Skip to main content

Comparative Renal Physiology

  • Chapter

Part of the book series: People and Ideas ((PEOPL))

Abstract

Comparative studies have played an important historical role in the development of the principles of renal physiology and play an even more important role today. At the same time, comparative studies in renal physiology have been among the most significant scientifically of all comparative work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Ames, E., K. Steven, and E. Skadhauge. Effects of arginine vasotocin on renal excretion of Na+, K+, Cl-, and urea in the hydrated chicken. Am. J. Physiol 221: 1223–1228, 1971.

    PubMed  CAS  Google Scholar 

  2. Babikir, M. M., and J. C. Rankin. Neurohypophysial hormone control of kidney function in the European eel (Anguilla anguilla L.) adapted to sea-water or fresh water. J. Endocrinol 76: 347–358, 1978.

    Google Scholar 

  3. Beck, L. V., and R. Chambers. Secretion in tissue cultures. II. Effect of Na iodoacetate on the chick kidney. J. Cell. Comp. Physiol 6: 44 1455, 1935.

    Google Scholar 

  4. Beyenbach, K. W. Direct demonstration of fluid secretion by glomerular renal tubules in a marine teleost. Nature Lond. 299: 54–56, 1982.

    PubMed  CAS  Google Scholar 

  5. Bordley, J., Iii, and A. N. Richards. Quantitative studies of the composition of glomerular urine. Viii. The concentration of uric acid in glomerular urine of snakes and frogs, determined by an ultramicroadaptation of Folin’s method. J. Biol. Chem 101: 193–221, 1933.

    CAS  Google Scholar 

  6. Bowman, W. On the structure and use of the Malpighian bodies of the kidney, with observations on the circulation through that gland. Philos. Trans. R. Soc. Lond. B Biol. Sci 132: 57–80, 1842.

    Google Scholar 

  7. Boylan, J. W. A model for passive urea reabsorption in the elasmobranch kidney. Comp. Biochem. Physiol 42: 27–30, 1972.

    CAS  Google Scholar 

  8. Braun, E. J. Intrarenal blood flow distribution in the desert quail following salt loading. Am. J. Physiol 231: 1111–1118, 1976.

    PubMed  CAS  Google Scholar 

  9. Braun, E. J. Renal response of the starling (Sturnus vulgaris) to an intravenous salt load. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol 3 ): F270 — F278, 1978.

    Google Scholar 

  10. Braun, E. J. Comparative aspects of the urinary concentrating process. Renal Physiol. 8: 249–260, 1985.

    PubMed  CAS  Google Scholar 

  11. Braun, E. J., and W. H. Dantzler. Function of mammalian-type and reptilian-type nephrons in kidney of desert quail. Am. J. Physiol 222: 617–629, 1972.

    PubMed  CAS  Google Scholar 

  12. Braun, E. J., and W. H. Dantzler. Effects of Adh on single-nephron glomerular filtration rates in the avian kidney. Am. J. Physiol 226: 18, 1974.

    Google Scholar 

  13. Braun, E. J., and W. H. Dantzler. Effect of water load on renal glomerular and tubular function in desert quail. Am. J. Physiol 229: 222–228, 1975.

    PubMed  CAS  Google Scholar 

  14. Brown, J. A., B. A. Jackson, J. A. Oliver, and I. W. Henderson. Single nephron filtration rates (Sngfr) in the trout, Salmo gairdneri. Pfluegers Arch 377: 101–108, 1978.

    CAS  Google Scholar 

  15. Brown, J. A., J. A. Oliver, I. W. Henderson, and B. A. Jackson. Angiotensin and single nephron glomerular function in the trout Salmo gairdneri. Am. J. Physiol. 239 (Regulatory Integrative Comp. Physiol. 8 ): R509 — R514, 1980.

    Google Scholar 

  16. Burg, M., J. Grantham, M. Abramow, and J. Orloff. Preparation and study of fragments of single rabbit nephrons. Am. J. Physiol 210: 1293–1298, 1966.

    PubMed  CAS  Google Scholar 

  17. Burg, M. B., and P. F. Weller. Iodopyracet transport by isolated perfused flounder proximal renal tubules. Am. J. Physiol 217: 1053 1056, 1969.

    Google Scholar 

  18. Burgess, W. W., A. M. Harvey, and E. K. Marshall, JR. The site of the antidiuretic action of pituitary extract. J. Pharmacol. Exp. Ther 49: 237–249, 1933.

    CAS  Google Scholar 

  19. Butler, D. G. Antidiuretic effect of arginine vasotocin in the western painted turtle (Chrysemys picta belli). Gen. Comp. Endocrinol. 18: 121–125, 1972.

    PubMed  CAS  Google Scholar 

  20. Chambers, R., L. V. Beck, and M. Belkin. Secretion in tissue cultures. I. Inhibition of phenol red accumulation in the chick kidney. J. Cell. Comp. Physiol 6: 425–439, 1935.

    CAS  Google Scholar 

  21. Chambers, R., and G. Cameron. Intracellular hydrion concentrations studies. Vii. The secreting cells of the mesonephros in the chick. J. Cell. Comp. Physiol 2: 99–103, 1932.

    CAS  Google Scholar 

  22. Chambers, R., and R. T. Kempton. Indications of function of the chick mesonephros in tissue culture with phenol red. J. Cell. Comp. Physiol 3: 131–166, 1933.

    Google Scholar 

  23. Clark, N. B., E. J. Braun, and R. F. Wideman, JR. Parathyroid hormone and renal excretion of phosphate and calcium in normal starlings. Am. J. Physiol 231: 1152–1158, 1976.

    PubMed  CAS  Google Scholar 

  24. Clark, N. B., and W. H. Dantzler. Renal tubular transport of calcium and phosphate in snakes: role of parathyroid hormone. Am. J. Physiol 223: 1455–1464, 1972.

    PubMed  CAS  Google Scholar 

  25. Clark, N. B., and R. F. Wideman, JR. Renal excretion of phosphate and calcium in parathyroidectomized starlings. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol 2 ): F138 — F144, 1977.

    Google Scholar 

  26. Crane, M. M. Observations on the function of the frog’s kidney. Am. J. Physiol 81: 232–243, 1927.

    Google Scholar 

  27. Cullis, W. C. On secretion in the frog’s kidney. J. Physiol. Lond 34: 250–266, 1906.

    PubMed  CAS  Google Scholar 

  28. Cushny, A. R. The Secretion of Urine. London: Longmans Green, 1917.

    Google Scholar 

  29. Dantzler, W. H. Renal response of chickens to infusion of hyper-osmotic sodium chloride solution. Am. J. Physiol 210: 640–646, 1966.

    Google Scholar 

  30. Dantzler, W. H. Glomerular and tubular effects of arginine vasotocin in water snakes (Natrix sipedon). Am. J. Physiol. 212: 83–91, 1967.

    PubMed  CAS  Google Scholar 

  31. Dantzler, W. H. Comparison of renal tubular transport of urate and Pah in water snakes: evidence for differences in mechanisms and sites of transport. Comp. Biochem. Physiol 34: 609–623, 1970.

    PubMed  CAS  Google Scholar 

  32. Dantzler, W. H. Renal function (with special emphasis on nitrogen excretion). In: Biology of the Reptilia. Physiology A, edited by C. G. Gans and W. R. Dawson. San Francisco, CA: Dawson. 1976, vol. 5, p. 447–503.

    Google Scholar 

  33. Dantzler, W. H. Urate excretion in nonmammalian vertebrates. In: Handbook of Experimental Pharmacology. Uric Acid, edited by W. N. Kelley and I. M. Weiner. Berlin: Springer-Verlag, 1978, vol. 51, p. 185–210.

    Google Scholar 

  34. Dantzler, W. H. Studies on nonmammalian nephrons. Kidney Int. 22: 560–570, 1982.

    PubMed  CAS  Google Scholar 

  35. Dantzler, W. H. Comparative aspects of renal function. In: The Kidney. Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, p. 333–364.

    Google Scholar 

  36. Dantzler, W. H., and S. K. Bentley. Fluid absorption with and without sodium in isolated perfused snake proximal tubules. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol 3 ): F68 — F79, 1978.

    Google Scholar 

  37. Dantzler, W. H., and E. J. Braun. Comparative nephron function in reptiles, birds, and mammals. Am. J. Physiol. 239 (Regulatory Integrative Comp. Physiol 8 ): R197 — R213, 1980.

    Google Scholar 

  38. Dantzler, W. H., and O. H. Brokl. Effects of low [Cal and Lai+ on Pah transport by isolated perfused renal tubules. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol 15 ): F175 — F187, 1984.

    Google Scholar 

  39. Dantzler, W. H., and O. H. Brokl. Verapamil and quinidine effects on Pah transport by isolated perfused renal tubules. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol 15 ): F188 — F200, 1984.

    Google Scholar 

  40. Dantzler, W. H., and B. Schmidt-Nielsen. Excretion in fresh-water turtle (Pseudemys scripta) and desert tortoise (Gopherus agassizii). Am. J. Physiol 210: 198–210, 1966.

    Google Scholar 

  41. Davis, L. E., and B. Schmidt-Nielsen Ultrastructure of the crocodile kidney (Crocodylus acutus) with special reference to electrolyte and fluid transport. J. Morphol 121: 255–276, 1967.

    PubMed  CAS  Google Scholar 

  42. Davis, L. E., B. Schmidt-Nielsen, and H. Stolte. Anatomy and ultra-structure of the excretory system of the lizard, Sceloporus cyanogenys. J. Morphol 149: 279–326, 1976.

    CAS  Google Scholar 

  43. DE Rouffignac, C., S. Diess, and J. P. Bonvalet. Détermination du taux individuel de filtration glomérulaire des néphrons accessibles et inaccessibles a la microponction. Pfluegers Arch. 315: 273–290, 1970.

    Google Scholar 

  44. Emery, N., T. L. Poulson, and W. B. Kinter. Production of concentrated urine by avian kidneys. Am. J. Physiol 223: 180–187, 1972.

    CAS  Google Scholar 

  45. Eveloff, J., R. Kinne, and W. B. Kinter. p-Aminohippuric acid transport into brush border vesicles isolated from flounder kidney. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol 6 ): F291 — F298, 1979.

    Google Scholar 

  46. Forster, R. P. The use of inulin and creatinine as glomerular filtrate measuring substances in the frog. J. Cell. Comp. Physiol 12: 213–222, 1938.

    CAS  Google Scholar 

  47. Forster, R. P. The nature of the glucose reabsorptive process in the frog renal tubule. Evidence for intermittency of glomerular function in the intact animal. J. Cell. Comp. Physiol 20: 55–69, 1942.

    CAS  Google Scholar 

  48. Forster, R. P. Use of thin kidney slices and isolated renal tubules for direct study of cellular transport kinetics. Science Wash. DC 108: 6567, 1948.

    Google Scholar 

  49. Forster, R. P. Active tubular transport of urea and its role in environmental physiology. In: Urea and the Kidney,edited by B. Schmidt-Nielsen and D. W. S. Kerr. Amsterdam: Excerpta Med., 1970, p. 229237.

    Google Scholar 

  50. Forster, R. P., and J. V. Taggart. Use of isolated renal tubules for the examination of metabolic processes associated with active cellular transport. J. Cell. Comp. Physiol 36: 251–270, 1950.

    CAS  Google Scholar 

  51. Hanssen, O. E. Method for comparison of glomerular filtration in individual rat nephrons. In: 2nd Int. Congr. Nephrol, Prague,1963, edited by J. Vostal and G. Richet. Amsterdam: Excerpta Med. Found., 1964, p. 527–529. (Int. Congr. Ser. vol. 76.)

    Google Scholar 

  52. Hayman, J. M., JR. Estimations of afferent arteriole and glomerular capillary pressures in the frog kidney. Am. J. Physiol 79: 389–409, 1927.

    Google Scholar 

  53. Henderson, I. W., and N. A. M. Wales. Renal diuresis and antidiuresis after injections of arginine vasotocin in the freshwater eel (Anguilla anguilla L.). J. Endocrinol. 61: 487–500, 1974.

    PubMed  CAS  Google Scholar 

  54. Hickman, C. P., JR. Studies on renal function in freshwater teleost fish. Tran. R. Soc. Can 3: 213–236, 1965.

    Google Scholar 

  55. Hickman, C. P., JR., and B. F. Tramp. The kidney. In: Fish Physiology. Excretion, Ionic Regulation, and Metabolism, edited by W. S. Hoar and D. J. Randall. New York: Academic, 1969, vol. 1, p. 91–239.

    Google Scholar 

  56. Intaglietta, M., N. R. Silverman, and W. R. Tompkins. Capillary flow velocity measurement in vivo and in situ by television methods. Microvasc. Res 10: 165–179, 1975.

    PubMed  CAS  Google Scholar 

  57. Johnson, O. W. Relative thickness of the renal medulla in birds. J. Morphol 142: 277–284, 1974.

    Google Scholar 

  58. Johnson, O. W., and J. N. Magaas. Quantitative and organizational

    Google Scholar 

  59. features of the avian renal medulla. Condor 3: 288–292, 1970.

    Google Scholar 

  60. Johnson, O. W., and E. Skadhauge. Structural-functional correlations in the kidneys and observations of colon and cloacal morphology in certain Australian birds. J. Anat 120: 495–505, 1975.

    PubMed  CAS  Google Scholar 

  61. Kinter, W. B. Chlorphenol red influx and efflux: microspectrophotometry of flounder kidney tubules. Am. J. Physiol 211: 1152–1164, 1966.

    PubMed  CAS  Google Scholar 

  62. Krogh, A. The supply of oxygen to the tissues and the regulation of the capillary circulation. J. Physiol. Lond 52: 457–474, 1919.

    PubMed  CAS  Google Scholar 

  63. Lahlou, B. Mise en évidence d’un “recrutement glomérulaire” dans le rein des Téléostéens d’après la mesure du Tm glucose. C. R. Acad. Sci. Paris Ser. D 262: 1356–1358, 1966.

    CAS  Google Scholar 

  64. Laverty, G., and W. H. Dantzler. Micropuncture of superficial nephrons in avian (Sturnus vulgaris) kidney. Am. J. Physiol 243 (Renal Fluid Electrolyte Physiol. 12): F561–F569, 1982.

    PubMed  CAS  Google Scholar 

  65. Laverty, G., and W. H. Dantzler. Micropuncture study of urate transport by superficial nephrons in avian (Sturnus vulgaris) kidney. Pfluegers Arch. 397: 232–236, 1983.

    CAS  Google Scholar 

  66. Levinsky, N. G., and D. G. Davidson. Renal action of parathyroid extract in the chicken. Am. J. Physiol 191: 530–536, 1957.

    CAS  Google Scholar 

  67. Mackay, W. C., and D. D. Beatty. The effect of temperature on renal function in the white sucker fish, Catostomus caommersonii. Comp. Biochem. Physiol 26: 235–245, 1968.

    Google Scholar 

  68. Malvin, R. L., and I. B. Fritz. Renal transport of urea and some carbohydrates in Lophius piscatorius. J. Cell. Comp. Physiol. 59: 111–115, 1962.

    CAS  Google Scholar 

  69. Marshall, E. K., JR. The comparative physiology of the kidney in relation to theories of renal secretion. Physiol. Rev 14: 133–159, 1934.

    CAS  Google Scholar 

  70. Marshall, E. K., JR., and M. M. Crane. The secretory function of the renal tubules. Am. J. Physiol 70: 465–488, 1924.

    CAS  Google Scholar 

  71. Marshall, E. K., JR., and A. L. Grafflin. The structure and function of the kidney of Lophius. piscatorius. Bull. Johns Hopkins Hosp. 43: 205–230, 1928.

    Google Scholar 

  72. Marshall, E. K., JR., and J. L. Vickers The mechanism of the elimination of phenolsulphonephthalein by the kidney-a proof of secretion by the convoluted tubules. Bull. Johns Hopkins Hosp 34: 1–7, 1923.

    Google Scholar 

  73. Mayrs, E. B. Secretion as a factor in elimination by the bird kidney. J.Physiol. Lond 58: 276–287, 1924.

    PubMed  CAS  Google Scholar 

  74. McNabb, R. A., F. M. A. Mcnabb, and A. P. Hinton. The excretion of urate and cationic electrolytes by the kidney of the male domestic fowl. (Gallus domesticus). J. Comp. Physiol. 82: 47–57, 1973.

    Google Scholar 

  75. Moriarty, R. J., A. G. Logan, and J. C. Rankin. Measurement of single nephron filtration rate in the kidney of the river lamprey, Lampetra fluviatilis L. J. Exp. Biol 77: 57–69, 1978.

    PubMed  CAS  Google Scholar 

  76. Nishimura, H., M. Imai, and M. Ogawa. Sodium chloride and water transport in the renal distal tubule of the rainbow trout. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol 13 ): F247 — F254, 1983.

    Google Scholar 

  77. Nishimura, H., M. Imai, and M. Ogawa. Transepithelial voltage in the reptilian-and mammalian-type nephrons from Japanese quail (Abstract). Federation Proc. 42: 304, 1983.

    Google Scholar 

  78. Oken, D. E., and M. Weise. Micropuncture studies of the transport of individual amino acids by the Necturus proximal tubule. Kidney kit. 13: 445–451, 1978.

    CAS  Google Scholar 

  79. Puck, T. T., K. Wasserman, and A. P. Fishman. Some effects of inorganic ions on the active transport of phenol red by the isolated tubules of the flounder. J. Cell. Comp. Physiol 40: 73–88, 1952.

    CAS  Google Scholar 

  80. Ranges, H. A., H. Chasis, W. Goldring, and H. W. Smith. The functional measurement of the number of active glomeruli and tubules in kidneys of normal and hypertensive subjects. Am. J. Physiol 126: 603P, 1939.

    Google Scholar 

  81. Rankin, J. C., V. Griffiths, and A. J. McVicar. Control of kidney function in the river lamprey, Lampetra fluviatilis L. Abstracts of Papers, Ninth International Symposium on Comparative Endocrinology, 1981, p. 190.

    Google Scholar 

  82. Renfro, J. L. Relationship between renal fluid and Mg secretion in a glomerular marine teleost. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol 7 ): F92 — F98, 1980.

    Google Scholar 

  83. Richards, A. N. Urine formation in the amphibian kidney. Harvey Lect. 30: 93–118, 1934–1935.

    Google Scholar 

  84. Richards, A. N. Physiology of the kidney. Bull. NY Acad. Med 14: 520, 1938.

    Google Scholar 

  85. Richards, A. N., and O. H. Plant. Urine formation by the perfused kidney: preliminary experiments on the action of caffeine. J. Pharmacol 7: 485–509, 1915.

    CAS  Google Scholar 

  86. Richards, A. N., and O. H. Plant. Urine formation in the perfused kidney. The influence of alterations in renal blood pressure on the amount and composition of the urine. Am. J. Physiol 59: 144–183, 1922.

    Google Scholar 

  87. Richards, A. N., and O. H. Plant. Urine formation in the perfused kidney. The influence of adrenalin on the volume of the perfused kidney. Am. J. Physiol 59: 184–190, 1922.

    Google Scholar 

  88. Richards, A. N., and C. F. Schmidt. A description of the glomerular circulation in the frog’s kidney and observations concerning the action of adrenalin and various other substances upon it. Am. J. Physiol 71: 178–208, 1924.

    CAS  Google Scholar 

  89. Richards, A. N., and A. M. Walker. Methods of collecting fluid from known regions of the renal tubules of amphibia and of perfusing the lumen of a single tubule. Am. J. Physiol 118: 111–120, 1937.

    CAS  Google Scholar 

  90. Erts, J. S., and B. Schmidt-Nielsen. Renal ultrastructure and excretion of salt and water by three terrestrial lizards. Am. J. Physiol 211: 476–486, 1966.

    Google Scholar 

  91. Sawyer, W. H. Effect of posterior pituitary extracts on urine formation and glomerular circulation in the frog. Am. J. Physiol 164: 457–464, 1951.

    Google Scholar 

  92. Sawyer, W. H., R. A. Munsick, and H. B. Van Dyke. Pharmacological evidence for the presence of arginine vasotocin and oxytocin in neurohypophysial extracts from cold-blooded vertebrates. Nature Lond. 184: 1464, 1959.

    PubMed  CAS  Google Scholar 

  93. Schmidt-Nielsen, B. Renal transport of urea in elasmobranchs. In: Transport Mechanisms in Epithelia,edited by H. H. Ussing and N. A. Thorn. Copenhagen: Munksgaard, 1972, p. 608–621, (Alfred Benzon Symp. V).

    Google Scholar 

  94. Schmidt-Nielsen, B. A history of renal physiology at the Mount Desert Island Biological Laboratory. Physiologist 26: 261–266, 1983.

    Google Scholar 

  95. Schmidt-Nielsen, B., and L. E. Davis. Fluid transport and tubular intercellular spaces in reptilian kidneys. Science Wash, DC 159: 1105 1108, 1968.

    Google Scholar 

  96. Schmidt-Nielsen, B., and R. P. Forster. The effect of dehydration and low temperature on renal function in the bullfrog. J. Cell. Comp. Physiol 44: 233–246, 1954.

    Google Scholar 

  97. Schmidt-Nielsen, B., and J. L. Renfro. Kidney function of the American eel Anguilla rostrata. Am. J. Physiol. 228: 420–431, 1975.

    Google Scholar 

  98. Shannon, J. A. The excretion of uric acid by the chicken. J. Cell. Comp. Physiol 11: 135–148, 1938.

    CAS  Google Scholar 

  99. Shannon, J. A. Renal tubular excretion. Physiol. Rev 19: 63–93, 1939.

    Google Scholar 

  100. Shannon, J. A., S. Farber, and L. Troast. The measurement of glucose Tm in the normal dog. Am. J. Physiol 133: 752–761, 1941.

    CAS  Google Scholar 

  101. Skadhauge, E. Effects of unilateral infusion of arginine vasotocin into the portal circulation of the avian kidney. Acta Endocrinol. 47: 32 1330, 1964.

    Google Scholar 

  102. Skadhauge, E. Renal and cloacal salt and water transport in the fowl (Gallus domesticus). Dan. Med. Bull. 20, Suppl. I: 1–82, 1973.

    Google Scholar 

  103. Skadhauge, E., and B. Schmidt-Nielsen. Renal medullary electrolyte and urea gradient in chickens and turkeys. Am. J. Physiol 212: 1313 1318, 1967.

    Google Scholar 

  104. Smith, H. W. Renal Physiology. In: Circulation of the Blood. Men and Ideas, edited by A. P. Fishman and D. W. Richards. New York: Oxford, 1964, p. 545–606.

    Google Scholar 

  105. Stoner, L. C. Isolated, perfused amphibian renal tubules: the diluting segment. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol 2 ): F438 — F444, 1977.

    Google Scholar 

  106. Stoner, L. C. The movement of solutes and water across the vertebrate distal nephron. Renal Physiol. 8: 237–248, 1985.

    PubMed  CAS  Google Scholar 

  107. Taggart, J. V., and R. P. Forster. Renal tubular transport: effect of 2,4–dinitrophenol and related compounds on phenol red transport in the isolated tubules of the flounder. Am. J. Physiol 161: 167–172, 1950.

    PubMed  CAS  Google Scholar 

  108. Tune, B. M., M. B. Burg, and C. S. Patlak. Characteristics of paminohippurate transport in proximal renal tubules. Am. J. Physiol 217: 1057–1063, 1969.

    CAS  Google Scholar 

  109. Walker, A. M., P. A. Bott, J. Oliver, and M. C. Macdowell. The collection and analysis of fluid from single nephrons of the mammalian kidney. Am. J. Physiol 134: 580–595, 1941.

    CAS  Google Scholar 

  110. Wayland, H., and P. C. Johnson. Erythrocyte velocity measurement in microvessels by a two-slit photometric method. J. Appl. Physiol 22: 333–337, 1967.

    PubMed  CAS  Google Scholar 

  111. Wearn, J. T., and A. N. Richards. Observations on the composition of glomerular urine, with particular reference to the problem of reabsorption in the renal tubules. Am. J. Physiol 71: 209–227, 1924.

    CAS  Google Scholar 

  112. Wideman, R. F., JR., N. B. Clark, and E. J. Braun. Effects of phosphate loading and parathyroid hormone on starling renal phosphate excretion. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol 8 ): F233 — F243, 1980.

    Google Scholar 

  113. Wiederhelm, C. A., J. W. Woodbury, S. Kirk, and R. F. Rushmer. Pulsatile pressures in the microcirculation of frog’s mesentery. Am. J. Physiol 207: 173–176, 1964.

    Google Scholar 

  114. Windhager, E. E., G. Whittembury, D. E. Oken, H. J. Schatzman, and A. K. Solomon. Single proximal tubules of Necturus kidney. Iii. Dependence of H2O movement on NaC1 concentration. Am. J. Physiol 197: 313–318, 1959.

    PubMed  CAS  Google Scholar 

  115. Yokota, S. D., S. Benyajati, and W. H. Dantzler. Renal function in sea snakes. I. Glomerular filtration rate and water handling. Am. J. Physiol. 249 (Regulatory Integrative Comp. Physiol 18 ): R228 — R236, 1985.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 American Physiological Society

About this chapter

Cite this chapter

Dantzler, W.H. (1987). Comparative Renal Physiology. In: Gottschalk, C.W., Berliner, R.W., Giebisch, G.H. (eds) Renal Physiology. People and Ideas. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7545-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7545-3_14

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7545-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics