Skip to main content

Renal Blood Flow and Dynamics of Glomerular Filtration: Evolution of a Concept from Carl Ludwig to the Present Day

  • Chapter
Renal Physiology

Part of the book series: People and Ideas ((PEOPL))

Abstract

Physiologists today gain knowledge by the application of two principles introduced into physiology in the early part of the last century. First, they employ a hypothetico-deductive method in that their scientific endeavour begins with a “working hypothesis,” the correctness of which is then established by systematic experimental examination of its logical consequences. This “new” method stands in stark contrast to the inductive method advocated by Francis Bacon (1561–1626) and John Stuart Mill (1806–1873), a conflict of which the scientists of the period were well aware, as an essay by Justus von Liebig in 1863 shows.1 As a rule this experimental examination generates observations that require further hypotheses for their explanation, and so the process results in the gradual development of concepts that in truth are systems of more or less well substantiated hypotheses reflecting the imagination of individual researchers. Second, physiologists employ physicochemical methods to carry out experiments, a procedure that originated in a temporary constellation of certain philosophical systems at the beginning of the nineteenth century (see next section).

Der schöpferische Geist des Menschen ist damit ausgezeichnet ...

“etwas zu denken das niemand zuvor gedacht hat wenn er etwas sieht was jeder sieht.”

Man’s creative intellect is distinguished by the ability ...

“to think something which no-one ever thought before whilst seeing something which everybody sees.”

Arthur Schopenhauer (1788–1860)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Arendshorst, W. J., and C. W. Gottschalk. Glomerular ultrafiltration dynamics: historical perspective. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17 ): F163 - F174, 1985.

    Google Scholar 

  2. Bayliss, W. M. On the local reactions of the arterial wall to changes of internal pressure. J. Physiol. Lond. 28: 220–231, 1902.

    PubMed  CAS  Google Scholar 

  3. Brenner, B. M., J. L. Troy, and T. M. Daugharty. The dynamics of glomerular ultrafiltration in the rat. J. Clin. Invest. 50: 1776–1780, 1971.

    Article  PubMed  CAS  Google Scholar 

  4. Burton-Opitz, R., and D. Lucas. The blood supply of the kidney. V. The influence of the vagus nerve upon the vascularity of the left organ. J. Exp. Med. 13: 308–313, 1911.

    Article  Google Scholar 

  5. Cohnheim, J., and C. S. Roy. Untersuchungen über die Cirkulation in den Nieren. Virchows Arch. Pathol. Anat. Physiol. Klin. Med. 92: 424448, 1883.

    Google Scholar 

  6. Cushny, A. R. On diuresis and the permeability of the renal cells. J. Physiol. Lond. 27: 429–450, 1902.

    PubMed  CAS  Google Scholar 

  7. Cushny, A. R. The Secretion of the Urine, 2nd ed. London: Longmans, Green, 1926.

    Google Scholar 

  8. Cushny, A. R., and G. B. Wallace. Über Darmresorption und die salinischen Abfuhrmittel. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 77: 202–209, 1899.

    Article  Google Scholar 

  9. Deetjen, P., H. Brechtelsbauer, and K. Kramer. Hämodynamik des Nierenmarks. Iii. Mitteilung. Farbstoffpassagezeiten in äussere Markzone und V. Renalis. Die Durchblutungsverteilung in der Niere. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 297: 281–293, 1964.

    Article  Google Scholar 

  10. Fick, A. Über die Messung des Blutquantums in den Herzventrikoln. In: Verhandlungen der Physitalisch-Medizinischen Gesellschaft in Wiirzburg. Würzburg, Germany: Stahel, 1872. (Neve Folge. Bana II, Sitzung am 9 Juli, 1870.)

    Google Scholar 

  11. Fischer, I. Biographisches Lexikon hervorragender Ärzte (1880–1930), 3rd ed. Munich, Frg: Urban & Schwarzenberg, 1962, vol. 2, p. 1031.

    Google Scholar 

  12. Forster, R. P., and J. P. Maes. Effect of experimental neurogenic hypertension on renal blood flow and glomerular filtration rates in intact denervated kidneys of unanaesthetised rabbits with adrenal glands demedullated. Am. J. Physiol. 150: 534–540, 1947.

    CAS  Google Scholar 

  13. Galeotti, G. Über die Arbeit, welche die Nieren leisten, um den osmotischen Druck des Blutes auszugleichen. In: Archiv für Physiologie,edited by E. Du Bois-Reymond. Leipzig, Germany: Veit, 1902, p. 200242.

    Google Scholar 

  14. GoLL, F. Über den Einfluss des Blutdrucks auf die Harnabsonderung. Z. Rat. Med. N.F. 4: 78–100, 1854.

    Google Scholar 

  15. Goormaghtigh, N. Les segments neuro-myo-artériels juxtaglomérulaires du rein. Arch. Biol. 43: 575–591, 1932.

    Google Scholar 

  16. Goormaghtigh, N. L’appareil neuro-myo-artériel juxtaglomérulaire du rein; les réactions en pathologie et ses rapports avec le tube urinifère. C. R. Séances Soc. Biol. Fil. 124: 293–296, 1937.

    Google Scholar 

  17. Goormaghtigh, N. Une glande endocrine dans la paroi des artérioles rénales. Brux. Med. 19: 1541–1549, 1939.

    Google Scholar 

  18. Gottlieb, R., and R. Magnus. Über die Beziehungen der Nierenzirkulation zur Diurese. Arch. Exp. Pathol. Pharmakol. 45: 223–258, 1901.

    Article  Google Scholar 

  19. Grutzner, P. Beiträge zur Physiologie der Harnsekretion. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 11: 370–386, 1875.

    Article  Google Scholar 

  20. Guyton, A. C. Theory for autoregulation of glomerular filtration rate and blood flow in each nephron by the juxtaglomerular apparatus (Abstract). Physiologist 6: 194, 1963.

    Google Scholar 

  21. Hargitay, B., and W. Kuhn. Das Multiplikationsprinzip als Grundlage der Harnkonzentrierung in der Niere. Z. Elektrochem. Angew. Phys. Renal Chem. 55: 539–558, 1951. Hemodynamics

    Google Scholar 

  22. Hartmann, H., S. L. 0Rskov, and H. Rein. Die Gefässreaktion der Niere im Verlaufe allgemeiner KreislaufRegulationsvorgänge. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 238: 239–250, 1937.

    Google Scholar 

  23. Hayman, J. M. Estimations of afferent arteriole and glomerular capillary pressures in the frog kidney. Am. J. Physiol. 79: 389–409, 1927.

    Google Scholar 

  24. Heidenhain, R. Die Absonderung der festen Harnbestandtheile. In: Handbuch der Physiologie, edited by L. Hermann. Leipzig, Germany: Vogel, 1883, vol. 5, pt. 1, p. 279–373.

    Google Scholar 

  25. Heidenhain, R. Versuche und Fragen zur Lehre von der Lymphbildung. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 49: 209–301, 1891.

    Article  Google Scholar 

  26. Hermann, M. Über den Einfluss des Blutdruckes auf die Sekretion des Harns. Sitzungsber. Akad. Wiss. Wien Math. Naturwiss. Cl. Abt. 2 45: 317–351, 1862.

    Google Scholar 

  27. Kenney, R. A. The Metzner Theory of Urine Formation. The Hague: Junk, 1957.

    Google Scholar 

  28. Kramer, K. Zur Vasomotorik des intrarenalen Kreislaufs. Sitzungsber. Ges. Befoerd. gesamten Naturwiss. Marburg 75: 26–45, 1952.

    Google Scholar 

  29. Kramer, K., K. Thurau, and P. Deetjen. Hämodynamik des Nierenmarks. I. Mitteilung. Capilläre Passagezeit, Blutvolumen, Durchblutung, Gewebshämatocrit und 02-Verbrauch des Nierenmarks in situ. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 270: 251–269, 1960.

    Google Scholar 

  30. Kuhn, W., and K. Ryffel. Herstellung konzentrierter Lösungen aus verdünnten durch blosse Membranwirkung. Hoppe-Seyler’s Z. Physiol. Chem. 276: 145–178, 1942.

    Article  CAS  Google Scholar 

  31. Lilienfeld, L. S., H. C. Maganzini, and M. H. Bauer. Bloodflow in the renal medulla. Circ. Res. 9: 614–617, 1961.

    Article  Google Scholar 

  32. Limaeck, R. vox. Zur Lehre von der Wirkung der Salze. Über die diuretische Wirkung der Salze. Arch. Exp. Pathol. Pharmakol. 25: 6986, 1889.

    Google Scholar 

  33. Loebell, C. E. De conditionibus quibus secretiones in glandulus perificiuntur. Marburg, Germany: Elwert 1849 ( Inaugural Dissertation).

    Google Scholar 

  34. Ludwig, C. De viribus physicis secretionem urinae adjuvantibus. Marburg, Germany: Elwert, 1842.

    Google Scholar 

  35. Ludwig, C. Lehrbuch der Physiologie des Menschen. Heidelberg, Germany: Winter, 1852, vol. 1.

    Google Scholar 

  36. Ludwig, C. Lehrbuch der Physiologie des Menschen. Leipzig, Germany: Winter, 1856, vol. 2.

    Google Scholar 

  37. Ludwig, C. Lehrbuch der Physiologie des Menschen, 2nd ed. Leipzig, Germany: Winter, 1861, vol. 2.

    Google Scholar 

  38. Marshall, E. K., and J. L. Vickers. The mechanism of the elimination of phenolsulphonephthalein by the kidney—a proof of secretion by the convoluted tubules. Bull. Johns Hopkins Hosp. 34: 1–7, 1923.

    Google Scholar 

  39. Mayrs, E. B. The relative excretion of urea and some other constituents of the urine. J. Physiol. Lond. 56: 58–68, 1922.

    PubMed  CAS  Google Scholar 

  40. Mayrs, E. B., and J. M. Watt. Renal bloodflow and glomerular filtration. J. Physiol. Lond. 56: 120–124, 1922.

    PubMed  CAS  Google Scholar 

  41. Medes, G., and C. J. Bell’S The effect of altering renal blood pressure on glomerular filtration. Am. J. Physiol. 107: 227–229, 1934.

    Google Scholar 

  42. Medawar, P. B. The Art of the Soluble. London: Methuen, 1967.

    Google Scholar 

  43. Medes, G., and J. F. Herrick. Blood flow to the kidney and creatinine clearance. Proc. Soc. Exp. Biol. Med. 31: 116–119, 1933.

    CAS  Google Scholar 

  44. Meier, M., H. Brechtelsbauer, and K. Kramer. Hämodynamik des Nierenmarks. IV. Mitteilung. Farbstoffverdünnungskurven in verschiedenen Abschnitten des Nierenmarks. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 279: 294–304, 1964.

    Google Scholar 

  45. Metzner, R. Die Absonderung und Herausbeförderung des Harnes. In: Handbuch der Physiologie des Menschen, edited by W. Nagel. Braunschweig, Germany: Vieweg, 1906, vol. 2, pt. 1, p. 207–335.

    Google Scholar 

  46. Oberling, C. L’existence d’une housse neuro-musculaire au niveau des artères glomérulaires de l’homme. C. R. Acad. Sci. Paris 184: 1200 1202, 1927.

    Google Scholar 

  47. O’Connor, J. M. On glomerular control of the kidney bloodflow. J. Physiol. Lond. 59: 200–212, 1924.

    Google Scholar 

  48. Ofstad, J., and K. Aukland. Renal circulation. In: The Kidney. Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, vol. 1, p. 471–496.

    Google Scholar 

  49. Opitz, E., and D. H. Smyth. Nierendurchblutung bei Reizung des Carotis-Sinus. Pfluegers Arch. 238: 633–637, 1937.

    Article  Google Scholar 

  50. Pappenheimer, J. R., E. M. Renkin, and L. M. Borrero. Filtration, diffusion and molecular sieving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability. Am. J. Physiol. 167: 13–46, 1951.

    Google Scholar 

  51. Peter, A. Untersuchungen über Bau und Entwicklung der Niere. Jena, Germany: Fischer, 1909.

    Google Scholar 

  52. Rehberg, P. B. Studies on kidney function. I. The rate of filtration and reabsorption in the human kidney. Biochem. J. 20: 447–460, 1926.

    Google Scholar 

  53. Rehberg, P. B. Studies on kidney function. II. The excretion of urea and chloride analysed according to a modified filtration reabsorption theory. Biochem. J. 20: 461–480, 1926.

    Google Scholar 

  54. Rein, H. Die Thermostromuhr. Ein Verfahren zur fortlaufenden Messung der mittleren absoluten Durchflussmengen in uneröffneten Gefässen in situ. Z. Biol. 87: 394–418, 1927.

    Google Scholar 

  55. Rein, H. Vasomotorische Regulationen. Ergeb. Physiol. 31: 28–72, 1931.

    Article  Google Scholar 

  56. Rein, H., and R. RöSsler. Die Abhängigkeit der vasomotorischen Blutdruckregulation bei akuten Blutverlusten von den thermoregulatorischen Blutverschiebungen im Gesamtkreislaufe. Z. Biol. 89: 237–248, 1929.

    Google Scholar 

  57. Richards, A. N., P. A. Borr, and B. B. Westfall. Experiments concerning the possibility that inulin is secreted by the renal tubules. Am. J. Physiol. 123: 281–298, 1938.

    CAS  Google Scholar 

  58. Richards, A. N., B. B. Westfall, and P. A. Bott. Renal excretion of inulin, creatinine and xylose in normal dogs. Proc. Soc. Exp. Biol. Med. 32: 73–75, 1934.

    Google Scholar 

  59. Ruyter, J. H. C. Über einen merkwürdigen Abschnitt der vasa afferentia in der Mäuseniere. Z. Zellforsch. Mikrosk. Anat. 2: 242–248, 1925.

    Google Scholar 

  60. Ryan, G. B., and M. J. Karnovsky. Distribution of endogenous albumin in the rat glomerulus: role of haemodynamic factors in glomerular barrier function. Kidney Int. 9: 36–45, 1976.

    Article  PubMed  CAS  Google Scholar 

  61. Schnermann, J., and J. P. Briggs. Function of the juxtaglomerular apparatus: local control of glomerular hemodynamics. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Giebisch. 1985, vol. 1, p. 669–697.

    Google Scholar 

  62. SchrÖDer, W. Von. Über die Wirkung des Coffeins als Diureticum. Arch. Exp. Pathol. Pharmakol. 22: 39–61, 1887.

    Google Scholar 

  63. Schroer, H. Carl Ludwig. Begründer der messenden Experimentalphysiologie. Stuttgart, Frg: Wissenschaftliche Verlagsgesellschaft, 1967.

    Google Scholar 

  64. Shannon, J. A. The excretion of inulin by the dog. Am. J. Physiol. 117: 405–413, 1935.

    Google Scholar 

  65. Starling, E. H. On the absorption of fluids from the connective tissue spaces. J. Physiol. Lond. 19: 312–326, 1896.

    PubMed  CAS  Google Scholar 

  66. Starling, E. H. The mechanisms of the secretion of urine. In: Textbook of Physiology, edited by E. A. Schaefer. Edinburgh, UK: Schaefer. 1898, vol. 1, p. 639–661.

    Google Scholar 

  67. Starling, E. H. The glomerular functions of the kidney. J. Physiol. Lond. 24: 317–330, 1899.

    Google Scholar 

  68. Tammann, G. Die Thätigkeit der Niere im Lichte der Theorie des osmotischen Drucks. Z. Phys. Chem. 20: 180–197, 1896.

    Google Scholar 

  69. Thurau, K. Fundamentals of renal circulation. In: Proc. 2nd Int. Cong. Nephrol., Prague. Amsterdam: Excerpta Med., 1963, p. 51–61.

    Google Scholar 

  70. Thurau, K., P. Deetjen, and K. Kramer. Hämodynamik des Nierenmarks. II. Mitteilung. Wechselbeziehung zwischen vasculärem und tubularem Gegenstromsystem bei arteriellen Drucksteigerungen, Wasserdiurese und osmotischer Diurese. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 270: 270–285, 1960.

    Google Scholar 

  71. Trueta, J., A. E. Barclay, P. M. Daniel, K. J. Franklin, and M. M. L. Pritchard. Studies of the Renal Circulation. Springfield, IL: Thomas, 1947.

    Google Scholar 

  72. Ustimowitsch, C. Experimentelle Beiträge zur Theorie der Harnabsonderung. Ber. Verh. Königlich-Sächischen Gesselseh. Wiss. Leipzig Math.Phys. Cl. 22: 430–470, 1870.

    Google Scholar 

  73. Wearn, J. T., and A. N. Richards. Observations on the composition of glomerular urine with particular reference to the problem of reabsorption in the renal tubules. Am. J. Physiol. 71: 209–227, 1924.

    CAS  Google Scholar 

  74. White, H. L. Observations on the nature of glomerular activity. Am. J. Physiol. 90: 689–703, 1929.

    Google Scholar 

  75. Wiederhielm, C. A., J. W. Woodbury, S. Kirk, and R. F. Rushmer. Pulsatile pressures in the microcirculation of frog’s mesentery. Am. J. Physiol. 207: 173–176, 1964.

    PubMed  CAS  Google Scholar 

  76. Wirz, H., B. Hargitay, and W. Kuhn. Lokalisation des Konzentrierungsprozesses in der Niere durch direkte Kryoskopie. Helv. Physiol. Pharmacol. Acta 9: 196–207, 1951.

    PubMed  CAS  Google Scholar 

  77. Zimmermann, K. W. Über den Bau des Glomerulus der Säugerniere. Z. Mikrosk. Anat. Forsch. Leipz. 32: 176–278, 1933.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 American Physiological Society

About this chapter

Cite this chapter

Thurau, K., Davis, J.M., Häberle, D.A. (1987). Renal Blood Flow and Dynamics of Glomerular Filtration: Evolution of a Concept from Carl Ludwig to the Present Day. In: Gottschalk, C.W., Berliner, R.W., Giebisch, G.H. (eds) Renal Physiology. People and Ideas. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7545-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7545-3_2

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7545-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics