Animal Stress pp 113-140 | Cite as

Assessment of Pain in Animals

  • Ralph L. Kitchell
  • Richard D. Johnson


Assessment of pain in animals presents problems not readily apparent to the unsophisticated observer. Most people do not realize that pain is a perception, that it has no definitive physical dimensions, and that it is probably the most modified of any sensory system of the body. A stimulus giving rise to the perception of pain in a human in one circumstance may not be painful in another circumstance to the same person or to another person. A strong mechanical stimulus applied to a conscious individual may be very painful; however, if the individual is anesthetized, no pain will be felt. It is therefore incorrect to use “pain” as an adjective in reference to a stimulus, as with a “painful” stimulus, unless the stimulus is actually perceived as being painful. Similarly it is incorrect to refer to “pain” fibers, reflexes, and pathways, because various stimuli may involve these neural mechanisms without the concomitant perception of pain. The conscious state of the individual is of paramount importance. Stimuli strong enough to be perceived as painful in a conscious individual will also produce activity in nerve fibers and pathways and possibly elicit reflexes in unconscious individuals totally unaware of the application of the stimulus.


Dorsal Horn Reticular Formation Noxious Stimulus Noxious Stimulation Nociceptive Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abey, E. O., and T. L. Yaksh. Effects of intrathecal capsaicin on thermal, mechanical and chemical nociceptive response in the cat (Abstract). Pharmacologist 22: 204, 1980.Google Scholar
  2. 2.
    Albe-Fessard, D., A. Levante, and Y. Lamour. Origin of the spinothalamic and spinoreticular pathways in cats and monkeys. In: Advances in Neurology. Pain, edited by J. J. Bonica. New York: Bonica. 1974, vol. 4, p. 157–166.Google Scholar
  3. 3.
    Anderson, F. D., and C. M. Berry. Degeneration studies of long ascending fiber systems in the cat brain stem. J. Comp. Neurol. 111: 195–229, 1959.CrossRefGoogle Scholar
  4. 4.
    Anderson, P., S. A. Andersson, and S. Landgren. Some properties of the thalamic relay cells in the spino-cervico-lemniscal path. Acta Physiol. Scand. 68: 72–83, 1966.CrossRefGoogle Scholar
  5. 5.
    Andersson, S. A., O. Keller, and L. Vyklicky. Cortical activity evoked from tooth pulp afferent. Brain Res. 50: 473–475, 1973.PubMedCrossRefGoogle Scholar
  6. 6.
    Angaut-Petit, D. The dorsal column system. I. Existence of long ascending post-synaptic fibers in the cat’s fasciculus gracilis. Exp. Brain Res. 22: 457–470, 1975.PubMedGoogle Scholar
  7. 7.
    Angaut-Petit, D. The dorsal column system. II. Functional properties and bulbar relay of the post-synaptic fibers of the cat’s fasciculus gracilis. Exp. Brain Res. 22: 471–493, 1975.PubMedGoogle Scholar
  8. 8.
    Applebaum, A. E., J. E. Beall, R. D. Foreman, and W. D. Willis. Organization and receptive fields of primate spinothalamic tract neurons. J. Neurophysiol. 38: 57 2586, 1975.Google Scholar
  9. 9.
    Bard, P., and M. B. Macht. The behaviour of chronically decerebrate cats. In: Ciba Foundation Symposium on the Neurological Basis of Behaviour, edited by G. E. W. Wolstenholme and C. M. O’Conner. Boston, MA: Little, Brown, 1958, p. 55.Google Scholar
  10. 10.
    Barnes, K. L. A quantitative investigation of somatosensory coding in single cells of the cat mesencephalic reticular formation. Exp. Neurol. 50: 180–193, 1976.Google Scholar
  11. 11.
    Basbaum, A. I., and H. L. Fields. Endogenous pain control mechanisms: review and hypothesis. Ann. Neurol. 4: 451–462, 1978.PubMedCrossRefGoogle Scholar
  12. 12.
    Benjamin, R. M. Single neurons in the rat medulla responsive to nociceptive stimulation. Brain Res. 24: 525–529, 1970.PubMedCrossRefGoogle Scholar
  13. 13.
    Benton, R. G., and R. B. Mefferd, Jr. The differentiation of escape and avoidance behavior in two thalamic areas in the cat. Brain Res. 6: 679–685, 1967.PubMedCrossRefGoogle Scholar
  14. 14.
    Berkley, K. J. Spatial relationships between the terminations of somatic sensory and motor pathways in the rostral brainstem of cats and monkeys. I. Ascending somatic sensory inputs to lateral diencephalon. J. Comp. Neurol. 193: 283–317, 1980.Google Scholar
  15. 15.
    Berkley, K. J., and R. Palmar. Somatosensory cortical involvement in response to noxious stimulation in the cat. Exp. Brain Res. 20: 363–374, 1974.PubMedCrossRefGoogle Scholar
  16. 16.
    Boivie, J. The termination of the cervicothalamic tract in the cat. An experimental study with silver impregnation methods. Brain Res. 19: 333–360, 1970.PubMedCrossRefGoogle Scholar
  17. 17.
    Boivie, J. The termination of the spinothalamic tract in the cat. An experimental study with silver impregnation methods. Exp. Brain Res. 12: 331–353, 1971.CrossRefGoogle Scholar
  18. 18.
    Boivie, J. An anatomical investigation of the termination of the spinothalamic tract in the monkey. J. Comp. Neurol. 186: 343–370, 1979.Google Scholar
  19. 19.
    Bowsher, D. The termination of secondary somatosensory neurons within the thalamus of Macaca mulatta: an experimental degeneration study. J. Comp. Neurol. 177: 213–227, 1961.CrossRefGoogle Scholar
  20. 20.
    Bowsher, D. The topographical projection of fibres from the anterolateral quadrant of the spinal cord to the subdiencephalic brain stem in man. Psychiatr. Neurol. 143: 75–99, 1962.CrossRefGoogle Scholar
  21. 21.
    Bowsher, D. Diencephalic projections from the midbrain reticular formation. Brain Res. 95: 211–220, 1975.PubMedCrossRefGoogle Scholar
  22. 22.
    Bowsher, D. Role of the reticular formation in responses to noxious stimulation. Pain 2: 361–378, 1976.PubMedCrossRefGoogle Scholar
  23. 23.
    Bowsher, D., and D. Albe-Fessard. Patterns of somatosensory organization with the central nervous system. In: Assessment of Pain in Man and Animals, edited by C. A. Keele and R. Smith. London: Universities Fed. Anim. Welfare, 1962, p. 107–122.Google Scholar
  24. 24.
    Bradley, P. B. The central action of certain drugs in relation to the reticular formation of the brain. In: Reticular Formation of the Brain, edited by H. H. Jasper, L. D. Proctor, R. S. Knighton, W. C. Noshay, and R. T. Costello. Boston, MA: Little, Brown, 1957, p. 123–150. (Henry Ford Hosp. Int. Symp.)Google Scholar
  25. 25.
    Bradley, P. B., and J. Elkes. The effect of atropine, hyoscyamine, physostigmine and neostigmine on the electrical activity of the brain of the conscious cat (Abstract). J. Physiol. London 120: 14P - 15P, 1953.PubMedGoogle Scholar
  26. 26.
    Breazile, J. E., and R. L. Kitchell. Ventrolateral spinal cord afferents to the brain stem in the domestic pig. J. Comp. Neurol. 133: 363–373, 1968.CrossRefGoogle Scholar
  27. 27.
    Breazile, J. E., and R. L. Kitchell. A study of the fiber systems within the spinal cord of the domestic pig that subserve pain. J. Comp. Neurol. 133: 373–382, 1968.CrossRefGoogle Scholar
  28. 28.
    Breazile, J. E., R. L. Kitchell, and Y. Naitoh. Neural basis of pain in animals. In: Proc. Res. Conf., 15th, Chicago, 1963. Chicago, IL: Am. Meat Inst. Found., 1963, p. 53–65.Google Scholar
  29. 29.
    Brinkhus, H. B., E. Carstens, and M. Zimmerman. Encoding of graded noxious skin heating by neurons in posterior thalamus and adjacent areas in the cat. Neurosci. Lett. 15: 37–42, 1979.PubMedCrossRefGoogle Scholar
  30. 30.
    Brodal, A. Reticular formation. In: Neurological Anatomy in Relation to Clinical Medicine ( 3rd ed. ). New York: Oxford Univ. Press, 1981, p. 394–447.Google Scholar
  31. 31.
    Brown, A. G. Ascending and long spinal pathways: dorsal columns, spinocervical tract, and spinothalamic tract. In: Handbook of Sensory Physiology. Somatosensory System, edited by A. Iggo. Berlin: Springer-Verlag, 1973, vol. 2, p. 315–338.Google Scholar
  32. 32.
    Brown, A. G., and D. N. Franz. Responses of spinocervical tract neurones to natural stimuli of identified cutaneous receptors. Exp. Brain Res. 1: 231–249, 1969.Google Scholar
  33. 33.
    Bryan, R. N., J. D. Coulter, and W. D. Willis. Cells of origin of the spinocervical tract in the monkey. Exp. Neurol. 42: 574–586, 1974.PubMedCrossRefGoogle Scholar
  34. 34.
    Bryan, R. N., D. L. Trevino, J. D. Coulter, and W. D. Willis. Location and somatotopic organization of the cells of origin of the spino-cervical tract. Exp. Brain Res. 17: 177–189, 1973.Google Scholar
  35. 35.
    Burgess, P. R., and E. R. Perl. Myelinated afferent fibres responding specifically to noxious stimulation of the skin. J. Physiol. London 190: 541–562, 1967.Google Scholar
  36. 36.
    Burton, H. Somatic sensory properties of caudal bulboreticular neurons in the cat (Fells domestica). Brain Res. 11: 357–372, 1968.PubMedCrossRefGoogle Scholar
  37. 37.
    Burton, H., and E. G. Jones. The posterior thalamic region and its cortical projection in New World and Old World monkeys. J. Comp. Neurol. 168: 249–302, 1976.PubMedCrossRefGoogle Scholar
  38. 38.
    Cannon, W. B., and S. W. Britton. Studies on the conditions of activity in endocrine glands. XV. Pseudoaffective medulliadrenal secretion. Am. J. Physiol. 72: 283–294, 1925.Google Scholar
  39. 39.
    Carmon, A., Y. Dotan, and Y. Same. Correlation of subjective pain experience with cerebral evoked responses to noxious thermal stimulations. Exp. Brain Res. 33: 445–453, 1978.PubMedCrossRefGoogle Scholar
  40. 40.
    Carstens, E. Descending control of spinal nociceptive transmission. In: Animal Pain: Perception and Alleviation, edited by R. L. Kitchell, H. H. Erickson, E. Carstens, and L. E. Davis. Bethesda, MD: Am. Physiol. Soc., 1983, p. 83–105.Google Scholar
  41. 41.
    Casey, K. L. Neural mechanisms of pain. In: Handbook of Perception. Feeling and Hurting, edited by E. C. Carterette and M. P. Friedman. New York: Academic, 1978, vol. VIB, p. 183–230.Google Scholar
  42. 42.
    Casey, K. L. The reticular formation and pain: toward a unifying concept. In: Pain Research Publications: Association for Research in Nervous and Mental Disease, edited by J. J. Bonica. New York: Bonica. 1980, vol. 58, p. 93–105.Google Scholar
  43. 43.
    Casey, K. L., and T. J. Morrow. Supraspinal pain mechanisms in the cat. In: Animal Pain: Perception and Alleviation, edited by R. L. Kitchell, H. H. Erickson, E. Carstens, and L. E. Davis. Bethesda, MD: Am. Physiol. Soc., 1983, p. 63–81.Google Scholar
  44. 44.
    Casey, K. L., and T. J. Morrow. Ventral posterior thalamic neurons differentially responsive to noxious stimulation in the awake monkey. Science 221: 675–677, 1983.PubMedCrossRefGoogle Scholar
  45. 45.
    Cauna, N. Light and electron microscopical structure of sensory end-organs in human skin. In: The Skin Senses, edited by D. R. Kenshalo. Springfield, IL: Thomas, 1968, p. 15–29.Google Scholar
  46. 46.
    Cervero, F., and A. Iggo. The substantia gelatinosa of the spinal cord: a critical review. Brain 103: 717–772, 1980.PubMedCrossRefGoogle Scholar
  47. 47.
    Cervero, F., A. Iggo, and V. Molony. Responses of spinocervical tract neurones to noxious stimulation of the skin. J. Physiol. London 267: 537–558, 1977.Google Scholar
  48. 48.
    Cervero, F., A. Iggo, and H. Ogawa. Nociceptor-driven dorsal horn neurones in the lumbar spinal cord of the cat. Pain 2: 5–24, 1976.PubMedCrossRefGoogle Scholar
  49. 49.
    Chatrian, G. E., R. C. Canfield, T. A. Knauss, and E. Lettich. Cerebral responses to electric tooth pulp stimulation in man: an objective correlate of acute experimental pain. Neurology 25: 745–757, 1975.PubMedCrossRefGoogle Scholar
  50. 50.
    Christensen, B. N., and E. R. Perl. Spinal neurons specifically excited by noxious or thermal stimuli: marginal zone of the dorsal horn. J. Neurophysiol. 33: 293–307, 1970.PubMedGoogle Scholar
  51. 51.
    Collins, W. F., and C. T. Randt. Midbrain evoked responses relating to peripheral unmyelinated or “C” fibers in cat. J. Neurophysiol. 23: 47–53, 1960.PubMedGoogle Scholar
  52. 52.
    Craig, A. D., Jr., and H. Burton. Spinal medullary laminal projection to nucleus submedius in medial thalamus: a possible pain center. J. Neurophysiol. 45: 443–466, 1981.PubMedGoogle Scholar
  53. 53.
    Curry, M. J. The exteroceptive properties of neurones in the somatic part of the posterior group (PO). Brain Res. 44: 439–462, 1972.PubMedCrossRefGoogle Scholar
  54. 54.
    Darian-Smith, I. Neural mechanisms of facial sensation. Int. Rev. Neurobiol. 9: 301–395, 1966.Google Scholar
  55. 55.
    Delgado, J. M. R., H. E. Rosvald, and E. Looney. Evoking conditioned fear by electrical stimulation of subcortical structures in the monkey brain. J. Comp. Physiol. Psychol. 49: 373–380, 1956.CrossRefGoogle Scholar
  56. 56.
    Dennis, S. G., and R. Melzack. Pain-signalling systems in the dorsal and ventral spinal cord. Pain 4: 97–132, 1977.PubMedCrossRefGoogle Scholar
  57. 57.
    Dennis, S. G., and R. Melzack. Perspectives on phylogenetic evolution of pain expression. In: Animal Pain: Perception and Alleviation, edited by R. L. Kitchell, H. H. Erickson, E. Carstens, and L. E. Davis. Bethesda, MD: Am. Physiol. Soc., 1983, p. 151–160.Google Scholar
  58. 58.
    Dong, W. K., H. Ryu, and I. H. Wagman. Nociceptive responses of neurons in medial thalamus and their relationship to spinothalamic pathways. J. Neurophysiol. 41: 1592–1613, 1979.Google Scholar
  59. 59.
    Earle, K. M. The tract of Lissauer and its possible relation to the pain pathway. J. Comp. Neurol. 96: 93–111, 1952.PubMedCrossRefGoogle Scholar
  60. 60.
    Eickhoff, R., H. O. Handwerker, D. S. McQueen, and E. Schick. Noxious and tactile input to medial structures of the midbrain and pons in the rat. Pain 5: 99–113, 1978.PubMedCrossRefGoogle Scholar
  61. 61.
    Foltz, E. L., and L. E. White. Pain “relief” by frontal cingulumotomy. J. Neurosurg. 19: 89–100, 1962.PubMedCrossRefGoogle Scholar
  62. 62.
    Frommer, G. P., B. R. Trefz, and K. L. Casey. Somatosensory function and cortical unit activity in cats with only dorsal column fibers. Exp. Brain Res. 27: 113–129, 1977.PubMedCrossRefGoogle Scholar
  63. 63.
    Gaze, R. M., and G. Gordon. The representation of cutaneous sense in the thalamus of the cat and monkey. Q. J. Exp. Physiol. 39: 279–304, 1954.PubMedGoogle Scholar
  64. 64.
    Giesler, G. J., R. P. Yezierski, K. D. Gerhart, and W. D. Willis. Spinothalamic tract neurons that project to medial and/or lateral thalamic nuclei: evidence for a physiologically novel population of spinal cord neurons. J. Neurophysiol. 46: 1285–1308, 1981.PubMedGoogle Scholar
  65. 65.
    Gildenberg, P. L. Physiological observations concerned with percutaneous cordotomy. In: Neurophysiology Studied in Man, edited by G. G. Somjen. Amsterdam: Excerpta Med., 1972, p. 231–236.Google Scholar
  66. 66.
    Glassman, R. B., M. W. Forgus, J. E. Goodman, and H. N. Glassman. Somesthetic effects of damage to cats’ ventrobasal complex, medial lemniscus or posterior group. Exp. Neurol. 48: 460–492, 1975.Google Scholar
  67. 67.
    Gordon, G., S. Landgren, and W. Seed. The functional characteristics of single cells in the caudal part of the spinal nucleus of the trigeminal nerve of the cat. J. Physiol. London 158: 544–559, 1961.PubMedGoogle Scholar
  68. 68.
    Ha, H. Cervicothalamic tract in the rhesus monkey. Exp. Neurol. 33: 205–212, 1971.Google Scholar
  69. 69.
    Ha, H., S. T. Kitai, and F. Morin. The lateral cervical nucleus of the racoon: an anatomical and microelectrode study. Exp. Neurol. 11: 441–450, 1965.PubMedCrossRefGoogle Scholar
  70. 70.
    Hagg, S., and H. Ha. Cervicothalamic tract in the dog. J. Comp. Neurol. 139: 357–374, 1970.CrossRefGoogle Scholar
  71. 71.
    Halliday, A. M., and V. Logue. Painful sensations evoked by electrical stimulation of the thalamus. In: Neurophysiology Studied in Man, edited by G. G. Somjen. Amsterdam: Excerpta Med., 1972, p. 221–230.Google Scholar
  72. 72.
    Hallin, R. G., and H. E. Torebjörk. Studies on cutaneous A and C fiber afferents, skin nerve blocks and perception. In: Sensory Functions of the Skin in Primates, edited by Y. Zotterman. Oxford, UK: Pergamon, 1976, vol. 27, p. 137–148. (WennerGren Ctr. Int. Symp. Ser.)Google Scholar
  73. 73.
    Halpern, B. P., and J. D. Halverson. Modification of escape from noxious stimuli after bulbar reticular formation lesions. Behay. Biol. 11: 215–229, 1974.CrossRefGoogle Scholar
  74. 74.
    Hamilton, B. L., and M. Skultety. Efferent connections of the periaqueductal gray matter in the cat. J. Comp. Neurol. 139: 105–114, 1970.CrossRefGoogle Scholar
  75. 75.
    Handwerker, H. O., A. Iggo, and M. Zimmerman. Segmental and supraspinal actions on dorsal horn neurons responding to noxious and non-noxious skin stimuli. Pain 1: 147–165, 1975.PubMedCrossRefGoogle Scholar
  76. 76.
    Harris, F. A. Wide-field neurons in somatosensory thalamus of the cat under barbiturate anesthesia. Exp. Neurol. 68: 27–49, 1980.Google Scholar
  77. 77.
    Harris, G., and G. B. Rollman. The validity of experimental pain measures. Pain 17: 369–376, 1983.PubMedCrossRefGoogle Scholar
  78. 78.
    Hassler, R. Affective and arousal effects elicited from distinctive nuclei of the human diencephalon. Electroencephalogr. Clin. Neurophysiol. 14: 422–423, 1962.Google Scholar
  79. 79.
    Hassler, R. Dichotomy of facial pain conduction in the diencephalon. In: Trigeminal Neuralgia, Pathogenesis and Pathophysiology, edited by R. Hassler and A. E. Walker. Philadephia, PA: Saunders, 1970, p. 123–138.Google Scholar
  80. 80.
    Hitchcock, E. Electrophysiological exploration of the cervicomedullary region. In: Neurophysiology Studied in Man, edited by G. G. Somjen. Amsterdam: Excerpta Med., 1972, p. 237–245.Google Scholar
  81. 81.
    Hökfelt, T., J. O. Kellerth, G. Nilsson, and B. Pernow. Experimental immunohistochemical studies on the localization and distribution of substance P in cat primary sensory neurons. Brain Res. 100: 235–252, 1975.PubMedCrossRefGoogle Scholar
  82. 82.
    Hökfelt, T., J. O. Kellerth, G. Nilsson, and B. Pernow. Substance P: localization in the central nervous system and in some primary sensory neurons. Science 190: 889–890, 1975.PubMedCrossRefGoogle Scholar
  83. 83.
    Honda, C. N., S. Mense, and E. R. Perl. Neurons in ventrobasal region of cat thalamus selectively responsive to noxious mechanical stimulation. J. Neurophysiol. 49: 662–673, 1983.PubMedGoogle Scholar
  84. 84.
    Hu, J. W., J. O. Dostrovsky, and B. J. Sessle. Functional properties of neurons in cat trigeminal subnucleus caudalis (medullary dorsal horn). I. Responses to oral-facial noxious and nonnoxious stimuli and projections to thalamus and subnucleus oralis. J. Neurophysiol. 45: 173–192, 1981.PubMedGoogle Scholar
  85. 85.
    Iggo, A. Pain receptors. In: Recent Advances on Pain: Pathophysiology and Clinical Aspects, edited by J. J. Bonica, P. Procacci, and C. A. Pagni. Springfield, IL: Thomas, 1974, p. 3–35.Google Scholar
  86. 86.
    Iggo, A. Neurophysiological mechanisms of nociception. In: Animal Pain: Perception and Alleviation, edited by R. L. Kitchell, H. H. Erickson, E. Carstens, and L. E. Davis. Bethesda, MD: Am. Physiol. Soc., 1983, p. 27–39.Google Scholar
  87. 87.
    Jansco, N. Desensitization with capsaicin as a tool for studying the function of pain receptors. In: Pharmacology of Pain, edited by R. K. S. Lim. Oxford, UK: Pergamon, 1968, vol. 9, p. 33–55.Google Scholar
  88. 88.
    Jessell, T., A. Tsunoo, I. Kanazawa, and M. Otsuka. Substance P: depletion in the dorsal horn of rat spinal cord after section of the peripheral processes of primary sensory neurons. Brain Res. 168: 247–259, 1977.CrossRefGoogle Scholar
  89. 89.
    Jones, E. G., and H. Burton. Cytoarchitecture and somatic sensory connectivity of thalamic nuclei other than the ventrobasal complex in the cat. J. Comp. Neurol. 154: 395–431, 1974.PubMedCrossRefGoogle Scholar
  90. 90.
    Jones, E. G., and T. P. S. Powell. An analysis of the posterior group of thalamic nuclei on the basis of its afferent connections. J. Comp. Neurol. 143: 185–216, 1971.CrossRefGoogle Scholar
  91. 91.
    Kaelber, W. W., and C. L. Mitchell. The centrum medianum-central tegmental fasciculus complex. A stimulation, lesion and degeneration study in the cat. Brain 90: 83–100, 1967.PubMedCrossRefGoogle Scholar
  92. 92.
    Kaelber, W. W., and C. L. Mitchell. Alteration in escape responding in the cat. A lesion and degeneration comparison following stimulation studies. Brain Behay. Evol. 12: 137–150, 1975.Google Scholar
  93. 93.
    Kaelber, W. W., C. L. Mitchell, A. J. Yarmat, A. K. Afifi, and S. A. Lorens. Centrum medianum-parafasciculus lesions and reactivity to noxious and non-noxious stimulus. Exp. Neurol. 46: 282–290, 1975.PubMedCrossRefGoogle Scholar
  94. 94.
    Keene, J. J., and K. L. Casey. Excitatory connection from lateral hypothalamus self-stimulation sites to escape sites in medullary reticular formation. Exp. Neurol. 28: 155–166, 1970.PubMedCrossRefGoogle Scholar
  95. 95.
    Keene, J. J., and K. L. Casey. Rewarding and aversive brain stimulation: opposite effects on medial thalamic units. Physiol. Behay. 10: 283–287, 1973.CrossRefGoogle Scholar
  96. 96.
    Kennard, M. A. The course of ascending fibers in the spinal cord of the cat essential to the recognition of painful stimuli. J. Comp. Neurol. 100: 511–524, 1954.PubMedCrossRefGoogle Scholar
  97. 97.
    Kenshalo, D. R., Jr., G. J. Giesler, Jr., R. B. Leonard, and W. D. Willis. Responses of neuron s in primate ventral posterior lateral nucleus to noxious stimuli. J. Neurophysiol. 43: 1594–1614, 1980.PubMedGoogle Scholar
  98. 98.
    Kerr, F. W. L. The ventral spinothalamic tract and other ascending systems of the ventral funiculus of the spinal cord. J. Comp. Neurol. 159: 335–355, 1975.PubMedCrossRefGoogle Scholar
  99. 99.
    Kerr, F. W. L., and K. L. Casey. Pain. Neurosci. Res. Program Bull. 16: 1–207, 1978.Google Scholar
  100. 100.
    Kircher, C., and H. Ha. The nucleus cervicalis lateralis in primates, including the human (Abstract). Anat. Rec. 160: 376, 1968.Google Scholar
  101. 101.
    Kiser, R. S., R. M. Lebovitz, and D. C. German. Anatomic and pharmacologic differences between two types of aversive midbrain stimulation. Brain Res. 155: 331–342, 1978.PubMedCrossRefGoogle Scholar
  102. 102.
    Kitai, S. T., H. Ha, and F. Morin. Lateral cervical nucleus of the dog: anatomical and microelectrode studies. Am. J. Physiol. 209: 307–311, 1965.PubMedGoogle Scholar
  103. 103.
    Kitchell, R. L. Endogenous opiates, endorphins, endocrine function and the physiology of pain. In: Sci. Proc. Am. Coll. Vet. Int. Med. Washington, DC: Ani. Coll. Vet. Int. Med., 1980, p. 47–84.Google Scholar
  104. 104.
    Kitchell, R. L., Y. Naitoh, J. E. Breazile, and J. M. Lagerwerff. Methodological considerations for assessment of pain perception in animals. In: The Assessment of Pain in Man and Animals, edited by C. A. Keele and R. Smith. London: Universities Fed. Anim. Welfare, 1962, p. 244–261.Google Scholar
  105. 105.
    Kitchell, R. L., M. W. Stromberg, J. M. Laerwerff, and J. P. Arnold. Basis for evaluation of pain in animals. In: Proc. Res. Conf., 12th, Chicago, 1960. Chicago, IL: Am. Meat Inst. Found., 1960, p. 25–38.Google Scholar
  106. 106.
    Kniffki, K.-D., and K. Mizumura. Responses of neurons in VPL and VPL-VL region in the cat to algesic stimulation of muscle and tendon. J. Neurophysiol. 49: 649661, 1983.Google Scholar
  107. 107.
    Kruger, L., and J. A. Mosso. An evaluation of duality in the trigeminal afferent system. Adv. Neurol. 4: 73–82, 1974.Google Scholar
  108. 108.
    Kruger, L., and B. E. Rodin. Peripheral mechanisms involved in pain. In: Animal Pain: Perception and Alleviation, edited by R. L. Kitchell, H. H. Erickson, E. Carstens, and L. E. Davis. Bethesda, MD: Am. Physiol. Soc., 1983, p. 1–26.Google Scholar
  109. 109.
    Kumazawa, T., E. R. Perl, P. R. Burgess, and D. Whitehorn. Ascending projections from marginal zone (laminai) neurons of the spinal dorsal horn. J. Comp. Neurol.162: 1–12, 1975.CrossRefGoogle Scholar
  110. 110.
    Landgren, S., A. Nordwall, and C. Wengstrom. The location of the thalamic relay in the spino-cervical-lemniscal path. Acta Physiol. Scand. 65: 164–175, 1965.Google Scholar
  111. 111.
    Levitt, M., and J. Levitt. Sensory hindlimb representation in the SmI cortex of the cat after spinal tractotomies. Exp. Neurol. 22: 276–302, 1968.PubMedCrossRefGoogle Scholar
  112. 112.
    Lewis, T. Pain. London: Macmillan, 1942, p. 49.Google Scholar
  113. 113.
    Lindsley, D. B., L. H. Schreiner, W. B. Knowles, and H. W. Magoun. Behavioral and E. E. G. changes following chronic brain stem lesions in the cat. Electroencephalogr. Clin. Neurophysiol. 2: 483–498, 1950.CrossRefGoogle Scholar
  114. 114.
    Lineberry, C. G. Laboratory animals in pain research. In: Methods in Animal Experimentation, edited by W. Gay. New York: Academic, 1981, vol. 6, p. 237–311.Google Scholar
  115. 115.
    Lu, G.-W., G. J. Bennett, N. Nishikawa, M. J. Hoffert, and R. Dubner. Extra-and intracellular recordings from dorsal column postsynaptic spinomedullary neurons in the cat. Exp. Neurol. 82: 456–477, 1983.PubMedCrossRefGoogle Scholar
  116. 116.
    Lund, R. D., and K. E. Webster. Thalamic afferents from the spinal cord and trigeminal nuclei: an experimental anatomical study in the rat. J. Comp. Neurol. 130: 313–328, 1967.PubMedCrossRefGoogle Scholar
  117. 117.
    Lundberg, A. Ascending spinal hindlimb pathways in the cat. In: Progress in Brain Research. Physiology of Spinal Neurons, edited by J. C. Eccles and J. P. Schadé. Amsterdam: Elsevier, 1965, vol. 12, p. 135–163.Google Scholar
  118. 118.
    Macht, M. B., and R. C. Kuhn. Responses to thermal stimuli mediated through the isolated spinal cord. Arch. Neural. Psychiatry59: 754–778, 1948.CrossRefGoogle Scholar
  119. 119.
    Magoun, H. W. The Waking Brain. Springfield, IL: Thomas, 1958, p. 66–71.CrossRefGoogle Scholar
  120. 120.
    Mancia, M., G. Broggi, and M. Margnelli. Brain stem reticular effects on intralaminar thalamic neurons in the cat. Brain Res. 25: 638–641, 1971.PubMedCrossRefGoogle Scholar
  121. 121.
    Mark, V. H., F. R. Ervin, and P. I. Yakovlev. Stereotactic thalamotomy. III. The verification of anatomical lesion sites in the human thalamus. Arch. Neurol. 8: 528538, 1963.Google Scholar
  122. 122.
    Maunz, R. A., N. G. Pitts, and B. W. Peterson. Cat spinoreticular neurons: locations, responses and changes in responses during repetitive stimulation. Brain Res. 148: 365–379, 1979.CrossRefGoogle Scholar
  123. 123.
    Mayer, D. J., and D. D. Price. Central nervous mechanisms of analgesia. Pain 2: 379–404, 1976.PubMedCrossRefGoogle Scholar
  124. 124.
    Mayer, D. J., D. D. Price, and D. P. Becker. Neurophysiological characterization of the anterolateral spinal cord neurons contributing to pain perception in man. Pain 1: 51–58, 1975.PubMedCrossRefGoogle Scholar
  125. 125.
    Mayer, D. J., T. L. Wolfle, H. Akil, B. Carder, and J. C. Liebeskind. Analgesia from electrical stimulation of the brainstem of the rat. Science 174: 1351–1354, 1971.PubMedCrossRefGoogle Scholar
  126. 126.
    Mehler, W. R. Some observations of secondary ascending afferent systems in the central nervous system. In: Pain, edited by R. S. Knighton and P. R. Dumke. Boston, MA: Little, Brown, 1966, p. 11–32.Google Scholar
  127. 127.
    Mehler, W. R. Some neurological species differences—a posteriori. Ann. NY Acad. Sci. 167: 424–468, 1969.CrossRefGoogle Scholar
  128. 128.
    Melzack, R., and K. L. Casey. Sensory, motivational, and control determinants of pain: a new conceptual model. In: The Skin Senses, edited by D. Kenshalo. Springfield, IL: Thomas, 1968, p. 423–443.Google Scholar
  129. 129.
    Mendell, L. M. Physiological properties of unmyelinated fiber projection to the spinal cord. Exp. Neurol. 16: 316–332, 1966.PubMedCrossRefGoogle Scholar
  130. 130.
    Mendell, L. M., and P. D. Wall. Responses of single dorsal cord cells to peripheral cutaneous unmyelinated fibres. Nature London206: 97–99, 1965.PubMedCrossRefGoogle Scholar
  131. 131.
    Mitchell, C. L., and W. W. Kaelber. Effect of medial thalamic lesions on responses elicited by tooth pulp stimulation. Am. J. Physiol. 210: 263–269, 1966.Google Scholar
  132. 132.
    Mitchell, C. L., and W. W. Kaelber. Unilateral vs. bilateral lesions and reactivity to noxious stimuli. Arch. Neurol. 17: 653–660, 1967.PubMedCrossRefGoogle Scholar
  133. 133.
    Mizuno, N., M. Nakano, M. Imaizumi, and M. Okamoto. The lateral cervical nucleus of the Japanese monkey (Macaca fuscata). J. Comp. Neurol. 129: 245–252, 1967.CrossRefGoogle Scholar
  134. 134.
    Morin. F. A new spinal pathway for cutaneous impulses. Am. J. Physiol. 183: 245–252, 1955.Google Scholar
  135. 135.
    Moruzzi G and H. W. Magoun. Brain stem reticular formation and activation of the EEG. Electroencephalogr. Clin. Neurophysiol. 1: 455–473, 1949.PubMedGoogle Scholar
  136. 136.
    Mosso, J. A., and L. Kruger. Spinal trigeminal neurons excited by noxious and thermal stimuli. Brain Res. 38: 206–210, 1972.PubMedCrossRefGoogle Scholar
  137. 137.
    Mountcastle, V. B. Sleep, wakefulness, and the conscious state: intrinsic regulatory mechanisms of the brain. In: Medical Physiology, edited by V. B. Mountcastle. St. Louis, MO: Mosby, 1974, p. 254–281.Google Scholar
  138. 138.
    Mountcastle, V. B. Pain and temperature sensibilities. In: Medical Physiology, edited by V. B. Mountcastle. St. Louis, MO: Mosby, 1974, p. 348–381.Google Scholar
  139. 139.
    Nashold, B. S., Jr., W. P. Wilson, and D. G. Slaughter. Sensations evoked by stimulation in the midbrain of man. J. Neurosurg. 30: 14–24, 1969.PubMedCrossRefGoogle Scholar
  140. 140.
    Nathan, P. W., and M. C. Smith. Fasciculi proprii of the spinal cord in man: review of present knowlege. Brain 82: 610–688, 1959.PubMedCrossRefGoogle Scholar
  141. 141.
    Nauta, W. J. H., and H. G. J. M. Kuypers. Some ascending pathways in the brain stem reticular formation. In: Reticular Formation of the Brain, edited by H. H. Jasper, L. D. Proctor, R. S. Knighton, W. C. Noshay, and R. T. Costello. Boston, MA: Little, Brown, 1958, p. 3–30.Google Scholar
  142. 142.
    Niimi, K. M., M. Niimi, and Y. Okada. Thalamic afferents to the limbic cortex in the cat studied with the method of retrograde axonal transport of horseradish peroxidase. Brain Res. 145: 225–238, 1978.PubMedCrossRefGoogle Scholar
  143. 143.
    Nord, S. G., and G. S. Ross. Responses of trigeminal units in the monkeys bulbar lateral reticular formation to noxious and non-noxious stimulation of the face: experimental and theoretical considerations. Brain Res. 58: 385–399, 1973.PubMedCrossRefGoogle Scholar
  144. 144.
    Norrsell, U., and P. Voorhoeve. Tactile pathways from the hindlimb to the cerebral cortex in cat. Acta Physiol. Scand. 54: 9–17, 1962.PubMedCrossRefGoogle Scholar
  145. 145.
    Nyquist, J. K. Somatosensory properties of neurons of thalamic nucleus ventralis lateralis. Exp. Neurol. 48: 123–135, 1975.Google Scholar
  146. 146.
    Nyquist, J. K., and J. H. Greenhoot. Unit analysis of nonspecific thalamic responses to high-intensity cutaneous input in the cat. Exp. Neural. 42: 609–622, 1974.CrossRefGoogle Scholar
  147. 147.
    Oliveras, J. L., J. M. Besson, G. Guilbaud, and J. C. Liebeskind. Behavioral and electrophysiological evidence of pain inhibition from midbrain stimulation in the cat. Exp. Brain Res. 20: 32–44, 1974.PubMedCrossRefGoogle Scholar
  148. 148.
    Oliveras, J. L., F. Redjemi, G. Guilbaud, and J. M. Besson. Analgesia induced by electrical stimulation of the inferior centralis nucleus of the raphe in the cat. Pain 1: 139–145, 1975.PubMedCrossRefGoogle Scholar
  149. 149.
    Olson, G. A., R. D. Olson, A. J. Kastin, and D. H. Coy. Endogenous opiates: through 1978. Neurosci. Biobehay. Rev. 3: 285–299, 1979.CrossRefGoogle Scholar
  150. 150.
    Oswaldo-Cruz, E., and C. Kidd. Functional properties of neurons in the lateral cervical nucleus of the cat. J. Neurophysiol. 27: 1–14, 1964.PubMedGoogle Scholar
  151. 151.
    Pearl, G. S., and K. V. Anderson. Effects of nociceptive and innocuous stimuli on the firing patterns of single neurons in the feline nucleus reticularis gigantocellularis. In: Advances in Pain Research and Therapy, edited by J. J. Bonica and D. Albe-Fessard. New York: Albe-Fessard. 1976, vol. 1, p. 259–265.Google Scholar
  152. 152.
    Pearl, G. S., and K. V. Anderson. Response of cells in the feline nucleus centrum medianum to tooth-pulp stimulation. Brain Res. Bull. 5: 41–45, 1980.PubMedCrossRefGoogle Scholar
  153. 153.
    Perl, E. R. Myelinated afferent fibres innervating the primate skin and their response to noxious stimuli. J. Physiol. London197: 593–615, 1968.Google Scholar
  154. 154.
    Perl, E. R., and D. G. Whitlock. Somatic stimuli exciting spinothalamic projections to thalamic neurons in cat and monkey. Exp. Neurol. 3: 256–296, 1961.PubMedCrossRefGoogle Scholar
  155. 155.
    Petit, D. Postsynaptic fibers in the dorsal columns and their relay in the nucleus gracilis. Brain Res. 48: 380–384, 1972.PubMedCrossRefGoogle Scholar
  156. 156.
    Poggio, C. F., and V. B. Mountcastle. A study of the functional contributions of the lemniscal and spinothalamic systems to somatic sensibility. Bull. Johns Hopkins Hosp. 108: 266–316, 1960.Google Scholar
  157. 157.
    Pompeiano, O. Reticular formation. In: Handbook of Sensory Physiology. Somatosensory System, edited by A. Iggo. Berlin: Springer-Verlag, 1973, vol. 2, p. 381–488.Google Scholar
  158. 158.
    Price, D. D., and A. C. Browe. Spinal cord coding of graded non-noxious and noxious temperature increases. Exp. Neurol. 48: 201–221, 1975.PubMedCrossRefGoogle Scholar
  159. 159.
    Price, D. D., and R. Dubner. Neurons that subserve the sensory-discriminative aspects of pain. Pain 3: 307–338, 1977.PubMedCrossRefGoogle Scholar
  160. 160.
    Price, D. D., R. Dubner, and J. W. Hu. Trigeminothalamic neurons in nucleus caudalis responsive to tactile, thermal, and nociceptive stimulation of monkey’s face. J. Neurophysiol. 39: 936–953, 1976.PubMedGoogle Scholar
  161. 161.
    Price, D. D., and D. J. Mayer. Neurophysiological characterization of the anterolateral quadrant neurons subserving pain in M. mulatta. Pain 1: 59–72, 1975.PubMedCrossRefGoogle Scholar
  162. 162.
    Price, D. D., and I. H. Wagman. Characteristics of two ascending pathways which originate in spinal dorsal horn of M. mulatta. Brain Res. 26: 406–410, 1971.PubMedGoogle Scholar
  163. 163.
    Randa, D. C. Effects of lesions in the cingulate gyrus on the response to tooth pulp stimulation in the cat. Exp. Neurol. 30: 423–430, 1971.Google Scholar
  164. 164.
    Renfrew, J. W. The intensity function and reinforcing properties of brain stimulation that elicits attack. Physiol. Behay. 4: 509–515, 1969.CrossRefGoogle Scholar
  165. 165.
    Rexed, B. The cytoarchitectonic organization of the spinal cord in the cat. J. Comp. Neurol. 96: 415–466, 1952.CrossRefGoogle Scholar
  166. 166.
    Reynolds, D. G. Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science 164: 444–445, 1969.PubMedCrossRefGoogle Scholar
  167. 167.
    Richardson, D. E., and H. Akil. Pain reduction by electrical brain stimulation in man. J. Neurosurg. 47: 178–189, 1977.PubMedCrossRefGoogle Scholar
  168. 168.
    Roberts, W. W. Fear-like behavior elicited from the dorsomedial thalamus of cat. J. Comp. Physiol. Psycho]. 55: 191–197, 1962.Google Scholar
  169. 169.
    Robertson, R. T., and S. S. Kaitz. Thalamic connections with limbic cortex. I. Thalamocortical projections. J. Comp. Neurol. 195: 501–526, 1981.PubMedCrossRefGoogle Scholar
  170. 170.
    Robertson, R. T., G. S. Lynch, and R. F. Thompson. Diencephalic distributions of ascending reticular systems. Brain Res. 55: 309–322, 1973.PubMedCrossRefGoogle Scholar
  171. 171.
    Sherrington, C. The Integrative Action of the Nervous System. New Haven, CT: Yale Univ. Press, 1947, p. 228.Google Scholar
  172. 172.
    Shigenaga, Y., S. Matano, and M. Kusuyama. Cortical neurons responding to electrical stimulation of the rat’s incisor pulp. Brain Res. 67: 153–156, 1974.PubMedCrossRefGoogle Scholar
  173. 173.
    Skultety, F. M. Stimulation of the periaqueductal gray and hypothalamus. Arch. Neurol. 8: 608–620, 1963.Google Scholar
  174. 176.
    Stewart, W. A., and R. B. King. Fiber projections from the nucleus caudalis of the spinal trigeminal nucleus. J. Comp. Neurol. 121: 271–286, 1963.CrossRefGoogle Scholar
  175. 177.
    Stewart, W. A., W. L. Stoops, P. R. Pillone, and R. B. King. An electrophysiologic study of ascending pathways from nucleus caudalis of the spinal trigeminal nuclear complex. J. Neurosurg. 21: 35–48, 1964.PubMedCrossRefGoogle Scholar
  176. 178.
    Sweet, W. H. Treatment of medically intractable mental disease by limited frontal leucotomy-justifiable ? N. Engl. J. Med. 289: 1117–1125, 1973.PubMedCrossRefGoogle Scholar
  177. 179.
    Szolesanyi, J. A pharmacological approach to elucidation of the role of different nerve fibres and receptor endings in mediation of pain. J. Physiol. Paris 73: 25 1259, 1977.Google Scholar
  178. 180.
    Taub, A., and P. O. Bishop. The spinocervical tract: dorsal column linkage, conduction velocity, primary afferent spectrum. Exp. Neurol. 13: 1–21, 1965.PubMedCrossRefGoogle Scholar
  179. 181.
    Teuber, H.-L., S. H. Corkin, and T. E. Twitchell. Study of cingulotomy in man: a summary. In: Neurosurgical Treatment in Psychiatry, Pain and Epilepsy, edited by W. H. Sweet, S. Obrador, and J. Martin-Rodriguez. Baltimore, MD: University Park, 1977, p. 355–362.Google Scholar
  180. 182.
    Tiwari, R. K., and R. B. King. Fiber projections from trigeminal nucleus in primate (squirrel monkey and baboon). J. Comp. Neurol. 158: 191–206, 1974.PubMedCrossRefGoogle Scholar
  181. 183.
    Truex, R. C., M. J. Taylor, M. Q. Smythe, and P. L. Gildenberg. The lateral cervical nucleus of the cat, dog and man. J. Comp. Neurol. 139: 93–104, 1970.PubMedCrossRefGoogle Scholar
  182. 184.
    Uddenberg, N. Differential localization in the dorsal funiculus of fibers originating from different receptors. Exp. Brain Res. 4: 377–382, 1968.Google Scholar
  183. 185.
    Van Hassel, H. J., M. A. Biedenback, and A. C. Brown. Cortical potentials evoked by tooth pulp stimulation in rhesus monkeys. Arch. Oral Biol. 17: 1059–1066, 1972.PubMedCrossRefGoogle Scholar
  184. 186.
    Van Hess, J. Human C fiber input during painful and nonpainful skin stimulation with radiant heat. In: Advances in Pain Research and Therapy, edited by J. J. Bonica and D. Albe-Fessard. New York: Raven, 1976, p. 35–40.Google Scholar
  185. 187.
    Vierck, C. J., Jr., O. Franzen, and B. Y. Cooper. Evaluation of electrocutaneous pain: (1) comparison of operant reactions of humans and monkeys and (2) magnitude estimation and verbal description by human subjects. Soc. Neurosci. Abstr. 6: 430, 1980.Google Scholar
  186. 188.
    Vierck, C. J., Jr., and M. M. Luck. Loss and recovery of reactivity to noxious stimuli in monkeys with primary spinothalamic cordotomies, followed by secondary and tertiary lesions of other cord sectors. Brain 102: 233–248, 1979.PubMedCrossRefGoogle Scholar
  187. 189.
    Watkins, L. R., and D. J. Mayer. Organization of endogenous opiate and nonopiate pain control systems. Science 216: 1185–1192, 1982.PubMedCrossRefGoogle Scholar
  188. 190.
    White, J. C., and W. H. Sweet. Pain and the Neurosurgeon: A Forty-Year Experience. Springfield, IL: Thomas, 1969, p. 850–851.Google Scholar
  189. 191.
    Wikler, A. Pharmacologic dissociation of behavior and EEG sleep patterns in dogs: morphine, N-allylmorphine and atropine. Proc. Soc. Exp. Biol. Med. 79: 261–265, 1952.PubMedGoogle Scholar
  190. 192.
    Willis, W. D., Jr. Ascending pathways transmitting nociceptive information in animals. In: Animal Pain: Perception and Alleviation, edited by R. L. Kitchell, H. H. Erickson, E. Carstens, and L. E. Davis. Bethesda, MD: Am. Physiol. Soc., 1983, P. 41–62.Google Scholar
  191. 193.
    Willis, W. D., Jr., and R. E. Coggeshall. Functional organization of dorsal horn interneurons. In: Sensory Mechanisms of the Spinal Cord. New York: Wiley, 1978, p. 129–166.CrossRefGoogle Scholar
  192. 194.
    Willis, W. D., Jr., D. L. Trevino, J. D. Coulter, and R. A. Maunz. Responses of primate spinothalamic tract neurons to natural stimulation of hindlimb. J. Neurophysiol. 37: 358–372, 1974.PubMedGoogle Scholar
  193. 195.
    Wolfle, T. L., and J. C. Liebeskind. Stimulation-produced analgesia. In: Animal Pain: Perception and Alleviation, edited by R. L. Kitchell, H. H. Erickson, E. Carstens, and L. E. Davis. Bethesda, MD: Am. Physiol. Soc., 1983, p. 107–115.Google Scholar
  194. 196.
    Woodworth, R. S., and C. S. Sherrington. A pseudoaffective reflex and its spinal path. J. Physiol. London 31: 234–243, 1904.PubMedGoogle Scholar
  195. 197.
    Woolsey, C. N., T. C. Erickson, and W. E. Gilson. Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recording of evoked potentials and electrical stimulation. J. Neurosurg. 51: 476–506, 1979.PubMedCrossRefGoogle Scholar
  196. 198.
    Yaksh, T. L., D. H. Farb, S. E. Leeman, and T. M. Jessell. Intrathecal capsaicin depletes substance P in the rat spinal cord and produces prolonged thermal analgesia. Science 206: 481–483, 1979.PubMedCrossRefGoogle Scholar
  197. 199.
    Yaksh, T. L., and D. L. Hammond. Peripheral and central substrates involved in the rostrad transmission of nociceptive information. Pain 13: 1–85, 1982.PubMedCrossRefGoogle Scholar
  198. 200.
    Yoss, R. E. Studies of the spinal cord. Pt. 3. Pathways for deep pain within the spinal cord and brain. Neurology 3: 163–175, 1953.PubMedCrossRefGoogle Scholar
  199. 201.
    Zotterman, Y. Studies on the peripheral nervous mechanisms of pain. Acta Med. Scand. 80: 185–242, 1933.Google Scholar

Copyright information

© American Physiological Society 1985

Authors and Affiliations

  • Ralph L. Kitchell
    • 1
  • Richard D. Johnson
    • 1
  1. 1.Department of Anatomy, School of Veterinary MedicineUniversity of CaliforniaDavisUSA

Personalised recommendations