Skip to main content

Urea Excretion

  • Chapter
Book cover Renal Physiology

Part of the book series: People and Ideas ((PEOPL))

Abstract

It is true of the history of science in general that progress is marked by a series of scientific revolutions, and the history of urea excretion is no exception. Paradigms are accepted for a period of time, and only when new facts are found to overwhelmingly conflict with the current ideas are these discarded or modified in favor of new ones (72, 152). Thus it is not possible to write the history of urea excretion without reference to the controversies of the last 150 years between the vitalist beliefs and the beliefs that biological phenomena can be explained by simple physicochemical forces. In 1843 Carl Ludwig (82; author’s translation) wrote:

We have a vital, chemical and mechanical force, through which the secretion of fluid through membranes, blood vessels and glands takes place. About the first nothing is yet known, and at least it is not sufficiently defined, therefore I shall for the time being bypass it in silence and later as far as the kidney secretion is concerned show its complete uselessness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Addis, T. The ratio between the urea content of the urine and of the blood after the administration of large quantities of urea. J. Urol. 1: 263–287, 1917.

    CAS  Google Scholar 

  2. Addis, T., E. Barrett, L. J. Poo, H. J. Wreen, and R. W. Lippman. The relation between protein consumption and diurnal variations of the endogenous creatinine clearance in normal individuals. J. Clin. Invest. 30: 206–209, 1951.

    Article  PubMed  CAS  Google Scholar 

  3. Andreoli, T. E., R. W. Berliner, J. P. Kokko, and D. J. Marsh. Questions and replies: renal mechanisms for urinary concentrating and diluting processes. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4 ): F1 - F11, 1978.

    Google Scholar 

  4. Austin, H. J., E. Stillman, and D. D. Van Slyke. Factors governing the excretion rate of urea. J. Biol. Chem. 46: 91–112, 1921.

    CAS  Google Scholar 

  5. Bechamp, M. Extrait d’une thèse sur les substances albuminoïdes et sur leur transformation en urée. Ann. Chim. Phys. 48: 348–355, 1856.

    Google Scholar 

  6. Berard, M. J. E. Essay sur l’analyse de substance animales. Ann. Chim. Phys. 5: 290–298, 1817.

    Google Scholar 

  7. Bergstrom, J. Discovery and rediscovery of low protein diet. Clin. Nephrol. 21: 29–35, 1984.

    PubMed  CAS  Google Scholar 

  8. Berliner, R. W. The concentrating mechanism in the renal medulla. Kidney Int. 9: 214–222, 1976.

    Article  PubMed  CAS  Google Scholar 

  9. Berliner, R. W., And C. M. Bennett. Concentration of urine in the mammalian kidney. Am. J. Med. 42: 777–789, 1967.

    Article  PubMed  CAS  Google Scholar 

  10. Berliner, R. W., N. G. Levinsky, D. G. Davidson, and M. Eden. Dilution and concentration of the urine and the action of antidiuretic hormone. Am. J. Med. 24: 730–744, 1958.

    Article  CAS  Google Scholar 

  11. Boerhaave, H. Elements of Chemistry: Being the Annual Lectures of Herman Boerhaave,translated by T. Dallowe. London: Pemberton, 1735, vol. 1.

    Google Scholar 

  12. Bowman, F. J., and E. C. Foulkes Antidiuretic hormone and urea permeability of collecting ducts. Am. J. Physiol. 218: 231–233, 1970.

    CAS  Google Scholar 

  13. Bray, G. A., and A. Preston. Effect of urea on urine concentration in the rat. J. Clin. Invest. 40: 1952–1960, 1961.

    Article  PubMed  CAS  Google Scholar 

  14. Bray, G. A., and A. S. Preston. The role of urea in the concentration of non-urea solutes by the kidney. In: Urea and the Kidney, edited by B. Schmidt-Nielsen. Amsterdam: Excerpta Med., 1970, p. 284–292.

    Google Scholar 

  15. Brenner, B. M., T. W. Meyer, and T. H. Hostetter. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging. N. Engl. J. Med. 307: 652–659, 1982.

    Article  PubMed  CAS  Google Scholar 

  16. Brooke, J. H. Wöhler’s urea and its vital force?-A verdict from the chemists. Ambix 15: 84–114, 1968.

    Article  CAS  Google Scholar 

  17. Capek, K., G. Fuchs, G. Rumrich, and K. J. Ullrich. Harnstoffpermeabilität der corticalen Tubulusabschnitte von Ratten in Antidiurese und Wasserdiurese. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 290: 237–249, 1966.

    Article  CAS  Google Scholar 

  18. Carlisky, N. J. Urea excretion and arginase in the anuran kidney. In: Urea and the Kidney, edited by B. Schmidt-Nielsen. Amsterdam: Excerpta Med., 1970, p. 263–271.

    Google Scholar 

  19. Chalmers, M. I., and R. L. M. Synge. The digestion of protein and nitrogenous compounds in ruminants. Adv. Protein Chem. 9: 93–120, 1954.

    Article  PubMed  CAS  Google Scholar 

  20. Chasis, H., and W. Goldring Editors). Homer William Smith, Sc. D.: His Scientific and Literary Achievements. New York: New York Univ. Press, 1965.

    Google Scholar 

  21. Chasis, H., and H. W. Smith. The excretion of urea in normal man and in subjects with glomerulonephritis. J. Clin. Invest. 17: 347–359, 1938.

    Article  PubMed  CAS  Google Scholar 

  22. Chelsley, L. C. Urea excretion at low urine volumes. The calculation of “minimal” urea clearance. J. Clin. Invest. 17: 119–123, 1937.

    Google Scholar 

  23. Chinard, F. P., and T. Enns. Relative renal excretion patterns of sodium ion, chloride ion, urea, water and glomerular substances. Am. J. Phys-

    Google Scholar 

  24. iol.182: 247–250, 1955.

    Google Scholar 

  25. Clapp, J. R. Renal tubular reabsorption of urea in normal and protein-depleted rats. Am. J. Physiol. 210: 1304–1308, 1966.

    Google Scholar 

  26. Clarke, R. W., and H. W. Smith. Absorption and excretion of water and salts by the elasmobranch fishes. Iii. The use of xylose as a measure of the glomerular filtrate in Squalus acanthias. J. Cell. Comp. Physiol. 1: 131–143, 1932.

    Article  CAS  Google Scholar 

  27. CusHny, A. R. The Secretion of Urine. London: Longmans, Green, 1917.

    Google Scholar 

  28. Danielson, R. A., and B. Schmidt-Nielsen. Recirculation of urea analogs from renal collecting ducts of high-and low-protein-fed rats. Am. J. Physiol. 223: 130–137, 1972.

    CAS  Google Scholar 

  29. Danielson, R. A., B. Schmidt-Nielsen, and C. Hohberger. Micropuncture study of the regulation of urea excretion by the collecting ducts in rats on high and low protein diets. In: Urea and the Kidney,edited by B. Schmidt-Nielsen. Amsterdam: Excerpta Med., 1970, p. 375384.

    Google Scholar 

  30. DE Rouffignac, C. Physiological role of the loop of Henle in urinary concentration. Kidney Int. 2: 297–303, 1972.

    Article  Google Scholar 

  31. DE Rouffignac, C., and F. Morel. Micropuncture study of water, electrolytes, and urea movements along the loops of Henle in Psammomys. J. Clin. Invest. 48: 474–486, 1969.

    Article  CAS  Google Scholar 

  32. Diezi, J. The adaptation of renal urea excretion after unilateral nephrectomy and after overloading with urea. Pfluegers Arch. 344: 287298, 1973.

    Google Scholar 

  33. Dole, V. P. Back-diffusion of urea in the mammalian kidney. Am. J. Physiol. 139: 504–513, 1943.

    Google Scholar 

  34. Eggena, P. Inhibition of vasopressin-stimulated urea transport across the toad urinary bladder. J. Clin. Invest. 52: 2963–2970, 1973.

    Article  PubMed  CAS  Google Scholar 

  35. Fishman, A. P., and D. W. Richards (editors). Circulation of the Blood: Men and Ideas. Bethesda, MD: Am. Physiol. Soc., 1982.

    Google Scholar 

  36. Forster, R. P. Active cellular transport of urea by frog renal tubules. Am. J. Physiol. 179: 372–377, 1954.

    Google Scholar 

  37. Forster, R. P. Renal transport mechanisms. Federation Proc. 26: 1008 1019, 1967.

    Google Scholar 

  38. Forster, R. P. Active tubular transport of urea and its role in environmental physiology. In: Urea and the Kidney, edited by B. Schmidt-Nielsen. Amsterdam: Excerpta Med., 1970, p. 229–237.

    Google Scholar 

  39. Forster, R. P. Comparative vertebrate physiology and renal concepts. In: Handbook of Physiology. Renal Physiology, edited by J. Orloff and R. W. Berliner. Washington, DC: Am. Physiol. Soc., 1973, sect. 8, chapt. 8, p. 161–184.

    Google Scholar 

  40. Forster, R. P., and L. Goldstein. Formation of excretory products. In: Fish Physiology, edited by W. S. Hoar and D. J. Randall. New York: Randall. 1969, vol. 1, p. 313–350.

    Google Scholar 

  41. Forster, R. P., L. Goldstein, and J. K. Rosen. Intrarenal control of urea reabsorption by renal tubules of the marine elasmobranch, Squalus acanthias. Comp. Biochem. Physiol. A Comp. Physiol. 42: 312, 1972.

    Google Scholar 

  42. Forster, R. P., B. Schmidt-Nielsen, and L. Goldstein. Relation of renal tubular transport of urea to its biosynthesis in metamorphosing tadpoles. J. Cell. Comp. Physiol. 61: 239–244, 1963.

    Article  PubMed  CAS  Google Scholar 

  43. Fourcroy, A.-F., and L.-N. Vanquelin. Memoire, Pour servir a l’histoire naturelle chimique et medicale de l’urine humaine, dans lequel on s’occupé spécialement des propríetés de la matière particulière qui la caractérise. Ann. Chim. Paris 80–162, 1799.

    Google Scholar 

  44. Gamble, J. L., C. F. Mckhann, A. M. Butler, and E. Tuthill An economy of water in renal function referable to urea. Am. J. Physiol. 109: 139–154, 1934.

    CAS  Google Scholar 

  45. Goldberg, M., A. M. Wojtzak, and M. A. Ramirez. Uphill transport gradient for urea in the renal medulla. In: Urea and the Kidney,edited by B. Schmidt-Nielsen. Amsterdam: Excerpta Med., 1970, p. 293304.

    Google Scholar 

  46. Goldstein, L., S. Harley-Dewitt, and R. P. Forster. Activities of ornithine-urea cycle enzymes and of trimethylamine oxidase in the coelacanth, Latimeria chalumnae. Comp. Biochem. Physiol. B Comp. Biochem. 44: 357–362, 1973.

    Article  CAS  Google Scholar 

  47. Gordon, M. S., K. Schmidt-Nielsen, and H. M. Kelly Osmotic regulation in the crab-eating frog (Rana cancrivora). J. Exp. Biol. 38: 659678, 1961.

    Google Scholar 

  48. Gottschalk, C. W., W. E. Lassiter, M. Mylle, K. J. Ullrich, B. Schmidt-Nielsen, R. O’Dell, and G. Peeling. Micropuncture study of composition of loop of Henle fluid in desert rodents. Am. J. Physiol. 204: 532–535, 1963.

    PubMed  CAS  Google Scholar 

  49. Gottschalk, C. W., F. Morel, and M. Mylle. Tracer microinjection studies of renal tubular permeability. Am. J. Physiol. 209: 173–178, 1965.

    CAS  Google Scholar 

  50. Gottschalk, C. W., and M. Mylle. Micropuncture study of the mammalian urinary concentrating mechanism: evidence for the countercurrent hypothesis. Am. J. Physiol. 196: 927–936, 1959.

    PubMed  CAS  Google Scholar 

  51. Hargitay, B., and W. Kuhn. Das Multipoikationsprinzip als Grundlage der Harnkonzentrierung in der Niere. Z. Elektrochem. 55: 539–558, 1951.

    Google Scholar 

  52. Hays, R. M. Antidiuretic hormone. N. Engl. J. Med. 295: 659–665, 1976.

    Article  CAS  Google Scholar 

  53. Hays, R. M., S. H. Harkness, and N. Franki. The movement of urea and other small molecules across the toad bladder. In: Urea and the Kidney, edited by B. Schmidt-Nielsen. Amsterdam: Excerpta Med., 1970, p. 149–158.

    Google Scholar 

  54. Heidenhain, R. Versuche über den Vorgang der Harnabsonderung. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 9: 1–27, 1874.

    Article  Google Scholar 

  55. Herrin, R. C., A. Rabin, and R. N. Feinstein. The influence of diet upon urea clearance in dogs. Am. J. Physiol. 119: 87–92, 1937.

    CAS  Google Scholar 

  56. Houpt, T. R. Utilization of blood urea in ruminants. Am. J. Physiol. 197: 115–120, 1959.

    Google Scholar 

  57. Houpt, T. R. Urea utilization by rabbits fed a low-protein ration. Am. J. Physiol. 205: 1144–1150, 1963.

    CAS  Google Scholar 

  58. Houpt, T. R., and K. A. Houpt. Transfer of urea nitrogen across the rumen wall. Am. J. Physiol. 214: 1296–1303, 1968.

    CAS  Google Scholar 

  59. Imai, M., and J. P. Koxxo. Sodium chloride, urea and water transport in the thin ascending limb of Henle. J. Clin. Invest. 53: 393–402, 1974.

    Article  PubMed  CAS  Google Scholar 

  60. Imbert, M., and C. DE Rouffignac. Role of sodium and urea in the renal concentrating mechanisms in Psammomys obesus. Pfluegers Arch. 361: 107–114, 1976.

    Article  CAS  Google Scholar 

  61. Jarausch, K. H., and K. J. Ullrich. Zur Technik der Entnahme von Harnproben aus Einzelnen Sammelrohren der Saugetierriere mittels Polyathylen-Capillaren. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 264: 88–94, 1957.

    Article  CAS  Google Scholar 

  62. Jolliffe, N., J. A. Shannon, and H. W. Smith. The excretion of urine in the dog. Iii. The use of non-metabolized sugars in the measurement of the glomerular filtrate. Am. J. Physiol. 100: 301–312, 1932.

    CAS  Google Scholar 

  63. Jolliffe, N., and H. W. Smith. The excretion of urine in the dog. I. The urea and creatinine clearances on a mixed diet. Am. J. Physiol. 98: 572–577, 1931.

    CAS  Google Scholar 

  64. Jolliffe, N., and H. W. Smith. The excretion of urine in the dog. II. The urea and creatinine clearance on cracker meal diet. Am. J. Physiol. 99: 101–107, 1931.

    CAS  Google Scholar 

  65. Jones, N. F., M. Mylle, and C. W. Gottschalk. Renal tubular microinjection studies in normal and potassium-depleted rats. Clin. Sci. 29: 261–275, 1965.

    PubMed  CAS  Google Scholar 

  66. Kaissling, B., C. DE Rouffignac, J. M. Barrett, and W. Kriz. The structural organization of the kidney of the desert rodent Psammomys obesus. Anat. Embryol. 148: 121–143, 1975.

    Article  CAS  Google Scholar 

  67. Kaissling, B., W. Kriz, and J. M. Barrett. Structural analysis of the rabbit kidney: thin limb ultrastructure. Adv. Anat. Embryol. Cell Biol. 56: 51–63, 1979.

    Google Scholar 

  68. Kawamura, S., and J. P. Koxxo. Urea secretion by the straight segment of the proximal tubule. J. Clin. Invest. 58: 604–612, 1976.

    Article  PubMed  CAS  Google Scholar 

  69. Klumper, J. D., K. J. Ullrich, and H. H. Hilger. Das Verhalten des Harnstoffs in den sammelrohren der Saugetierniere. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 267: 238–243, 1958.

    Article  CAS  Google Scholar 

  70. Kokko, J. P. Sodium chloride and water transport in the descending limb of Henle. J. Clin. Invest. 49: 1838–1846, 1970.

    Article  PubMed  CAS  Google Scholar 

  71. Koxxo, J. P. Urea transport in the proximal tubule and the descending thin limb of Henle. J. Clin. Invest. 51: 1999–2008, 1972.

    Article  Google Scholar 

  72. Koxxo, J. P., and F. C. Rector, JR. Countercurrent multiplication system without active transport in inner medulla. Kidney Int. 2: 214233, 1972.

    Google Scholar 

  73. Kuhn, T. S. The Structure of Scientific Revolutions ( 2nd ed. ). Chicago, IL: Univ. of Chicago Press, 1970.

    Google Scholar 

  74. Kurzer, F., and P. M. Sanderson. Urea in the history of organic chemistry. J. Chem. -Educ. 33: 452–459, 1956.

    Article  CAS  Google Scholar 

  75. Lassiter, W. E., C. W. Gottschalk, and M. Mylle. Micropuncture study of net transtubular movement of water and urea in nondiuretic mammalian kidney. Am. J. Physiol. 200: 1139–1147, 1961.

    CAS  Google Scholar 

  76. Lassiter, W. E., M. Mylle, and C. W. Gottschalk. Net transtubular movement of water and urea in saline diuresis. Am. J. Physiol. 206: 669–673, 1964.

    CAS  Google Scholar 

  77. Lassiter, W. E., M. Mylle, and C. W. Gottschalk. Micropuncture study of urea transport in rat renal medulla. Am. J. Physiol. 210: 965970, 1966.

    Google Scholar 

  78. Leaf, A. Transport of urea across a living membrane. In: Urea and the Kidney, edited by B. Schmidt-Nielsen. Amsterdam: Excerpta Med., 1970, p. 83–88.

    Google Scholar 

  79. Levinsky, N. G., and R. W. Berliner. The role of urea in the urine concentrating mechanism. J. Clin. Invest. 38: 741–748, 1959.

    Article  PubMed  CAS  Google Scholar 

  80. Lantern, S. M., and S. Barker. Renal retention of urea in the Kangaroo Island wallaby, Protemnodon eugenii (Desmarest). Aust. J. Exp. Biol. Med. Sci. 47: 243–250, 1969.

    Article  Google Scholar 

  81. Long, W. S. Renal secretion of urea in Rana catesbeiana. In: Urea and the Kidney, edited by B. Schmidt-Nielsen. Amsterdam: Excerpta Med., 1970, p. 216–222.

    Google Scholar 

  82. Love, J. K., and N. Lifson. Transtubular movements of urea in the doubly perfused bullfrog kidney. Am. J. Physiol. 193: 662–668, 1958.

    CAS  Google Scholar 

  83. Ludwig, C. F. W. Beitrage für Lehre vom Mechanismus der Harm Secretion. Marburg, Germany: Elwert, 1843.

    Google Scholar 

  84. Maltz, E., N. Silanikova, and A. Shkolnik. Renal performance in relation to water and nitrogen metabolism in Bedouin goats during lactation. Comp. Biochem. Physiol. A Comp. Physiol. 70: 145–147, 1981.

    Article  Google Scholar 

  85. Maren, T. H. Eli Kennerly Marshall, Jr. Biogr. Mem. Natl. Acad. Sci. 56: 313–352, 1986.

    PubMed  CAS  Google Scholar 

  86. Marshall, E. K., JR. A rapid clinical method for the estimation of urea in urine. J. Biol. Chem. 14: 283–290, 1913.

    CAS  Google Scholar 

  87. Marshall, E. K., JR. A new method for the determination of urea in the blood. J. Biol. Chem. 15: 487–494, 1913.

    CAS  Google Scholar 

  88. Marshall, E. K., JR. The determination of urea in urine. J. Biol. Chem. 15: 495–496, 1913.

    CAS  Google Scholar 

  89. Marshall, E. K., JR. The influence of diuresis on the elimination of urea, creatinine and chlorides. J. Pharmacol. Exp. Ther. 16: 141–154, 1920.

    CAS  Google Scholar 

  90. Marshall, E. K., JR. The secretion of urine. Physiol. Rev. 6: 440–473, 1926.

    Google Scholar 

  91. Marshall, E. K., JR. The secretion of urea in the frog. J. Cell. Comp. Physiol. 2: 349–353, 1932.

    Article  Google Scholar 

  92. Marshall, E. K., JR. Two lectures on renal physiology. Physiologist 9: 367–384, 1966.

    PubMed  Google Scholar 

  93. Marshall, E. K., JR., and M. M. Crane. The secretory function of the renal tubules. Am. J. Physiol. 70: 465–488, 1924.

    CAS  Google Scholar 

  94. Marshall, E. K., JR., and D. M. Davis. Urea: Its distribution in and elimination from the body. J. Biol. Chem. 18: 53–80, 1914.

    CAS  Google Scholar 

  95. Marshall, E. K., JR., and A. L. Grafflin. The structure and function of the kidney of Lophius piscatorius. Bull. Johns Hopkins Hosp. 43: 205–235, 1928.

    Google Scholar 

  96. Marshall, E. K., JR., and V. L. Vickers. The mechanism of the elimination of phenolsulphonephthalein by the kidney-a proof of secretion by the convoluted tubules. Bull. Johns Hopkins Hosp. 34: 1–7, 1923.

    Google Scholar 

  97. Morel, F., and C. DE Rouffignac. Micropuncture study of urea medullary recycling in desert rodents. In: Urea and the Kidney, edited by B. Schmidt-Nielsen. Amsterdam: Excerpta Med., 1970, p. 401–413.

    Google Scholar 

  98. Morgan, T., F. Sakai, and R. W. Berliner. In vitro permeability of medullary collecting ducts to water and urea. Am. J. Physiol. 214: 574–581, 1968.

    Google Scholar 

  99. Mudge, G. H., W. O. Berndt, and H. Valtin. Tubular transport of urea, glucose, phosphate, uric acid, sulfate, and thiosulfate. In: Handbook of Physiology. Renal Physiology, edited by J. Orloff and R. W. Berliner. Washington, DC: Am. Physiol. Soc., 1973, sect. 8, chapt. 19, p. 587–652.

    Google Scholar 

  100. Murdaugh, H. V., JR., B. Schmidt-Nielsen, E. M. Doyle, and R. O’Dell. Renal tubular regulation of urea excretion in man. J. Appl. Physiol. 13: 263–268, 1958.

    CAS  Google Scholar 

  101. Nielsen, A. L., and H. O. Bang. The influence of diet on renal function in healthy persons. Acta Med. Scand. 130: 382–388, 1948.

    Article  PubMed  CAS  Google Scholar 

  102. Nielsen, A. L., and H. O. Bang. The protein content of the diet and the function of the kidneys in human beings. Scand. J. Clin. Lab. Invest. 1: 295–297, 1949.

    Article  Google Scholar 

  103. Nussbaum, M. Ueber die Secretion der Niere. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 16: 189–148, 1878.

    Article  Google Scholar 

  104. Nussbaum, M. Fortgesetzte Untersuchungen über die Secretion der Niere. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 17: 580–593, 1878.

    Article  Google Scholar 

  105. O Connor, W. J., and R. A. Summerill. The effect of a meal of meat on glomerular filtration rate in dogs at normal urine flows. J. Physiol. Lond. 256: 81–91, 1976.

    Google Scholar 

  106. O Connor, W. J., and R. A. Summerill. The excretion of urea by dogs following a meat meal. J. Physiol. Lond. 256: 93–102, 1976.

    Google Scholar 

  107. Oliver, R. E., D. R. Roy, and R. L. Jamison. Urinary concentration in the papillary collecting duct of the rat. J. Clin. Invest. 69: 157–164, 1982.

    Article  PubMed  CAS  Google Scholar 

  108. Partington, J. R. History of Chemistry. London: Macmillan, 1964, vol. 4, p. 321–335.

    Google Scholar 

  109. Pennell, J. P., F. B. Lacy, and R. L. Jamison. An in vivo study of concentrating process in the descending limb of Henle’s loop. Kidney Int. 5: 337–347, 1974.

    Article  PubMed  CAS  Google Scholar 

  110. Pennell, J. P., V. Sanjana, N. R. Frey, and R. L. Jamison. The effect of urea infusion on the urinary concentrating mechanisms in protein-depleted rats. J. Clin. Invest. 55: 399–409, 1975.

    Article  PubMed  CAS  Google Scholar 

  111. Prevost, J. L., and J. A. Dumas. Examen du sang et de son action dans les divers phénomènes de la vie. Ann. Chim. Phys. 23: 90–104, 1823.

    Google Scholar 

  112. Prout, W. Observations on the nature of some of the proximate principles of the urine. Med. Chir. Trans. 7: 520–544, 1817.

    Google Scholar 

  113. Rabinowitz, L. Enhancement of renal concentrating ability in the rat by acetamide and methylurea. Am. J. Physiol. 214: 737–744, 1968.

    Google Scholar 

  114. Rabinowitz, L. Accumulation of organic nonelectrolytes in the renal medulla: mechanism and consequences. In: Urea and the Kidney, edited by B. Schmidt-Nielsen. Amsterdam: Excerpta Med., 1970, p. 323–332.

    Google Scholar 

  115. Rabinowitz, L., and A. D. Baines. Microinjection studies of renal tubular permeability to methylurea and acetamide in the rat. Am. J. Physiol. 214: 745–748, 1968.

    CAS  Google Scholar 

  116. Rabinowitz, L., and R. A. Gunther. Renal concentrating ability in sheep during urea, mannitol, and methylurea diuresis. Am. J. Physiol. 222: 801–806, 1972.

    CAS  Google Scholar 

  117. Rabinowitz, L., and R. A. Gunther. Excretion of urea in sheep during urea, mannitol, and methylurea osmotic diuresis. Am. J. Physiol. 222: 807–809, 1972.

    CAS  Google Scholar 

  118. Rabinowitz, L., and R H Kellogg. Enhancement of renal concentrat-ing ability in the dog by urea and related compounds. Am. J. Physiol. 205: 112–116, 1963.

    CAS  Google Scholar 

  119. Rabinowitz, L., A. B. Thompson, and R. B. Wagman. Effect of acute urea administration on urinary nonurea solute concentration. Am. J. Physiol. 221: 242–245, 1971.

    CAS  Google Scholar 

  120. Rehberg, P. B. Studies on kidney function. I. The rate of filtration and reabsorption in the human kidney. Biochem. J. 20: 447–460, 1926.

    Google Scholar 

  121. Rehberg, P. B. Studies on kidney function. II. The excretion of urea and chlorine analyzed according to a modified filtration-reabsorption theory. Biochem. J. 20: 461–482, 1926.

    Google Scholar 

  122. Richards, A. N., and A. M. Walker. Urine formation in the amphibian kidney. Am. J. Med. Sci. 190: 727–746, 1935.

    Article  Google Scholar 

  123. Richards, A. N., B. B. Westfall, and P. A. Boit. Renal excretion of inulin, creatinine and xylose in normal dogs. Proc. Soc. Exp. Biol. Med. 32: 73–75, 1934.

    Google Scholar 

  124. Robinson, V. The Story of Medicine. New York: Tudor, 1935.

    Google Scholar 

  125. Rocha, A. S., and J. P. Kokko. Permeability of medullary nephron segments to urea and water: effect of vasopressin. Kidney Int. 6: 379387, 1974.

    Google Scholar 

  126. Roch-Ramel, F., M. Churchill-Borloz, D. Carmignac, P. Michoud, and G. Peters. Excretion of urea by the rat kidney in isotonic saline diuresis: a micropuncture study. Am. J. Physiol. 222: 489–494, 1972.

    Google Scholar 

  127. Roch-Ramel, F., J. Diezi, F. Chomety, P. Michoud, and G. Peters. Urea concentrations in tubular fluid and in renal tissue of rats overloaded with urea or with saline solutions. In: Urea and the Kidney, edited by B. Schmidt-Nielsen. Amsterdam: Excerpta Med., 1970, p. 333–341.

    Google Scholar 

  128. Roch-Ramel, F., and G. Peters. Intrarenal urea and electrolyte concentrations as influenced by water diuresis and by hydrochlorothiazide. Eur. J. Pharmacol. 1: 124–139, 1967.

    Article  Google Scholar 

  129. Roch-Ramel, F., and G. Peters. Renal transport of urea. In: Renal Transport of Organic Substances, edited by R. Gregor, F. Lan, and S. Silbernagi. New York: Springer-Verlag, 1981, p. 134–153.

    Chapter  Google Scholar 

  130. Rose, W. C., L. C. Smith, M. Womack, and M. Shane. The utilization of the nitrogen of ammonium salts, urea, and certain other compounds in the synthesis of non-essential amino acids in vivo. J. Biol. Chem. 181: 307–316, 1949.

    PubMed  CAS  Google Scholar 

  131. Rouelle, H. M. Observation sur l’urine humaine, et sur celles de vache et cheval, comparées ensemble. J. Med. Chir. Pharm. 40: 451–468, 1773.

    Google Scholar 

  132. Ruibald, R., W. Trevis, and V. Rom. The terrestrial ecology of the spadefoot toad Scapiopus hammondii. Copeia 3: 571–584, 1969.

    Article  Google Scholar 

  133. Ruiz-GuInazÚ, A. The contribution of urea to the renal osmotic gradient in normal and diseased kidneys. In: Urea and the Kidney, edited by B. Schmidt-Nielsen. Amsterdam: Excerpta Med., 1970, p. 305–313.

    Google Scholar 

  134. Rulz-GuinazÚ, A., E. E. Arrizurieta, and L. Yelinek. Electrolyte, water, and urea content in dog kidneys in different states of diuresis. Am. J. Physiol. 206: 725–730, 1964.

    Google Scholar 

  135. Schmidt-Nielsen, B. Urea excretion in mammals. Physiol. Rev. 38: 139–168, 1958.

    Google Scholar 

  136. Schmidt-Nielsen, B. Comparative physiology of urea excretion. In:Progress in Nephrology, edited by G. Peters and F. Roch-Ramel. Heidelberg, Frg: Springer-Verlag, 1969, p. 1–12.

    Google Scholar 

  137. Schmidt-Nielsen, B. Urea analogues and tubular transport competition. In: Urea and the Kidney, edited by B. Schmidt-Nielsen. Amsterdam: Excerpta Med., 1970, p. 252–262.

    Google Scholar 

  138. Schmidt-Nielsen, B. Mechanisms of urea excretion by the vertebrate kidney. In: Nitrogen Metabolism and the Environment, edited by J. W. Campbell and L. Goldstein. New York: Academic, 1972, p. 79–103.

    Google Scholar 

  139. Schmidt-Nielsen, B., and R. O’Dell. Effect of diet on distribution of urea and electrolytes in kidneys of sheep. Am. J. Physiol. 197: 856860, 1959.

    Google Scholar 

  140. Schmidt-Nielsen, B., H. Osaki, H. V. Murdaugh, JR., and R. O’Dell. Renal regulation of urea excretion in sheep. Am. J. Physiol. 194: 22 1228, 1958.

    Google Scholar 

  141. Schmidt-Nielsen, B., and R. R. Robinson. Contribution of urea to urinary concentrating ability in the dog. Am. J. Physiol. 218: 1363 1369, 1970.

    Google Scholar 

  142. Schmidt-Nielsen, B., and D. Schmidt. Renal function of Shenodon punctatum. Comp. Biochem. Physiol. A Comp. Physiol. 44: 121–129, 1973.

    Article  Google Scholar 

  143. Schmidt-Nielsen, B., K. Schmidt-Nielsen, A. Brokaw, and H. Schnei-Derman. Water conservation in desert rodents. J. Cell. Comp. Physiol. 32: 331–360, 1948.

    Article  Google Scholar 

  144. Schmidt-Nielsen, B., K. Schmidt-Nielsen, T. R. Houpt, and S. A. Jarnum. Urea excretion in the camel. Am. J. Physiol. 188: 477–484, 1957.

    Google Scholar 

  145. Schmidt-Nielsen, K., and P. Lee. Kidney function in the crab-eating frog (Rana cancrivora). J. Exp. Biol. 39: 167–177, 1962.

    Google Scholar 

  146. Scholander, P. E. The wonderful net. Sci. Am. 196: 96–107, 1957.

    Google Scholar 

  147. Shannon, J. A. Glomerular filtration and urea excretion in relation to urine flow in the dog. Am. J. Physiol. 117: 206–225, 1936.

    CAS  Google Scholar 

  148. Shannon, J. A. The tubular reabsorption of xylose in the normal dog. Am. J. Physiol. 122: 775–781, 1938.

    CAS  Google Scholar 

  149. Shannon, J. A. Urea excretion in normal dog during forced diuresis. Am. J. Physiol. 122: 782–787, 1938.

    CAS  Google Scholar 

  150. Shannon, J. A., N. Jolliffe, and H. W. Smith. The excretion of urine in the dog. IV. The effect of maintenance diet feeding, etc., upon quantity of glomerular filtration. Am. J. Physiol. 101: 625–638, 1932.

    CAS  Google Scholar 

  151. Shoemaker, V. H., L. Mcclanahan, and R. Ruibald. Seasonal changes in body fluids in field populations of spadefoot toads. Copeia 3: 585591, 1969.

    Google Scholar 

  152. Silanikove, N., H. Tagari, and A. Shkolnik. Gross energy digestion and urea recycling in the desert black Bedouin goat. Comp. Biochem. Physiol. A Comp. Physiol. 67: 215–218, 1980.

    Article  Google Scholar 

  153. Singer, C. A Short History of Scientific Ideas to 1900. Oxford, UK: Oxford Univ. Press, 1959.

    Google Scholar 

  154. Smith, H. W. The absorption and excretion of water and salts by the elasmobranch fishes. I. Fresh water elasmobranchs. Am. J. Physiol. 98: 279–295, 1931.

    CAS  Google Scholar 

  155. Smith, H. W. The absorption and excretion of water and salts by the elasmobranch fishes. II. Marine elasmobranchs. Am. J. Physiol. 98: 296–310, 1931.

    CAS  Google Scholar 

  156. Smith, H. W. The retention and physiological role of urea in the elasmobranchii. Biol. Rev. Camb. Philos. Soc. 11: 49–82, 1936.

    Article  CAS  Google Scholar 

  157. Smith, H. W. The Physiology of the Kidney. Oxford, UK: Oxford Univ. Press, 1937.

    Google Scholar 

  158. Smith, H. W. The Kidney: Structure and Function in Health and Disease. Oxford, UK: Oxford Univ. Press, 1951.

    Google Scholar 

  159. Smith, H. W. From Fish to Philosopher (1st ed.). Boston, MA: Little, Brown, 1953.

    Google Scholar 

  160. Smith, H. W., and H. Silvette. Note on the nitrogen excretion of camels. J. Biol. Chem. 82: 409–411, 1928.

    Google Scholar 

  161. Stadeler, G., and F. T. Frerichs. Über das Vorkommen von Harnstoff, Taurin and Scyllit in den Organen der Plagiostomen. J. Pract. Chem. 73: 48–55, 1858.

    Article  Google Scholar 

  162. StephensoN, J. L. Concentration of urine in a central core model of the renal counterflow system. Kidney Int. 2: 85–94, 1972.

    Article  Google Scholar 

  163. Stewart, D. J., W. N. Holmes, and G. Fletcher. The renal excretion of nitrogenous compounds by the duck (Anas platyrhynchos) maintained on freshwater and on hypertonic saline. J. Exp. Biol. 50: 527539, 1969.

    Google Scholar 

  164. Tanaka, N., K. Kurd, K. Shiraki, H. Koishi, and H. Yoshimura. A pilot study on protein metabolism in the Papua New Guinea highlanders. J. Nutr. Sci. Vitaminol. 26: 247–259, 1980.

    Article  PubMed  CAS  Google Scholar 

  165. Truniger, B., and B. Schmidt-Nielsen. Intrarenal distribution of urea and related compounds: effects of nitrogen intake. Am. J. Physiol. 207: 971–978, 1964.

    PubMed  CAS  Google Scholar 

  166. Truniger, B., and B. Schmidt-Nielsen. Transtubular movements of urea and related compounds. In: Progress in Nephrology, edited by G. Peters and F. Roch-Ramel. Heidelberg, Frg: Springer-Verlag, 1969, p. 26–31.

    Google Scholar 

  167. Ullrich, K. J. Introduction to the session on urea movement across the renal tubules. In: Urea and the Kidney, edited by B. Schmidt-Nielsen. Amsterdam: Excerpta Med., 1970, p. 171–174.

    Google Scholar 

  168. Ullrich, K. J. Physiologie der Harnkonzentrierung und Verdünnung. Heidelberg, Frg: Springer-Verlag, 1959.

    Google Scholar 

  169. Ullrich, K. J. Die Nierenphysiologie auf dem Weg zur molecularen Betrachtungsweise. Max-Planck-Ges. Jahrb. 153–174, 1969.

    Google Scholar 

  170. Ullrich, K. J. “Anatomie” eines Epithels, Analyse des Stofftransportes durch den proximalen Nierebtubulus. Naturwissenschaften 60: 290297, 1973.

    Google Scholar 

  171. Ullrich, K. J. Permeability characteristics of the mammalian nephron. In: Handbook of Physiology. Renal Physiology, edited by J. Orloff and R. W. Berliner. Washington, DC: Am. Physiol. Soc., 1973, sect. 8, chapt. 12, p. 377–398.

    Google Scholar 

  172. Ullrich, K. J., F. O. Drenckhahn, and K. H. Jarausch. Untersuchungen zum Problem der Harnkonzentrierung und Verdünnung. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 261: 62–77, 1955.

    Article  CAS  Google Scholar 

  173. Ullrich, K. J., and K. H. Jarausch. Untersuchungen zum Problem der Harnkonzentrierung und Harnverdünnung. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 262: 537–550, 1956.

    Article  CAS  Google Scholar 

  174. Ullrich, K. J., G. Rumrich, and B. Schmidt-Nielsen. Urea transport in the collecting duct of rats on normal and low protein diets. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 295: 147–156, 1967.

    Article  CAS  Google Scholar 

  175. Ullrich, K. J., B. Schmidt-Nielsen, R. O’Dell, G. Pehling, C. W. Gottschalk, W. E. Lassiter, and M. Mylle. Micropuncture study of composition of proximal and distal tubular fluid in rat kidney. Am. J. Physiol. 204: 527–531, 1963.

    CAS  Google Scholar 

  176. Valtin, H. Sequestration of urea and nonurea solutes in renal tissues of rats with hereditary hypothalamic diabetes insipidus: effect of vasopressin and dehydration on countercurrent mechanism. J. Clin. Invest. 45: 337–345, 1966.

    Article  PubMed  CAS  Google Scholar 

  177. Valtin, H. Structural and functional heterogeneity of mammalian nephrons. Am. J. Physiol. 233: (Renal Fluid Electrolyte Physiol. 2 ): F491 — F501, 1977.

    Google Scholar 

  178. Walser, M. Use of isotopic urea to study the distribution and degradation of urea in man. In: Urea and the Kidney, edited by B. Schmidt-Nielsen. Amsterdam: Excerpta Med., 1970, p. 421–429.

    Google Scholar 

  179. Wirz, H. Der osmotische Druck des Blutes in der Nierenpapille. Hely. Physiol. Pharmacol. Acta 11: 20–29, 1953.

    CAS  Google Scholar 

  180. Wirz, H., and R. Dirix. Urinary concentration and dilution. In: Handbook of Physiology. Renal Physiology, edited by J. Orloff and R. W. Berliner. Washington, DC: Am. Physiol. Soc., 1973, sect. 8, chapt. 13, p. 415–430.

    Google Scholar 

  181. Wirz, H., B. Hargitay, and W. KuHN. Lokalisation des Konzentrierungsprozesses in der Niere durch direkte Kryoskopie. Helvet. Physiol. Pharmacol. Acta 9: 196–207, 1951.

    CAS  Google Scholar 

  182. Wohler, F. Ueber kunstiliche Bildung des Harnstoffs. Ann. Phys. Chem. 12: 253–256, 1828.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 American Physiological Society

About this chapter

Cite this chapter

Schmidt-Nielsen, B. (1987). Urea Excretion. In: Gottschalk, C.W., Berliner, R.W., Giebisch, G.H. (eds) Renal Physiology. People and Ideas. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7545-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7545-3_10

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7545-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics