bone marrow donation by unrelated African-American potential donors. Biol Blood Marrow Transplant. 2001;7(1):45–8.

    Article  PubMed  CAS  Google Scholar 

  8. James AB, Hillyer CD, Shaz BH. Demographic differences in estimated blood donor eligibility prevalence in the United States. Transfusion. 2012;52(5):1050–61.

    Article  PubMed  Google Scholar 

  9. Ballen KK, Hicks J, Dharan B, et al. Racial and ethnic composition of volunteer cord blood donors: comparison with volunteer unrelated marrow donors. Transfusion. 2002;42(10):1279–84.

    Article  PubMed  Google Scholar 

  10. Barker JN, Byam CE, Kernan NA, et al. Availability of cord blood extends allogeneic hematopoietic stem cell transplant access to racial and ethnic minorities. Biol Blood Marrow Transplant. 2010;16(11):1541–8.

    Article  PubMed  Google Scholar 

  11. Rucinski D, Jones R, Reyes B, Tidwell L, Phillips R, Delves D. Exploring opinions and beliefs about cord blood donation among Hispanic and non-Hispanic black women. Transfusion. 2010;50(5):1057–63.

    Article  PubMed  Google Scholar 

  12. Baker KS, Davies SM, Majhail NS, et al. Race and socioeconomic status influence outcomes of unrelated donor hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2009;15(12):1543–54.

    Article  PubMed  Google Scholar 

  13. Samuel GN, Kerridge IH, Vowels M, Trickett A, Chapman J, Dobbins T. Ethnicity, equity and public benefit: a critical evaluation of public umbilical cord blood banking in Australia. Bone Marrow Transplant. 2007;40(8):729–34.

    Article  PubMed  CAS  Google Scholar 

  14. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78(12):7634–8.

    Article  PubMed  CAS  Google Scholar 

  15. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154–6.

    Article  PubMed  CAS  Google Scholar 

  16. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    Article  PubMed  CAS  Google Scholar 

  17. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    Article  PubMed  CAS  Google Scholar 

  18. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  PubMed  CAS  Google Scholar 

  19. Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.

    Article  PubMed  CAS  Google Scholar 

  20. Park IH, Zhao R, West JA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008;451(7175):141–6.

    Article  PubMed  CAS  Google Scholar 

  21. Cohen DE, Melton D. Turning straw into gold: directing cell fate for regenerative medicine. Nat Rev Genet. 2011;12(4):243–52.

    Article  PubMed  CAS  Google Scholar 

  22. Graf T. Historical origins of transdifferentiation and reprogramming. Cell Stem Cell. 2011;9(6):504–16.

    Article  PubMed  CAS  Google Scholar 

  23. DeRrouen MC, McCormick JB, Owen-Smith J, Scott CT. The race is on: human embryonic stem cell research goes global. Stem Cell Rev. 2012;8(4):1043–7.

    Article  Google Scholar 

  24. Nichols Jr JE, Higdon 3rd HL, Crane MM, Boone WR. Comparison of implantation and pregnancy rates in African American and white women in an assisted reproductive technology practice. Fertil Steril. 2001;76(1):80–4.

    Article  PubMed  Google Scholar 

  25. Mosher JT, Pemberton TJ, Harter K, et al. Lack of population diversity in commonly used human embryonic stem-cell lines. N Engl J Med. 2010;362(2):183–5.

    Article  PubMed  CAS  Google Scholar 

  26. Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet. 2005;366(9502):2019–25.

    Article  PubMed  Google Scholar 

  27. Nakatsuji N, Nakajima F, Tokunaga K. HLA-haplotype banking and iPS cells. Nat Biotechnol. 2008;26(7):739–40.

    Article  PubMed  CAS  Google Scholar 

  28. Gourraud PA, Gilson L, Girard M, Peschanski M. The role of human leukocyte antigen matching in the development of multiethnic “haplobank” of induced pluripotent stem cell lines. Stem Cells. 2012;30(2):180–6.

    Article  PubMed  CAS  Google Scholar 

  29. Park IH, Arora N, Huo H, et al. Disease-specific induced pluripotent stem cells. Cell. 2008;134(5):877–86.

    Article  PubMed  CAS  Google Scholar 

  30. Rajamohan D, Matsa E, Kalra S, et al. Current status of drug screening and disease modelling in human pluripotent stem cells. Bioessays. 2013;35(3):281–98.

    Article  PubMed  CAS  Google Scholar 

  31. Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. Nature. 2012;481(7381):295–305.

    Article  PubMed  CAS  Google Scholar 

  32. Palmer ND, McDonough CW, Hicks PJ, et al. A genome-wide association search for type 2 diabetes genes in African Americans. PLoS One. 2012;7(1):e29202.

    Article  PubMed  CAS  Google Scholar 

  33. Saxena R, Elbers CC, Guo Y, et al. Large-scale gene-centric meta-analysis across 39 studies identifies type 2 diabetes loci. Am J Hum Genet. 2012;90(3):410–25.

    Article  PubMed  CAS  Google Scholar 

  34. Sabeti PC, Varilly P, Fry B, et al. Genome-wide detection and characterization of positive selection in human populations. Nature. 2007;449(7164):913–8.

    Article  PubMed  CAS  Google Scholar 

  35. Kamberov Y, Wang S, Tan L, et al. Phenotypic change in ectodermal appendages of mouse and man is driven by a variant of the EDAR gene. Meeting abstracts, Cold Spring Harbor Meeting on Molecular Pathways in Organ Development & Disease, 2012. p. 96.

    Google Scholar 

  36. Lahti AL, Kujala VJ, Chapman H, et al. Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture. Dis Model Mech. 2012;5(2):220–30.

    Article  PubMed  CAS  Google Scholar 

  37. Brennand KJ, Simone A, Jou J, et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature. 2011;473(7346):221–5.

    Article  PubMed  CAS  Google Scholar 

  38. Shi Y, Kirwan P, Smith J, MacLean G, Orkin SH, Livesey FJ. A human stem cell model of early Alzheimer’s disease pathology in Down syndrome. Sci Transl Med. 2012;4(124):124ra29.

    Article  PubMed  Google Scholar 

  39. Marchetto MC, Carromeu C, Acab A, et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell. 2010;143(4):527–39.

    Article  PubMed  CAS  Google Scholar 

  40. Spong CY, Iams J, Goldenberg R, Hauck FR, Willinger M. Disparities in perinatal medicine: preterm birth, stillbirth, and infant mortality. Obstet Gynecol. 2011;117(4):948–55.

    Article  PubMed  Google Scholar 

  41. Manuck TA, Lai Y, Meis PJ, et al. Admixture mapping to identify spontaneous preterm birth susceptibility loci in African Americans. Obstet Gynecol. 2011;117(5):1078–84.

    Article  PubMed  Google Scholar 

  42. Simhan HN, Krohn MA. Paternal race and preterm birth. Am J Obstet Gynecol. 2008;198(6):644 e1–6.

    Article  Google Scholar 

  43. Simhan HN, Krohn MA, Roberts JM, Zeevi A, Caritis SN. Interleukin-6 promoter−174 polymorphism and spontaneous preterm birth. Am J Obstet Gynecol. 2003;189(4):915–8.

    Article  PubMed  CAS  Google Scholar 

  44. Velez DR, Menon R, Thorsen P, et al. Ethnic differences in interleukin 6 (IL-6) and IL6 receptor genes in spontaneous preterm birth and effects on amniotic fluid protein levels. Ann Hum Genet. 2007;71(Pt 5):586–600.

    Article  PubMed  CAS  Google Scholar 

  45. Macones GA, Parry S, Elkousy M, Clothier B, Ural SH, Strauss 3rd JF. A polymorphism in the promoter region of TNF and bacterial vaginosis: preliminary evidence of gene-environment interaction in the etiology of spontaneous preterm birth. Am J Obstet Gynecol. 2004;190(6):1504–8. discussion 3A.

    Article  PubMed  CAS  Google Scholar 

  46. Thota C, Menon R, Wentz MJ, et al. A single-nucleotide polymorphism in the fetal catechol-O-methyltransferase gene is associated with spontaneous preterm birth in African Americans. Reprod Sci. 2012;19(2):135–42.

    Article  PubMed  CAS  Google Scholar 

  47. Swamy GK, Garrett ME, Miranda ML, Ashley-Koch AE. Maternal vitamin D receptor genetic variation contributes to infant birthweight among black mothers. Am J Med Genet A. 2011;155A(6):1264–71.

    PubMed  Google Scholar 

  48. Ferrand PE, Parry S, Sammel M, et al. A polymorphism in the matrix metalloproteinase-9 promoter is associated with increased risk of preterm premature rupture of membranes in African Americans. Mol Hum Reprod. 2002;8(5):494–501.

    Article  PubMed  CAS  Google Scholar 

  49. Wang H, Parry S, Macones G, et al. A functional SNP in the promoter of the SERPINH1 gene increases risk of preterm premature rupture of membranes in African Americans. Proc Natl Acad Sci U S A. 2006;103(36):13463–7.

    Article  PubMed  CAS  Google Scholar 

  50. Feinberg EC, Larsen FW, Catherino WH, Zhang J, Armstrong AY. Comparison of assisted reproductive technology utilization and outcomes between Caucasian and African American patients in an equal-access-to-care setting. Fertil Steril. 2006;85(4):888–94.

    Article  PubMed  Google Scholar 

  51. Harper MA, Espeland MA, Dugan E, Meyer R, Lane K, Williams S. Racial disparity in pregnancy-related mortality following a live birth outcome. Ann Epidemiol. 2004;14(4):274–9.

    Article  PubMed  Google Scholar 

  52. Gerami-Naini B, Dovzhenko OV, Durning M, Wegner FH, Thomson JA, Golos TG. Trophoblast differentiation in embryoid bodies derived from human embryonic stem cells. Endocrinology. 2004;145(4):1517–24.

    Article  PubMed  CAS  Google Scholar 

  53. Xu RH, Chen X, Li DS, et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol. 2002;20(12):1261–4.

    Article  PubMed  CAS  Google Scholar 

  54. Sommer CA, Stadtfeld M, Murphy GJ, Hochedlinger K, Kotton DN, Mostoslavsky G. Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells. 2009;27(3):543–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Wei Lu Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lu, CW., Seita, Y., Treff, N., Roth, M.J. (2013). Ethnic Differences in Fertility and Assisted Reproduction: Ethnic Disparity in Stem Cell Availability and Research. In: Sharara, F. (eds) Ethnic Differences in Fertility and Assisted Reproduction. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7548-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7548-4_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7547-7

  • Online ISBN: 978-1-4614-7548-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics