Micropuncture and Microperfusion

  • Erich E. Windhager
Chapter
Part of the People and Ideas book series (PEOPL)

Abstract

The method of in vivo micropuncture of renal glomeruli, tubuli, and blood vessels has been used by physiologists and nephrologists for the past sixty-five years. The history of micropuncture studies shows that for the first two decades one group of investigators working at the University of Pennsylvania in the laboratory of A. Newton Richards (Fig. 1) dominated the field almost exclusively. These studies therefore constitute a coherent self-contained endeavor. There followed a gap in time, a full decade, before others started, afresh and in many directions, where the previous group had ended. It is because of this particular course of events that one can look upon the history of this field as consisting of two stages, one before and the other after World War II.

Keywords

Permeability Mercury Creatinine Bicarbonate Luminal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Alexander, J. T., and M. L. Nastuk. An instrument for the production of microelectrodes used in electrophysiological studies. Rev. Sci. In-strum. 24: 528–531, 1953.CrossRefGoogle Scholar
  2. 2.
    Baines, A. D., C. I. Baines, and C. DE Rouffignac. Functional heterogeneity of nephrons. I. Intraluminal flow velocities. Pfluegers Arch. 308: 244–259, 1969.CrossRefGoogle Scholar
  3. 3.
    Borr, P. A. Renal excretion of creatinine in Necturus. A reinvestigation by direct analysis of glomerular and tubular fluid for creatinine and inulin. Am. J. Physiol. 168: 107–113, 1952.Google Scholar
  4. 4.
    Borr, P. A. The determination of Na and K in biological fluids with the dual-channel ultramicroflame photometer. Anal. Biochem. 1: 17–22, 1960.CrossRefGoogle Scholar
  5. 5.
    Brenner, B. M., J. L. Troy, and T. M. Daugharty. The dynamics of glomerular ultrafiltration in the rat. J. Clin. Invest. 50: 1776–1780, 1971.PubMedCrossRefGoogle Scholar
  6. 6.
    Burg, M. B. Introduction: background and development of microperfusion technique. Kidney Int. 22: 417–425, 1982.PubMedCrossRefGoogle Scholar
  7. 7.
    Burg, M., J. Grantham, M. Abramow, and J. Orloff. Preparation and study of fragments of single rabbit nephrons. Am. J. Physiol. 210: 1293 1298, 1966.Google Scholar
  8. 8.
    Burg, M. B., and J. Orloff. Electrical potential difference across proximal convoluted tubules. Am. J. Physiol. 219: 1714–1716, 1970.Google Scholar
  9. 9.
    Clapp, J. R., J. F. Watson, and R. W. Berliner. OSmOlality, bicarbonate concentration, and water reabsorption in proximal tubule of the dog nephron. Am. J. Physiol. 205: 273–280, 1963.Google Scholar
  10. 10.
    Cushny, A. R. The Secretion of Urine. London: Longmans Green, 1917.Google Scholar
  11. 11.
    Deetjen, P., and H. Brechtelsbauer. Untersuchungen zur cortcalen Durchblutung der Rattenniere bei Mikropunktionsexperimenten (Abstract). Pfluegers Arch. Gesamte Physiol. Menchen Tierre 218: 26, 1964.Google Scholar
  12. 12.
    Dirks, J. H., J. Clapp, and R. W. Berliner. The protein concentration in the proximal tubule of the dog. J. Clin. Invest. 43: 916–921, 1964.PubMedCrossRefGoogle Scholar
  13. 13.
    Ekehorn, G. On the principles of renal function. Acta Med. Scand. Suppl. 36: 3–717, 1931.Google Scholar
  14. 14.
    Freeman, B., A. E. Livingston, and A. N. Richards. A second series of quantitative estimations of the concentration of chlorides in glomerular urine from frogs. J. Biol. Chem. 87: 467–477, 1930.Google Scholar
  15. 15.
    FRÖMter, E. Viewing the kidney through microelectrodes. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16 ): F695 — F705, 1984.Google Scholar
  16. 16.
    Gertz, K. H. Transtubuläre Natriumchloridflüsse and Permeabilität für Nichtelektrolyte im proximalen and distalen Konvolut der Rattenniere. Pfluegers Arch. Gesamte Physiol. Menchen Tierre 276: 336–356, 1963.CrossRefGoogle Scholar
  17. 17.
    Giebisch, G. Measurements of pH, chloride, and inulin concentrations in proximal tubule fluid of Necturus. Am. J. Physiol. 185: 171–174, 1956.Google Scholar
  18. 18.
    Giebisch, G. Electrical potential measurement on single nephrons of Necturus. J. Cell. Comp. Physiol. 51: 221–240, 1958.CrossRefGoogle Scholar
  19. 19.
    Giebisch, G. Measurement of electrical potential difference on single nephrons of the perfused Necturus kidney. J. Gen. Physiol. 44: 659678, 1961.Google Scholar
  20. 20.
    Giebisch, G., R. M. Klose, G. Malnic, W. J. Sullivan, and E. E. Windhager. Sodium movement across single perfused proximal tubules of rat kidneys. J. Gen. Physiol. 47: 1175–1196, 1964.PubMedCrossRefGoogle Scholar
  21. 21.
    Giebisch, G., and E. E. Windhager. Measurement of chloride movement across single proximal tubules of Necturus kidney. Am. J. Physiol. 204: 387–391, 1963.PubMedGoogle Scholar
  22. 22.
    Gottschalk, C. W. Micropuncture studies of tubular function in the mammalian kidney. Physiologist 4 (1): 35–55, 1961.Google Scholar
  23. 23.
    GOrrscHalk, C. W. Renal tubular function: lessons from micropuncture. Harvey Lect. 58: 99–124, 1962–1963.Google Scholar
  24. 24.
    Gottschalk, C. W. Dr. A. N. Richards and kidney micropuncture. Ann. Intern. Med. 71: 28–37, 1969.Google Scholar
  25. 25.
    Gottschalk, C. W., W. E. Lassiter, and M. Mylle. Localization of urine acidification in the mammalian kidney. Am. J. Physiol. 198: 581–585, 1960.Google Scholar
  26. 26.
    Gottschalk, C. W., W. E. Lassiter, M. Mylle, K. J. Ullrich, B. Schmidtnielsen, R. O’Dell, and G. Pehling. Micropuncture study of composition of loop of Henle fluid in desert rodents. Am. J. Physiol. 204: 532— 535, 1963.Google Scholar
  27. 27.
    Gottschalk, C. W., and M. Mylle. Micropuncture study of pressures in proximal tubules and peritubular capillaries of the rat kidney and their relation to ureteral and renal venous pressures. Am. J. Physiol. 185: 430–439, 1956.Google Scholar
  28. 28.
    Gottschalk, C. W., and M. Mylle. Micropuncture study of pressures in proximal and distal tubules and peritubular capillaries of the rat kidney during osmotic diuresis. Am. J. Physiol. 189: 323–328, 1957.Google Scholar
  29. 29.
    Gottschalk, C. W., and M. Mylle. Evidence that the mammalian nephron functions as a countercurrent multiplier system. Science Wash. DC 128: 594, 1958.CrossRefGoogle Scholar
  30. 30.
    Gottschalk, C. W., and M. Mylle. Micropuncture study of the mammalian urinary concentrating mechanism: evidence for the countercurrent hypothesis. Am. J. Physiol. 196: 927–936, 1959.Google Scholar
  31. 31.
    Greger, R., E. Schlatter, and F. Lang. Evidence for electroneutral sodium chloride cotransport in the cortical thick ascending limb of Henle’s loop of rabbit kidney. Pfluegers Arch. 396: 308–314, 1983.CrossRefGoogle Scholar
  32. 32.
    Hanssen, O. E. Method of glomerular filtration in individual rat nephrons. In: Proc. Second Int. Congr. Nephrol., Prague, 1963. Amsterdam: Excerpta Med., 1964, p. 527–529.Google Scholar
  33. 33.
    Host’’, T., and Y. Kikuta. Effects of organic solute-sodium co-transport on the transmembrane potentials and resistance parameters of the proximal tubule of Triturus kidney. In: Electropli.ysiology of the Nephron,edited by T. Anagnostopoulos. Paris: Inserm, 1977, vol. 67, p. 135160. Micropuncture Google Scholar
  34. 34.
    Imai, M. Function of the thin ascending limb of Henle of rats and And hamsters perfused in vitro. Am. J. Physiol. 232 (Renal Fluid Electrolyte Microperfusion Physiol. 1 ): F201 — F209, 1977.Google Scholar
  35. 35.
    Klumper, J., K. Ullrich, and H. Hilger. Das Verhalten des Harnstoffs in den Sammelrohren der Saügetierniere. Pfluegers Arch. Gesamte Physiol. Menchen Tierre 267: 238–243, 1958.CrossRefGoogle Scholar
  36. 36.
    Koefoed-Johnsen, V., and H. H. Ussing. The nature of the frog skin potential. Acta Physiol. Scand. 42: 298–308, 1958.CrossRefGoogle Scholar
  37. 37.
    Koxxo, J. Sodium chloride and water transport in the descending limb of Henle. J. Clin. Invest. 49: 1838–1846, 1970.CrossRefGoogle Scholar
  38. 38.
    Landis, E. M. Capillary pressure and capillary permeability. Physiol. Rev. 14: 404–481, 1934.Google Scholar
  39. 39.
    Ling, G., and R. W. Gerard. The membrane potentials and metabolism of muscle fibers. J. Cell. Comp. Physiol. 34: 413–438, 1949.CrossRefGoogle Scholar
  40. 40.
    Litchfield, J B, and P. A. Borr. Micropuncture study of renal excretion of water, K, Na, and Cl in the rat. Am. J. Physiol. 203: 667–670, 1962.PubMedGoogle Scholar
  41. 41.
    Maude, D. L., I. Shehadeh, and A. K. Solomon. Sodium and water transport in single perfused distal tubules of Necturus kidney. Am. J. Physiol. 211: 1043–1049, 1966.PubMedGoogle Scholar
  42. 42.
    Montgomery, H., and J. A. Pierce. The site of acidification of the urine within the renal tubule in amphibia. Am. J. Physiol. 118: 144–152, 1937.Google Scholar
  43. 43.
    Pappenheimer, J. R. Über die Permeabilität der Glomerulummembranen der Niere. Klin. Wochenschr. 33: 362–365, 1955.PubMedCrossRefGoogle Scholar
  44. 44.
    Rector, F. C., JR., and J. R. Clapp. Evidence for active chloride reabsorption in the distal renal tubule of the rat. J. Clin. Invest. 41: 10 1107, 1962.Google Scholar
  45. 45.
    Richards, A. N. Urine formation in the amphibian kidney. Harvey Lect. Ser. 30, 93–118, 1934–1935.Google Scholar
  46. 46.
    Richards, A. N. The Croonian Lecture. Processes of urine formation. Proc. R. Soc. Lond. B Biol. Sci. 126: 398–432, 1938.CrossRefGoogle Scholar
  47. 47.
    Richards, A. N., and A. M. Walker. Methods of collecting fluid from known regions of the renal tubules of amphibia and of perfusing the lumen of a single tubule. Am. J. Physiol. 118: 111–120, 1937.Google Scholar
  48. 48.
    Rouffignac, C. DE, S. Deiss, and J. P. Bonvalet. Détermination du taux individuel de filtration glomérulaire des néphrons accessibles et inac-cessibles à la microponction. Pfluegers Arch. 315: 273–290, 1970.CrossRefGoogle Scholar
  49. 49.
    Sakai, F., R. L. Jamison, and R. W. Berliner. A method for exposing the rat renal medulla in vivo: micropuncture of the collecting duct. Am. J. Physiol. 209: 663–668, 1965.PubMedGoogle Scholar
  50. 50.
    Shipp, J. C., I. B. Hanenson, E. E. Windhager, H. J. Schatzmann, G. Whittembury, H. Yoshimura, and A. K. Solomon. Single proximal tubules of the Necturus kidney. Methods for micropuncture and micro-perfusion. Am. J. Physiol. 195: 563–569, 1958.PubMedGoogle Scholar
  51. 51.
    Solomon, A. K. Single proximal tubules of Necturus kidney. Vii. Ion fluxes across individual faces of cell. Am. J. Physiol. 204: 381–386, 1963.Google Scholar
  52. 52.
    Solomon, S. Transtubular potential differences of rat kidney. J. Cell. Comp. Physiol. 49: 351–365, 1957.CrossRefGoogle Scholar
  53. 53.
    Sperber, I. Studies on the mammalian kidney. Zool. Bidr. Uppsala 20: 249–431, 1944.Google Scholar
  54. 54.
    Steinhausen, M. Eine Methode zur Differenzierung proximaler und distaler Tubuli der Nierenrinde von Ratten in vivo und ihre Anwendung zur Bestimmung tubulärer Strömungsgeschwindigkeiten. Pfluegers Arch. Gesamte Physiol. Menchen Tierre 277: 23–35, 1963.CrossRefGoogle Scholar
  55. 55.
    Thurau, K. W. Renal hemodynamics. Am. J. Med. 36: 609–719, 1964.Google Scholar
  56. 56.
    Thurau, K., P. Deetjen, and K. Kramer. Hämodynamik des Nierenmarks (II). Weschselbeziehung zwischen vascularem und tubulärem Gegenstromsystem bei arteriellen Drucksteigerungen, Wasserdiurese und osmotischer Diurese. Pfluegers Arch. Gesamte Physiol. Menchen Tierre 270: 270–285, 1960.Google Scholar
  57. 57.
    Thurau, K., and J. Schnermann. Die Natrium Konzentration an den Macula densa-Zellen als regulierender Faktor für das Glomerulumfiltrat (Mikropunktionsversuche). Klin. Wochenschr. 43: 410–413, 1965.PubMedCrossRefGoogle Scholar
  58. 58.
    Ullrich, K., H. Hilger, and J. Klumper. Sekretion von Ammoniumionen in den Sammelrohren der Saugetierniere. Pfluegers Arch. Gesamte Physiol. Menchen Tierre 267: 244–250, 1958.CrossRefGoogle Scholar
  59. 59.
    Ullrich, K. J., B. Schmidt-Nielsen, R. O’Dell, G. Pehling, C. W. Gottschalk, W. E. Lassiter, and M. Mylle. Micropuncture study of composition of proximal and distal tubular fluid in rat kidney. Am. J. Physiol. 204: 527–531, 1963.Google Scholar
  60. 60.
    Walker, A. M., P. A. BoTT, J. Oliver, and M. C. Macdowell. The collection and analysis of fluid from single nephrons of the mammalian kidney. Am. J. Physiol. 134: 580–595, 1941.Google Scholar
  61. 61.
    Walker, A. M., and C. L. Hudson. The reabsorption of glucose from the renal tubule in amphibia and the action of phlorhizin upon it. Am. J. Physiol. 118: 130–143, 1937.Google Scholar
  62. 62.
    Walker, A. M., and C. L. Hudson. The role of the tubule in the excretion of urea by the amphibian kidney. Am. J. Physiol. 118: 153–166, 1937.Google Scholar
  63. 63.
    Walker, A. M., and C. L. Hudson. The role of the tubule in the excretion of inorganic phosphates by the amphibian kidney. Am. J. Physiol. 118: 167–173, 1937.Google Scholar
  64. 64.
    Walker, A. M., C. L. Hudson, T. Findley, JR., and A. N. Richards. The total molecular concentration and the chloride concentration of fluid from different segments of the renal tubule of amphibia. Am. J. Physiol. 118: 121–129, 1937.Google Scholar
  65. 65.
    Walker, A. M., and J. Oliver. Methods for the collection of fluid from single glomeruli and tubules of the mammalian kidney. Am. J. Physiol. 134: 562–579, 1941.Google Scholar
  66. 66.
    Wearn, J. T. Composition of glomerular urine with conclusive evidence of reabsorption in the renal tubules. Physiologist 23 (5): 1–4, 1980.Google Scholar
  67. 67.
    Wearn, J. T., and A. N. Richards. Observations on the composition of glomerular urine, with particular reference to the problem of reabsorption in the renal tubules. Am. J. Physiol. 71: 209–227, 1924.Google Scholar
  68. 68.
    Wearn, J. T., and A. N. Richards. The concentration of chlorides in the glomerular urine of frogs. J. Biol. Chem. 66: 247–273, 1925.Google Scholar
  69. 69.
    Wesson, L. G., JR., and W. P. Anslow, JR. Excretion of sodium and water during osmotic diuresis in the dog. Am. J. Physiol. 153: 465–474, 1948.PubMedGoogle Scholar
  70. 70.
    Wesson, L. G., JR., W. P. Anslow, JR., and H. W. Smith. The excretion of strong electrolytes. Bull. Nyacad. Med. 24: 586–606, 1948.Google Scholar
  71. 71.
    Westfall, B. B., T. Findley, and A. N. Richards. Quantitative studies of the composition of glomerular urine. Xii. The concentration of Micropuncture chloride in glomerular urine of frogs and necturi. J. Biol. Chem. 107: And 661–672, 1934. Microperfusion Google Scholar
  72. 72.
    Whittembury, G., D. E. Oken, E. E. Windhager, and A. K. Solomon. Single proximal tubules in Necturus kidney. IV. Dependence of H2O movement on osmotic gradients. Am. J. Physiol. 197: 1121–1127, 1959.PubMedGoogle Scholar
  73. 73.
    Whittembury, G., N. Sugino, and A. K. Solomon. Ionic permeability and electrical potential differences in Necturus kidney cells. J. Gen. Physiol. 44: 689–712, 1961.PubMedCrossRefGoogle Scholar
  74. 74.
    Wiederhielm, C. A., J. W. Woodbury, S. Kirk, and R. F. Rushmer. Pulsatile pressures in the microcirculation of frog’s mesentery. Am. J. Physiol. 207: 173–176, 1964.Google Scholar
  75. 75.
    Wilbrandt, W. Electrical potential differences across the wall of kidney tubules of Necturus. J. Cell. Comp. Physiol. 11: 425–431, 1938.CrossRefGoogle Scholar
  76. 76.
    Windhager, E. E., and G. Giebisch. Micropuncture study of renal tubular transfer of sodium chloride in the rat. Am. J. Physiol. 200: 581–590, 1961.Google Scholar
  77. 77.
    Windhager, E. E., G. Whittembury, D. E. Oken, H. J. Schatzmann, and A. K. Solomon. Single proximal tubules of the Necturus kidney. Iii. Dependence of H2O movement on NaC1 concentration. Am. J. Physiol. 197: 313–318, 1959.Google Scholar
  78. 78.
    Wirz, H. Der osmotische Druck des Blutes in der Nierenpapille. Hely. Physiol. Pharmacol. Acta 11: 20–29, 1953.Google Scholar
  79. 79.
    Wirz, H., and P. A. BoTT. Potassium and reducing substances in proximal tubule fluid of the rat kidney. Proc. Soc. Exp. Biol. Med. 87: 405–407, 1954.PubMedGoogle Scholar

Copyright information

© American Physiological Society 1987

Authors and Affiliations

  • Erich E. Windhager

There are no affiliations available

Personalised recommendations