Skip to main content

The Endocrine System: Metabolic Effects of the Pancreatic, Adrenal, Thyroidal, and Growth Hormones

  • Chapter
Book cover Exercise Physiology

Abstract

The purpose of this chapter is to review, from a historical perspective, the role of the key endocrine glands in modulating the metabolic responses to acute and chronic exercise. Its scope is limited to the metabolic effects of hormones released by the pancreas (insulin and glucagon), adrenal glands (catecholamines and glucocorticoids), anterior pituitary (growth hormone), and thyroid (thyroxine and triiodothyronine) that play a critical role in regulating substrate mobilization and utilization during muscular work. Although other hormones participate in the physiological response to exercise, their role is beyond the scope of this chapter. Although the study of endocrine diseases has enhanced our knowledge of hormonal actions, the chapter’s coverage is restricted to physiological responses in healthy individuals. We also provide a brief history of some of the important studies conducted on exercise and diabetes, as they have expanded our knowledge of the influence of the pancreatic hormones on metabolism. Information on the historical developments of the study of the endocrine system is also found in Chapters 6 and 8. Together, these three chapters cover a considerable portion of the broad field of endocrinology and metabolism in exercise physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addison T. On the Constitutional and Local Effects of Disease of the Suprarenal Capsules. London: Highley. 1855.

    Google Scholar 

  2. Ahlborg G. and P. Felig. Influence of glucose ingestion on fuel-hormone response during prolonged exercise. J. Appl. Physiol. 41: 683–688, 1976.

    PubMed  CAS  Google Scholar 

  3. Ahlborg G., P. Felig, L. Hagenfeldt, R. Hendler, and J. Wahren. Substrate turnover during prolonged exercise in man: splanchnic and leg metabolism of glucose, free fatty acids and amino acids. J. Clin. Invest. 53D: 1080–1090, 1974.

    Article  PubMed  CAS  Google Scholar 

  4. Ahlborg G., L. Hagenfeldt, and J. Wahren. Substrate utilization by the inactive leg during one-leg or arm exercise. J. Appl. Physiol. 39: 718–723, 1975.

    PubMed  CAS  Google Scholar 

  5. Allen F. M., E. Stillman, and R. Fitz. Total dietary regulation in the treatment of diabetes. In: Exercise, edited by F. M. Allen, E. Stillman, and R. Fitz. New York: Rockefeller Institute. 1919, pp. 468–499.

    Google Scholar 

  6. Argov Z., P. F. Renshaw, B. Boden, A. Winokur, and W. J. Bank. Effects of thyroid hormones on skeletal muscle bioenergetics. In vivo phosphorus-31 magnetic resonance spectroscopy study of humans and rats. J. Clin. Invest. 81:1695–1701, 1988.

    Google Scholar 

  7. Asmussen E. Muscle metabolism during exercise in man: a historical survey. In: Muscle Metabolism During Exercise, edited by B. Pernow and B. Saltin. New York: Plenum Press. 1971, pp. 1–12.

    Chapter  Google Scholar 

  8. Asmussen E., J. W. Wilson, and D. B. Dill. Hormonal influences on carbohydrate metabolism during work. Am. J. Physiol. 130: 600–607, 1940.

    CAS  Google Scholar 

  9. Baldwin K. M., W. W. Winder, R. L. Terjung, and J. O. Holloszy. Glycolytic enzymes in different types of skeletal muscle: adaptation to exercise. Am. J. Physiol. 225: 962–966, 1973.

    PubMed  CAS  Google Scholar 

  10. Baldwin K. M., A. M. Hooker, R. E. Herrick, and L. F. Schrader. Respiratory capacity and glycogen depletion in thyroid-deficient muscle. J. Appl. Physiol. 49: 102–106, 1980.

    PubMed  CAS  Google Scholar 

  11. Ballard K., C. A. Cobb, and S. Rose11. Vascular and lipolytic responses in canine subcutaneous adipose tissue following infusion of catecholamines. Acta Physiol. Scand. 81: 246–253, 1971.

    Article  PubMed  CAS  Google Scholar 

  12. Balsam A. and L. E. Leppo. Stimulation of the peripheral metabolism of L-thyroxine and and 3,5,3’-L-triiodothyronine in the physically trained rat. Endocrinology 95: 299–302, 1974.

    Article  PubMed  CAS  Google Scholar 

  13. Balsam A. and L. E. Leppo. Effect of physical training on the metabolism of thyroid hormones in man. J. Appl. Physiol. 38: 212–215, 1975.

    PubMed  CAS  Google Scholar 

  14. Banister E. W. and J. Griffiths. Blood levels of adrenergic amines during exercise. J. Appl. Physiol. 33: 674–676, 1972.

    PubMed  CAS  Google Scholar 

  15. Barwich D., H. Hagele, M. Weiss, and H. Weiker. Hormonal and metabolic adjustments in patients with central Cushing’s disease after adrenalectomy. Int. J. Sports Med. 2: 220–227, 1980.

    Article  Google Scholar 

  16. Benedict F. G. and E. P. Cathcart. Muscular Work. A Metabolic Study, with Special Reference to the Efficiency of the Human Body as a Machine. Carnegie Institute of Washington, Pub 187, 1913.

    Google Scholar 

  17. Berger M., P. Berchtold, H. J. Cuppers, H. Drost, H. K. Kley, W. A. Muller, W. Wiegelmann, H. Zimmermann-Telschow, E A. Gries, H. L. Kruskemper, and H. Zimmermann. Metabolic and hormonal effects of muscular exercise in juvenile type diabetics. Diabetologia 13: 355–365, 1977.

    Article  PubMed  CAS  Google Scholar 

  18. Berger M., S. A. Hagg, M. N. Goodman, and N. B. Ruderman. Glucose metabolism in per-fused skeletal muscle. Effects of starvation, diabetes, fatty acids, acetoacetate, insulin and exercise on glucose uptake and disposition. Biochem. J. 158: 191–202, 1976.

    PubMed  CAS  Google Scholar 

  19. Berger M., S. A. Hagg, and N. B. Ruderman. Glucose metabolism in perfused skeletal muscle. Interaction of insulin and exercise on glucose uptake. Biochem. J. 146: 231–238, 1975.

    PubMed  CAS  Google Scholar 

  20. Berger M., P. A. Halban, W. A. Muller, R. E. Offord, A. E. Renold, and M. Vranic. Mobilization of subcutaneously injected tritiated insulin in rats: effect of muscular exercise. Diabetologia 15: 113–140, 1978.

    Article  Google Scholar 

  21. Bergeron R., R. R. Russell, III, L. H. Young, J. M. Ren, M. Marcucci, A. Lee, and G. I. Shulman. Effect of AMPK activation on muscle glucose metabolism in conscious rats. Am. J. Physiol. 276 (Endocrinol. Metab. 39): E938 - E944, 1999.

    PubMed  CAS  Google Scholar 

  22. Bergstrom J. and E. Hultman. A study of the glycogen metabolism during exercise in man. Scand. J. Clin. Lab. Invest. 19: 218–228, 1967.

    Article  PubMed  CAS  Google Scholar 

  23. Bihler I., M. Hollands, and P. E. Dresel. Stimulation of sugar transport by a factor released from gas-perfused hearts. Can. J. Physiol. Pharmacol. 48: 327–332, 1970.

    Article  PubMed  CAS  Google Scholar 

  24. Birnbaum M. J. Identification of a novel gene encoding an insulin-responsive glucose transporter protein. Cell 57: 305–315, 1989.

    Article  PubMed  CAS  Google Scholar 

  25. Bjorkman O., P. Miles, D. Wasserman, L. Lickley, and M. Vranic. Regulation of glucose turnover during exercise in pancreatectomized, totally insulin deficient dogs: effects of beta-adrenergic blockade. J. Clin. Invest. 81: 1759–1767, 1988.

    Article  PubMed  CAS  Google Scholar 

  26. Björntorp P., K. De lounge, L. Sjostrom, and L. Sullivan. The effect of physical training on insulin production in obesity. Metabolism 19: 631–638, 1970.

    Article  PubMed  Google Scholar 

  27. Björntorp P., M. Fahlen, G. Grimby, A. Gustafson, J. Holm, P. Renstrom, and T. Schersten. Carbohydrate and lipid metabolism in middle aged physically well-trained men. Metabolism 21: 1037–1042, 1972.

    Article  PubMed  Google Scholar 

  28. Bliss, M. The Discovery of Insulin. Chicago, IL: University of Chicago Press. 1982.

    Book  Google Scholar 

  29. Bloom S. R. and A. V. Edwards. The release of pancreatic glucagon and inhibition of insulin in response to stimulation of the sympathetic innervation. J. Physiol. (Lond.) 253: 157–173, 1975.

    CAS  Google Scholar 

  30. Bloom S. R., R. H. Johnson, D. M. Park, M. J. Rennie, and W. R. Sulaiman. Differences in the metabolic and hormonal response to exercise between racing cyclists and untrained individuals. J. Physiol. (Lond.) 258: 1–18, 1976.

    CAS  Google Scholar 

  31. Boden G., F. Jadali, J. White, Y. Liang, M. Mozzoli, X. Chen, E. Coleman, and C. Smith. Effects of fat on insulin-stimulated carbohydrate metabolism in normal men. J. Clin. Invest. 88: 960–966, 1991.

    Article  PubMed  CAS  Google Scholar 

  32. Bondy P. K. and M. A. Hagewood. Effects of stress and cortisone on plasma-bound iodine and thyroxine metabolism in rats. Proc. Soc. Exp. Biol. Med. 81: 328–331, 1952.

    PubMed  CAS  Google Scholar 

  33. Bonen A. Effects of exercise on excretion rates of urinary free cortisol. J. Appl. Physiol. 40: 155–158, 1976.

    PubMed  CAS  Google Scholar 

  34. Bottger I., E. M. Schlein, G. R. Faloona, J. P. Knochel, and R. H. Unger. The effect of exercise on glucagon secretion. J. Clin. Endocrinol. Metab. 35: 117–125, 1972.

    Article  PubMed  CAS  Google Scholar 

  35. Brandenberger G. and M. Follenius. Influence of timing and intensity of musclar exercise on temporal patterns of plasma cortisol levels. J. Clin. Endocrinol. Metab. 40: 845–849, 1975.

    Article  PubMed  CAS  Google Scholar 

  36. Brandenberger G., M. Follenius, and B. Hietter. Feedback from meal-related peaks determines diurnal changes in cortisol response to exercise. J. Clin. Endocrinol. Metab. 54: 592–596, 1982.

    Article  PubMed  CAS  Google Scholar 

  37. Brown-Séquard C. E. Recherches experimentales sur la physiologie et la pathologie des capsules surrenals. C. R. Acad. Sci. 43: 422–425, 1856.

    Google Scholar 

  38. Brzezinska Z. and H. Kaciuba-Uscilko. Low muscle and liver glycogen contents in dogs treated with thyroid hormones. Horm. Metab. Res. 11: 675–678, 1979.

    Article  PubMed  CAS  Google Scholar 

  39. Buckler J. M. Exercise as a screening test for growth hormone release. Acta Endocrinol. (Copenh.) 69: 219–229, 1972.

    CAS  Google Scholar 

  40. Buckler J. M. The relationship between changes in plasma growth hormone levels and body temperature occurring with exercise in man. Biomedicine 19: 193–197, 1973.

    CAS  Google Scholar 

  41. Cannon W. B., J. R. Linton, and R. R. Linton. The effects of muscle metabolites on adrenal secretion. Am. J. Physiol. 71: 153–162, 1924.

    CAS  Google Scholar 

  42. Caralis D. G., L. Edwards, and P. J. Davis. Serum total and free thyroxine and triiodothyronine during dynamic muscular exercise in man. Am. J. Physiol. 233 (Endocrinol. Metab. Gastointestinal 182): E115 - E118, 1977.

    PubMed  CAS  Google Scholar 

  43. Carriere R. and H. Isler. Effects of frequent housing changes and muscular exercise on the thyroid gland of mice. Endocrinology 64: 414–418, 1959.

    Article  PubMed  CAS  Google Scholar 

  44. Cashmore G. C., C. T. Davies, and J. D. Few. Relationship between increases in plasma cortisol concentration and rate of cortisol secretion during exercise in man. J. Endocrinol. 72: 109–110, 1977.

    Article  PubMed  CAS  Google Scholar 

  45. Challiss R. A., M. Vranic, and G. K. Radda. Bioenergetic changes during contraction and recovery in diabetic rat skeletal muscle. Am. J. Physiol. 256 (Endocrinol. Metab. 19): E129 - E137, 1989.

    PubMed  CAS  Google Scholar 

  46. Chasiostis D., D. Sahlin, and E. Hultman. Regulation of glycogenolysis in human muscle at rest and during exercise. J. Appl. Physiol. 53: 708–715, 1982.

    Article  Google Scholar 

  47. Chauveau M. A. and M. Kaufmann. Experiences pour la determination du coefficient de l’activite nutritive et respiratoire des muscles in repos et en travail. C. R. Acad. Sci. (Paris) 104: 1126–1132, 1887.

    Google Scholar 

  48. Christensen E. H. and O. Hansen III. Arbeitsfähigkeit und ernährung. Scand. Arch. Physiol. 81: 160–171, 1939.

    Article  Google Scholar 

  49. Cochran B. Jr., E. P. Marbach, R. Poucher, T. Steinberg, and G. Gwinup. Effect of acute muscular exercise on serum immunoreactive insulin concentration. Diabetes 15: 838–841, 1966.

    PubMed  CAS  Google Scholar 

  50. Coker R. H., L. Simonsen, J. Bulow, D. H. Wasserman, and M. Kjaer. Stimulation of splanchnic glucose production during exercise in humans contains a glucagonindependent component. Am. J. Physiol. Endocrinol. Metab. 280: E918 - E927, 2001.

    PubMed  CAS  Google Scholar 

  51. Cooper D. M., D. H. Wasserman, M. Vranic, and K. Wasserman. Glucose turnover in response to exercise during high-and low-FIO2 in humans. Am. J. Physiol. 251 (Endocrinol. Metab. 14): E209 - E214, 1986.

    PubMed  CAS  Google Scholar 

  52. Cornil A., A. Decoster, G. Copinschi, and J. R. M. Franckson. Effect of muscular exercise on the plasma level of cortisol in man. Acta Endocrinol. (Copenh.) 48: 163–168, 1965.

    CAS  Google Scholar 

  53. Davies C. T. and J. D. Few. Effects of exercise on adrenocortical function. J. Appl. Physiol. 35: 887–891, 1973.

    PubMed  CAS  Google Scholar 

  54. Dean D., J. R. Daugaard, M. E. Young, A. Saha, D. Vavvas, S. Asp, B. Kiens, K. H. Kim, L. Witters, E. A. Richter, and N. Ruderman. Exercise diminishes the activity of acetyl-CoA carboxylase in human muscle. Diabetes 49: 1295–1300, 2000.

    Article  PubMed  CAS  Google Scholar 

  55. Defronzo R. A., E. Ferrannini, Y. Sato, P. Felig, and J. Wahren. Synergistic interaction between exercise and insulin on peripheral glucose uptake. J. Clin. Invest. 68: 1468–1474, 1981.

    Article  PubMed  CAS  Google Scholar 

  56. Dieter M. P. Glucose metabolism in rat lymphatic tissues: effects of acute and chronic exercise. Life Sci. 8: 459–468, 1969.

    Article  PubMed  CAS  Google Scholar 

  57. Dill D. B., H. T. Edwards, and R. H. de Meio. Effects of adrenalin injection in moderate work. Am. J. Physiol. 111: 9–20, 1935.

    CAS  Google Scholar 

  58. Dill D. B., H. T. Edwards, and S. Mead. Blood sugar regulation in exercise. Am. J. Physiol. 111: 21–30, 1935.

    CAS  Google Scholar 

  59. Doi K., M. Prentki, C. Yip, W. Muller, B. Jeanrenaud, and M. Vranic. Identical biological effects of pancreatic glucagon and a purified moiety of canine gastric glucagon. J. Clin. Invest. 63: 525–531, 1979.

    Article  PubMed  CAS  Google Scholar 

  60. Douen A. G., T. Ramlal, A. Klip, D. A. Young, D. Cartee, and J. O. Holloszy. Exercise induced increase in glucose transporters in plasma membrane of rat skeletal muscle. Endocrinology 124: 449–454, 1989.

    Article  PubMed  CAS  Google Scholar 

  61. Douen A. G., T. Ramlal, S. Rastogi, P. J. Bilan, G. D. Cartee, M. Vranic, J. O. Holloszy, and A. Klip. Exercise induces recruitment of the “insulin-responsive glucose transporter.” Evidence for distinct intracellular insulin-and exercise-recruitable transporter pools in skeletal muscle. J. Biol. Chem. 265: 13427–13430, 1990.

    PubMed  CAS  Google Scholar 

  62. Drouin R., C. Lavoie, J. Bourque, E Ducros, D. Poisson, and J. L. Chiasson. Incieased hepatic glucose production response to glucagon in trained subjects. Am. J. Physiol. 274 (Endocrinol. Metab. 37): E23 - E28, 1998.

    PubMed  CAS  Google Scholar 

  63. Dyck D. J., C. T. Putman, G. J. F. Heigenhauser, E. Hultman, and L. L. Spriet. Regulation of fat-carbohydrate interaction in skeletal muscle during intense aerobic cycling. Am. J. Physiol. 265 (Endocrinol. Metab. 28): E852 - E859, 1993.

    PubMed  CAS  Google Scholar 

  64. Edwards J. G., D. D. Lund, T. G. Bedford, C. M. Tipton, R. D. Matthes, and P. G. Schmid. Metabolic and cardiovascular adaptations in trained hypophysectomized rats. J. Appl. Physiol. 53: 448–454, 1982.

    PubMed  CAS  Google Scholar 

  65. Farrell P. A., T. L. Garthwaite, and A. B. Gustafson. Plasma adrenocorticotropin and cortisol responses to submaximal and exhaustive exercise. J. Appl. Physiol. 55: 1441–1444, 1983.

    PubMed  CAS  Google Scholar 

  66. Febbraio M. A., D. L. Lambert, R. L. Starkie, J. Proietto, and M. Hargreaves. Effect of epinephrine on muscle glycogenolysis during exercise in trained men. J. Appl. Physiol. 84: 465–470, 1998.

    PubMed  CAS  Google Scholar 

  67. Felig P., J. Wahren, R. Hendler, and G. Ahlborg. Plasma glucagon levels in exercising man. N. Engl. J. Med. 287: 184–185, 1972.

    Article  PubMed  CAS  Google Scholar 

  68. Felsing N. E., J. A. Brasel, and D. M. Cooper. Effect of low and high intensity exercise on circulating growth hormone in men. J. Clin. Endocrinol. Metab. 75: 157–162, 1992.

    Article  PubMed  CAS  Google Scholar 

  69. Few J. D. Effect of exercise on the secretion and metabolism of cortisol in man. J. Endocrinol. 62: 341–353, 1974.

    Article  PubMed  CAS  Google Scholar 

  70. Few J. D., F. J. Imms, and J. S. Weiner. Pituitary-adrenal response to static exercise in man. Clin. Sci. Mol. Med. 49: 201–206, 1975.

    PubMed  CAS  Google Scholar 

  71. Finegood D. T., P. D. Miles, H. L. Lickley, and M. Vranic. Estimation of glucose production during exercise with a one-compartment variable-volume model. J. Appl. Physiol. 72: 2501–2509, 1992.

    PubMed  CAS  Google Scholar 

  72. Fisher S. J., M. Lekas, Z. Q. Shi, D. Bilinski, G. Carvalho, A. Giacca, and M. Vranic. Insulin-independent acute restoration of euglycemia normalizes the impaired glucose clearance during exercise in diabetic dogs. Diabetes 46: 1805–1812, 1997.

    Article  PubMed  CAS  Google Scholar 

  73. Franckson J. R., R. Vanroux, R. Leclercq, H. Brunengraber, and H. A. Ooms. Labelled insulin catabolism and pancreatic responsiveness during long-term exercise in man. Horm. Metab. Res. 3: 366–373, 1971.

    Article  PubMed  CAS  Google Scholar 

  74. Frenkl R. and L. Csalay. Effects of regular muscular activity on adrenocorticoid function in rats. J. Sport. Med. 2: 207–211, 1962.

    PubMed  CAS  Google Scholar 

  75. Frenkl R., L. Csalay, G. Csakvary, and T. Zelles. Effect of muscular exertion on the reaction of the pituitary-adrenocortical axis in trained and untrained rats. Acta Physiol. Acad. Sci. Hung. 33: 435–438, 1968.

    PubMed  CAS  Google Scholar 

  76. Friedman J. E. Role of glucocorticoids in activation of hepatic PEPCK gene transcription during exercise. Am. J. Physiol. 266 (Endocrinol. Metab. 29): E560 - E566, 1994.

    PubMed  CAS  Google Scholar 

  77. Fryer L. G., E. Hajduch, F. Rencurel, I. P. Salt, H. S. Hundal, D. G. Hardie, and D. Carling. Activation of glucose transport by AMP-activated protein kinase via stimulation of nitric oxide synthase. Diabetes 49: 1978–1985, 2000.

    Article  PubMed  CAS  Google Scholar 

  78. Fujii N., T. Hayashi, M. F. Hirshman, J. T. Smith, S. A. Habinowski, L. Kaijser, J. Mu, O. Ljungqvist, M. J. Birnbaum, L. A. Witters, A. Thorell, and L. J. Goodyear. Exercise induces isoform-specific increase in 5’AMP-activated protein kinase activity in human skeletal muscle. Biochem. Biophys. Res. Commun. 273:1150–1155, 2000.

    Google Scholar 

  79. Galbo H. Hormonal and Metabolic Adaptation to Exercise. New York: Thieme-Stratton. 1983, pp. 5–40.

    Google Scholar 

  80. Galbo H., N. J. Christensen, and J. J. Holst. Catecholamines and pancreatic hormones during autonomic blockade in exercising man. Acta Physiol. Scand. 101: 428–437, 1977.

    Article  PubMed  CAS  Google Scholar 

  81. Galbo H., N. J. Christensen, and J. J. Holst. Glucose-induced decrease in glucagon and epinephrine response to exercise in man. J. Appl. Physiol. 42: 525–530, 1977.

    PubMed  CAS  Google Scholar 

  82. Galbo H., N. J. Christensen, K. J. Mikines, B. Sonne, J. Hilsted, C. Hagen, and J. Fahrenkrug. The effect of fasting on the hormonal response to graded exercise. J. Clin. Endocrinol. Metab. 52: 1106–1112, 1981.

    Article  PubMed  CAS  Google Scholar 

  83. Galbo H., J. J. Holst, and N. J. Christensen. Glucagon and plasma catecholamine responses to graded and prolonged exercise in man. J. Appl. Physiol. 38: 70–76, 1975.

    PubMed  CAS  Google Scholar 

  84. Galbo H., J. J. Holst, and N. J. Christensen. The effect of different diets and of insulin on the hormonal response to prolonged exercise. Acta Physiol. Scand. 107: 19–32, 1979.

    Article  PubMed  CAS  Google Scholar 

  85. Galbo H., J. J. Holst, N. J. Christensen, and J. Hilsted. Glucagon and plasma catecholamines during beta-receptor blockade in exercising man. J. Appl. Physiol. 40: 855–863, 1976.

    PubMed  CAS  Google Scholar 

  86. Galbo H., M. E. Houston, N. J. Christensen, J. J. Holst, B. Nielsen, E. Nygaard, and J. Suzuki. The effect of water temperature on the hormonal response to prolonged swimming. Acta Physiol. Scand. 105: 326–337, 1979.

    Article  PubMed  CAS  Google Scholar 

  87. Galbo H., L. Hummer, I. B. Peterson, N. J. Christensen, and N. Bie. Thyroid and testicular hormone responses to graded and prolonged exercise in man. Eur. J. Appl. Physiol. 36: 101–106, 1977.

    Article  CAS  Google Scholar 

  88. Galbo H., E. A. Richter, N. J. Christensen, and J. J. Holst. Sympathetic control of metabolic and hormonal responses to exercise in rats. Acta Physiol. Scand. 102: 441–449, 1978.

    Article  PubMed  CAS  Google Scholar 

  89. Galbo H., E. A. Richter, J. Hilsted, J. J. Holst, N. J. Christensen, and J. Henriksson. Hormonal regulation during prolonged exercise. Ann. N. Y. Acad. Sci. 301: 72–80, 1977.

    Article  PubMed  CAS  Google Scholar 

  90. Galbo H., E. A. Richter, J. J. Holst, and N. J. Christensen. Diminished hormonal responses to exercise in trained rats. J. Appl. Physiol. 43: 953–958, 1977.

    PubMed  CAS  Google Scholar 

  91. Garetto L. P., E. A. Richter, M. N. Goodman, and N. B. Ruderman. Enhanced muscle glucose metabolism after exercise in the rat:the two phases. Am. J. Physiol. 246 (Endocrinol. Metab. 9): E471 - E475, 1984.

    PubMed  CAS  Google Scholar 

  92. Goldstein M. S. Humoral nature of hypoglycemia in muscular exercise. Am. J. Physiol. 200: 67–70, 1961.

    Google Scholar 

  93. Goldstein M. S., V. Mullick, B. Huddlestun, and R. Levine. Action of muscular work on transfer of sugar across cell barriers: comparison with the action of insulin. Am. J. Physiol. 173: 212–216, 1953.

    PubMed  CAS  Google Scholar 

  94. Gollnick P. D. and C. D. Ianuzzo. Hormonal deficiencies and the metabolic adaptations of rats to training. Am. J. Physiol. 223: 278–282, 1972.

    PubMed  CAS  Google Scholar 

  95. Gollnick P. D. and C. D. Ianuzzo. Acute and chronic adaptations to exercise in hormone deficient rats. Med. Sci. Sports 7: 12–19, 1975.

    PubMed  CAS  Google Scholar 

  96. Gollnick P. D., R. G. Soule, A. W. Taylor, C. Williams, and C. D. Ianuzzo. Exercise-induced glycogenolysis and lipolysis in the rat: hormonal influence. Am. J. Physiol. 219: 729–733, 1970.

    PubMed  CAS  Google Scholar 

  97. Goodyear L. J., R A. King, M. F. Hirshman, C. M. Thompson, E. D. Horton, and E. S. Horton. Contractile activity increases plasma membrane glucose transporters in absence of insulin. Am. J. Physiol. 258 (Endocrinol. Metab. 21): E667 - E672, 1990.

    PubMed  CAS  Google Scholar 

  98. Gray I. and W. P. Beetham. Changes in plasma concentration of epinephrine and nor-epinephrine with muscular work. Proc. Soc. Exp. Biol. Med. 96: 636–638, 1957.

    PubMed  CAS  Google Scholar 

  99. Gyntelberg E, M. J. Rennie, R. C. Hickson, and J. O. Holloszy. Effect of training on the response of plasma glucagon to exercise. J. Appl. Physiol. 43: 302–305, 1977.

    PubMed  CAS  Google Scholar 

  100. Hagenfeldt L. Metabolism of free fatty acids and ketone bodies during exercise in normal and diabetic man. Diabetes 28: 66–70, 1979.

    PubMed  CAS  Google Scholar 

  101. Haggendal J., L. H. Hartley, and B. Saltin. Arterial noradrenaline concentration during exercise in relation to the relative work levels. Scand. J. Clin. Lab. Invest. 26: 337–342, 1970.

    Article  PubMed  CAS  Google Scholar 

  102. Hansen A. P. The effect of adrenergic receptor blockade on the exercise-induced serum growth hormone rise in normals and juvenile diabetics. J. Clin. Endocrinol. Metab. 33: 807–812, 1971.

    Article  PubMed  CAS  Google Scholar 

  103. Harada T., T. Yamauchi, A. Tsukanaka, Y. Matsumura, M. Kurono, A. Honda, and N. Matsui. Involvement of muscarinic cholinergic and alpha2-adrenergic mechanisms in growth hormone secretion during exercise in humans. Eur. J. Appl. Physiol. 83: 268–273, 2000.

    Article  PubMed  CAS  Google Scholar 

  104. Hartley L. H., J. W. Mason, R. P. Hogan, L. G. Jones, T. A. Kotchen, E. H. Mougey, F. E. Wherry, L. L. Pennington, and R T. Ricketts. Multiple hormonal responses to graded exercise in relation to physical training. J. Appl. Physiol. 33: 602–606, 1972.

    PubMed  CAS  Google Scholar 

  105. Hartley L. H., J. W. Mason, R. P. Hogan, L. G. Jones, T. A. Kotchen, E. H. Mougey, F. E. Wherry, L. L. Pennington, and P. T. Ricketts. Multiple hormonal responses to prolonged exercise in relation to physical training. J. Appl. Physiol. 33: 607–610, 1972.

    PubMed  CAS  Google Scholar 

  106. Hartman F. A., R. A. Waite, and H. A. McCordock. The liberation of epinephrine during muscular work. Am. J. Physiol. 62: 225–241, 1922.

    CAS  Google Scholar 

  107. Havivi E. and H. E. Wertheimer. A muscle activity factor increasing sugar uptake by rat diaphragms in vitro. J. Physiol. (Lond.) 172: 342–352, 1964.

    CAS  Google Scholar 

  108. Hayashi T, M. F. Hirshman, S. D. Dufresne, and L. J. Goodyear. Skeletal muscle contractile activity in vitro stimulates mitogen-activated protein kinase signalling. Am. J. Physiol. 277 (Cell Physiol. 46): C701 - C707, 1999.

    PubMed  CAS  Google Scholar 

  109. Hayashi T., M. F. Hirshman, E. J. Kurth, W. W. Winder, and L. J. Goodyear. Evidence for 5’ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 47: 1369–1373, 1998.

    Article  PubMed  CAS  Google Scholar 

  110. Heimreich E. and C. F. Cori. Studies of tissue permeability. II. Distribution of pentoses between plasma and muscle. J. Biol. Chem. 224: 663–679, 1957.

    Google Scholar 

  111. Hill S., F. Goetz, H. Fox, B. Murawski, L. Krakauer, R. Reifenstein, S. Gray, W. Reddy, S. Hedberg, J. St Marc, and G. Thorn. Studies on adrenocortical and psychological responses to stress in man. Arch. Int. Med. 97: 269–298, 1956.

    Article  Google Scholar 

  112. Hilsted J., H. Galbo, T. Sonne, T. Schwartz, O. Fahrenkrug, K. Schaffalitzky De Muckadell, K. Lauritsen, and B. Tronier. Gastroenteropancreatic hormonal changes during exercise. Am. J. Physiol. 239 (Gastrointest. Liver Physiol. 2): G136 - G140, 1980.

    PubMed  CAS  Google Scholar 

  113. Hirsch I. B., J. C. Marker, L. J. Smith, R. J. Spina, C. A. Parvin, J. O. Holloszy, and P. E. Cryer. Insulin and glucagon in prevention of hypoglycemia during exercise in humans. Am. J. Physiol. 260: E695 - E704, 1991.

    PubMed  CAS  Google Scholar 

  114. Hoelzer D., G. Dalsky, W. Clutter, S. D. Shah, J. O. Holloszy, and P. E. Cryer. Glucoregulation during exercise: hypoglycemia is prevented by redundant glucoregulatory systems during exercise: sympathochromaffin activation, and changes in hormone secretion. J. Clin. Invest. 77: 212–221, 1986.

    Article  PubMed  CAS  Google Scholar 

  115. Hollander C. S., R. L. Scott, J. A. Burgess, D. Rabinowitz, T. J. Merimee, and J. H. Oppenheimer. Free fatty acids: a possible regulator of free thyroid hormone levels in man. J. Clin. Endocrinol. Metab. 27: 1219–1223, 1967.

    Article  PubMed  CAS  Google Scholar 

  116. Holloszy J. O. and H. T. Narahara. Studies of tissue permeabilty. X. Changes in permeabilty to 3-methylglucose associated with contraction of isolated frog muscle. J. Biol. Chem. 240: 3493–3500, 1965.

    PubMed  CAS  Google Scholar 

  117. Hoskins R. G. Studies on vigor. XVI. Endocrine factors in vigor. Endocrinology 11: 97105, 1927.

    Google Scholar 

  118. Hunter W. M., C. C. Fonseka, and R. Passmore. Growth hormone: important role in muscular exercise in adults. Science 150: 1051–1053, 1965.

    Article  PubMed  CAS  Google Scholar 

  119. Hunter W. M. and M. Y. Sukkar. Changes in plasma insulin levels during muscular exercise. J. Physiol. (Land.) 196:11OP–112P, 1968.

    Google Scholar 

  120. Ingle D. The time for the work capacity of the adrenalectomized rats treated with cortin. Am. J. Physiol. 116: 622–625, 1934.

    Google Scholar 

  121. Ingle D., J. Nezamis, and E. Morley. The comparative value of cortisone, 17-hydroxycorticosteroids and adrenal cortical extract given by continuous intravenous injection in sustaining the ability of the adrenalectomized rat to work. Endocrinology 50: 1–4, 1952.

    Article  PubMed  CAS  Google Scholar 

  122. Ingle D. J., H. D. Moon, and H. M. Evans. Work performance of hypophysectomized rats treated with anterior pituitary extracts. Am. J. Physiol. 123: 620, 1938.

    CAS  Google Scholar 

  123. Ingle D. J., J. E. Nezamis, and E. H. Morley. Work output and blood glucose values in severely diabetic rats with and without insulin. Am. J. Physiol. 165: 469–472, 1951.

    PubMed  CAS  Google Scholar 

  124. Irvine C. H. Thyroxine secretion rate in the horse in various physiological states. J. Endocrinol. 39: 313–320, 1967.

    Article  PubMed  CAS  Google Scholar 

  125. Irvine C. H. Effect of exercise on thyroxine degradation in athletes and non-athletes. J. Clin. Endocrinol. Metab. 28: 942–948, 1968.

    Article  PubMed  CAS  Google Scholar 

  126. Issekutz B. Role of beta-adrenergic receptors in mobilization of energy sources in exercising dogs. J. Appl. Physiol. 44: 869–876, 1978.

    PubMed  Google Scholar 

  127. Issekutz B. Energy mobilization in exercising dogs. Diabetes 28: 39–44, 1979.

    PubMed  CAS  Google Scholar 

  128. Issekutz B. and M. Vranic. Role of glucagon in regulation of glucose production in exercising dogs. Am. J. Physiol. 238 (Endocrinol. Metab. 1): E13 - E20, 1980.

    PubMed  CAS  Google Scholar 

  129. Issekutz B. Jr. The role of hypoinsulinemia in exercise metabolism. Diabetes 29: 629–635, 1980.

    PubMed  CAS  Google Scholar 

  130. Issekutz B. Jr., P. Paul, and H. I. Miller. Metabolism in normal and pancreatectomized dogs during steady-state exercise. Am. J. Physiol. 213: 857–862, 1967.

    PubMed  CAS  Google Scholar 

  131. James D. E., R. Brown, J. Navarro, and P. F. Pilch. Insulin-regulatable tissues express a unique insulin-sensitive glucose transport protein. Nature 333: 183–185, 1988.

    Article  PubMed  CAS  Google Scholar 

  132. Jarhult J. and J. Holst. The role of the adrenergic innervation to the pancreatic islets in the control of insulin release during exercise in man. Pflugers Arch. 383: 41–45, 1979.

    Article  PubMed  CAS  Google Scholar 

  133. Johannessen A., C. Hagen, and H. Galbo. Prolactin, growth hormone, thyrotropin, 3,5,3’triiodothyronine, and thyroxine responses to exercise after fat-and carbohydrate-enriched diet. J. Clin. Endocrinol. Metab. 52: 56–61, 1981.

    Article  PubMed  CAS  Google Scholar 

  134. Kaciuba-Uscilko H., Z. Brzezinska, and A. Kobryn. Metabolic and temperature responses to physical exercise in thyroidectomized dogs. Eur. J. Appl. Physiol. 40: 219–226, 1979.

    Article  CAS  Google Scholar 

  135. Kaciuba-Uscilko H., G. A. Dudley, and R. L. Terjung. Muscle LPL activity, plasma and muscle triglycerides in trained thyroidectomized rats. Norm. Metab. Res. 13: 688–690, 1981.

    Article  CAS  Google Scholar 

  136. Kaciuba-Uscilko H., J. E. Greenleaf, S. Kozlowski, Z. Brzezinska, K. Nzar, and A. Ziemba. Thyroid hormone-induced changes in body temperature and metabolism during exercise in dogs. Am. J. Physiol. 229: 260–264, 1975.

    PubMed  CAS  Google Scholar 

  137. Karagiorgos A., J. F. Garcia, and G. A. Brooks. Growth hormone response to continuous and intermittent exercise. Med. Sci. Sports 11: 302–307, 1979.

    PubMed  CAS  Google Scholar 

  138. Katz A., S. Brobert, K. Sahlin, and J. Wahren. Leg glucose uptake during maximal dynamic exercise in humans. Am. J. Physiol. 251 (Endocrinol. Metab. 14): E65 - E70, 1986.

    CAS  Google Scholar 

  139. Kawamori R. and M. Vranic. Mechanism of exercise-induced hypoglycemia in depancreatized dogs maintained on long-acting insulin. J. Clin. Invest. 59: 331–337, 1977.

    Article  PubMed  CAS  Google Scholar 

  140. Kjaer M., K. Engfred, A. Fernandez, and H. Galbo. Regulation of hepatic glucose production during exercise in humans: role of sympathoadrenergic activity. Am. J. Physiol. 265 (Endocrinol. Metab. 28): E275 - E283, 1993.

    PubMed  CAS  Google Scholar 

  141. Kjaer M., K. Howlett, J. Langfort, T. Zimmerman-Belsing, J. Lorentsen, J. Bulow, J. Ihlemann, U. Feldt-Rasmussen, and H. Galbo. Adrenaline and glycogenolysis in skeletal muscle during exercise: a study in adrenalectomised humans. J. Physiol. (Lond.) 528 Pt 2: 371–378, 2000.

    Google Scholar 

  142. Klimes I., M. Vigas, J. Jurcovicova, and S. Nemeth. Lack of effect of acid-base alterations on growth hormone secretion in man. Endocrinol. Exp. 11: 155–162, 1977.

    PubMed  CAS  Google Scholar 

  143. Koivisto V., R. Hendler, E. Nadel, and P. Felig. Influence of physical training on the fuel-hormone response to prolonged low intensity exercise. Metabolism 31: 192–197, 1982.

    Article  PubMed  CAS  Google Scholar 

  144. Kotchen T. A., L. H. Hartley, T. W. Rice, E. H. Mougey, L. G. Jones, and J. W. Mason. Renin, norepinephrine, and epinephrine responses to graded exercise. J. Appl. Physiol. 31: 178–184, 1971.

    PubMed  CAS  Google Scholar 

  145. Kraus H., R. Kirsten, and J. R. Wolff. Effect of swimming and running exercise on the cellular function and structure of muscle. Pflugers Arch. 308: 57–79, 1969.

    Article  PubMed  CAS  Google Scholar 

  146. Kreisman S. H., M. N. Ah, J. B. Halter, M. Vranic, and E. B. Marliss. Norepinephrine infusion during moderate-intensity exercise increases glucose production and uptake. J. Clin. Endocrinol. Metab. 86: 2118–2124, 2001.

    Article  PubMed  CAS  Google Scholar 

  147. Kreisman S. H., A. Manzon, S. J. Nessim, J. A. Morais, R. Gougeon, S. J. Fisher, M. Vranic, and E. B. Marliss. Glucoregulatory responses to intense exercise performed in the postprandial state. Am. J. Physiol. (Endocrinol. Metab.) 278: E786 - E793, 2000.

    CAS  Google Scholar 

  148. Kreisman S. H., N. A. Mew, M. Arsenault, S. J. Nessim, J. B. Halter, M. Vranic, and E. B. Marliss. Epinephrine infusion during moderate intensity exercise increases glucose production and uptake. Am. J. Physiol. (Endocrinol Metab.) 278: E949 - E957, 2000.

    CAS  Google Scholar 

  149. Kristiansen S., M. Hargreaves, and E. A. Richter. Exercise-induced increase in glucose transport, GLUT-4, and VAMP-2 in plasma membrane from human muscle. Am. J. Physiol. 270 (Endocrinol. Metab. 33): E197 - E201, 1996.

    PubMed  CAS  Google Scholar 

  150. Krogh A. and J. Lindhard. The relative values of fat and carbohydrate as sources of muscular energy. Biochem. J. 14: 290, 1920.

    PubMed  CAS  Google Scholar 

  151. Krzentowski G., F. Pirnay, N. Pallikarakis, A. S. Luyckx, M. Lacroix, E Mosora, and P. J. Lefèbvre. Glucose utilization during exercise in normal and diabetic subjects. The role of insulin. Diabetes 30: 983–989, 1981.

    PubMed  CAS  Google Scholar 

  152. Kurth-Kraczek E. J., M. F. Hirshman, L. J. Goodyear, and W. W. Winder. 5’ AMP-activated protein kinase activation causes GLUT 4 translocation in skeletal muscle. Diabetes 48: 1667–1671, 1999.

    Article  PubMed  CAS  Google Scholar 

  153. Lassarre C., F. Girard, J. Durand, and J. Raynaud. Kinetics of human growth hormone during submaximal exercise. J. Appl. Physiol. 37: 826–830, 1974.

    PubMed  CAS  Google Scholar 

  154. Lavine S. A., B. Gordon, and C. L. Derick. Some changes in the chemical constituents of the blood following a marathon race. JAMA 82: 1778–1779, 1924.

    Article  Google Scholar 

  155. Lawrence R. D. The effects of exercise on insulin action in diabetes. Br. Med. J. 1: 648–652, 1926.

    Article  PubMed  CAS  Google Scholar 

  156. Legare A., R. Drouin, M. Milot, D. Massicotte, F. Peronnet, G. Massicotte, and C. Lavoie. Increased density of glucagon receptors in liver from endurance-trained rats. Am. J. Physiol. Endocrinol. Metab. 280: E193 - E196, 2001.

    PubMed  CAS  Google Scholar 

  157. Lithell H., M. Cedermark, J. Froberg, P. Tesch, and J. Karlsson. Increase of lipoprotein-lipase activity in skeletal muscle during heavy exercise. Relation to epinephrine excretion. Metabolism 30: 1130–1134, 1981.

    Google Scholar 

  158. Lundborg P., H. Astrom, C. Bengtsson, E. Fellenius, H. von Schenck, L. Svensson, and U. Smith. Effect of beta-adrenoceptor blockade on exercise performance and metabolism. Clin. Sci. (Colch.) 61: 299–305, 1981.

    CAS  Google Scholar 

  159. Luyckx A. S., A. Dresse, A. Cession-Fossion, and P. J. Lefebvre. Catecholamines and exercise-induced glucagon and fatty acid mobilization in the rat. Am. J. Physiol. 229: 376–383, 1975.

    PubMed  CAS  Google Scholar 

  160. Maling H. M., D. N. Stern, P. D. Altland, B. Highman, and B. B. Brodie. The physiologic role of the sympathetic nervous system in exercise. J. Pharmacol. Exp. Ther. 154: 35–45, 1966.

    PubMed  CAS  Google Scholar 

  161. Marliss E. B., E. Simantirakis, P. D. G. Miles, C. Purdon, R. Gougeon-Reygburn, C. J. Field, J. B. Halter, and M. Vranic. Glucoregulatory and hormonal responses to repeated bouts of intense exercise in normal male subjects. J. Appl. Physiol. 71 (3): 924–933, 1991.

    PubMed  CAS  Google Scholar 

  162. Mason J. W., L. H. Hartley, T. A. Kotchen, F. E. Wherry, L. L. Pennington, and L. G. Jones. Plasma thyroid-stimulating hormone response in anticipation of muscular exercise in the human. J. Clin. Endocrinol. Metab. 37: 403–406, 1973.

    Article  PubMed  CAS  Google Scholar 

  163. McGarry J. D., G. F. Leatherman, and D. W. Foster. Carnitine palmitoyltransferase I. The site of inhibition of hepatic fatty acid oxidation by malonylCoA. J. Biol. Chem. 253: 4128–4136, 1978.

    PubMed  CAS  Google Scholar 

  164. Merrill G. E, E. J. Kurth, D. G. Hardie, and W. W. Winder. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am. J. Physiol. 273 (Endocrinol. Metab. 36): E1107 - E1112, 1997.

    PubMed  CAS  Google Scholar 

  165. Métivier G., J. Poortmans, and R. Vanroux. Metabolic controls of human growth hormone in trained athletes performing various workloads. In: Third International Symposium on Biochemistry of Exercise, edited by W. A. R. Orban. Miami: Symposia Specialists. 1978, pp. 209–218.

    Google Scholar 

  166. Moates J. M., D. B. Lacy, R. E. Goldstein, A. D. Cherrington, and D. H. Wasserman. Metabolic role of the exercise-induced increment in epinephrine in the dog. Am. J. Physiol. 255 (Endocrinol. Metab. 18): E428 - E436, 1988.

    PubMed  CAS  Google Scholar 

  167. Nazar K. Adrenocortical activation during long-term exercise in dogs: evidence for a glucostatic mechanism. Pflugers Arch. 329: 156–166, 1971.

    Article  PubMed  CAS  Google Scholar 

  168. Nazar K., Z. Brzezinska, J. Lyszczarz, and A. Danielewicz-Kotowicz. Sympathetic control of the utilization of energy substrates during long-term exercise in dogs. Arch. Int. Physiol. Biochim, 79: 873–879, 1971.

    Article  PubMed  CAS  Google Scholar 

  169. Nelson D. H. Pituitary-adrenal system. In: Endocrinology, edited by S. M. McCann. Bethesda: American Physiological Society, 1988, pp. 87–115.

    Chapter  Google Scholar 

  170. Nesher R., I. E. Karl, and D. M. Kipnis. Epitrochlearis muscle. II. Metabolic effects of contraction and catecholamines. Am. J. Physiol. 239 (Endocrinol. Metab. 7): E461–E467, 1980.

    PubMed  CAS  Google Scholar 

  171. Nesher R., I. E. Karl, and K. M. Kipnis. Dissociation of the effects of insulin and contraction on glucose transport in rat epitrochlearis muscle. Am. J. Physiol. 249 (Cell Physiol. 18): C226–C232, 1985.

    PubMed  CAS  Google Scholar 

  172. Newsholme E. A. The control of fuel utilization during exercise and starvation. Diabetes 28 (Suppl. 1): 1–7, 1979.

    Article  PubMed  CAS  Google Scholar 

  173. Nikkila E. A., M. R. Taskinen, T. A. Miettinen, R. Pelkonen, and H. Poppius. Effect of muscular exercise on insulin secretion. Diabetes 17: 209–218, 1968.

    PubMed  CAS  Google Scholar 

  174. Nilsson K. O., L. G. Heding, and B. Hokfelt. The influence of short term submaximal work on the plasma concentrations of catecholamines, pancreatic glucagon and growth hormone in man. Acta Endocrinol. (Copenh.) 79: 286–294, 1975.

    CAS  Google Scholar 

  175. O’Connell M., D. C. Robbins, E. S. Horton, E. A. Sims, and E. Danforth Jr. Changes in serum concentrations of 3,3’,5’-triiodothyronine and 3,5,3’-triiodothyronine during prolonged moderate exercise. J. Clin. Endocrinol. Metab. 49: 242–246, 1979.

    Article  PubMed  Google Scholar 

  176. Odland L. M., G. J. Heigenhauser, G. D. Lopaschuk, and L. L. Spriet. Human skeletal muscle malonyl-CoA at rest and during prolonged submaximal exercise. Am. J. Physiol. 270 (Endocrinol. Metab. 33): E541 - E544, 1996.

    PubMed  CAS  Google Scholar 

  177. Paul P. FFA metabolism of normal dogs during steady-state exercise at different work loads. J. Appl. Physiol. 28: 127–132, 1970.

    PubMed  CAS  Google Scholar 

  178. Ploug T., H. Galbo, J. Vinten, M. Jorgensen, and E. Richter. Increased muscle glucose uptake during contraction: no need for insulin. Am. J. Physiol. 247 (Endocrinol. Metab. 10): E726 - E731, 1984.

    PubMed  CAS  Google Scholar 

  179. Premachandra B. N., W. W. Winder, R. Hickson, S. Lang, and J. O. Holloszy. Circulating reverse triiodothyronine in humans during exercise. Eur. J. Appl. Physiol. 47: 281–288, 1981.

    Article  CAS  Google Scholar 

  180. Price T B., D. L. Rothman, R. Taylor, M. J. Avison, G. I. Shulman, and R. G. Shulman. Human muscle glycogen after exercise: insulin-dependent and independent phases. J. Appl. Physiol. 76: 104–111, 1994.

    Article  PubMed  CAS  Google Scholar 

  181. Pruett E. D. Glucose and insulin during prolonged work stress in men living on different diets. J. Appl. Physiol. 28: 199–208, 1970.

    PubMed  CAS  Google Scholar 

  182. Pruett E. D. Plasma insulin concentrations during prolonged work at near maximal oxygen uptake. J. Appl. Physiol. 29: 155–158, 1970.

    PubMed  CAS  Google Scholar 

  183. Randle P. J., P. B. Garland, C. N. Hales, and E. A. Newsholme. The glucose-fatty acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1: 785–789, 1963.

    Article  PubMed  CAS  Google Scholar 

  184. Rasio E., W. Malaisse, J. R. Franckson, and V. Conard. Serum insulin during acute muscular exercise in normal man. Arch. Int. Pharmacodyn. Ther. 160: 485–491, 1966.

    PubMed  CAS  Google Scholar 

  185. Ravussin E., C. Bogardus, K. Scheidegger, B. LaGrange, E. D. Horton, and E. S. Horton. Effect of elevated FFA on carbohydrate and lipid oxidation during prolonged exercise in humans. J. Appl. Physiol. 60: 893–900, 1986.

    PubMed  CAS  Google Scholar 

  186. Refsum H. E. and S. B. Stromme. Serum thyroxine, triiodothyronine and thyroid stimulating hormone after prolonged heavy exercise. Scand. J. Clin. Lab. Invest. 39: 455–459, 1979.

    Article  PubMed  CAS  Google Scholar 

  187. Rennie M. J. and J. O. Holloszy. Inhibition of glucose uptake and glycogenolysis by availability of oleate in well-oxygenated perfused skeletal muscle. Biochem. J. 168: 161–170, 1977.

    PubMed  CAS  Google Scholar 

  188. Rennie M. J. and R. H. Johnson. Alteration of metabolic and hormonal responses to exercise by physical training. Eur. J. Appl. Physiol. Occup. Physiol. 33: 215–226, 1974.

    Article  PubMed  CAS  Google Scholar 

  189. Rhodes B. A. Effects of exercise on the thyroid gland. Nature 216: 918–919, 1967.

    Article  Google Scholar 

  190. Richter C. P. The role played by the thyroid gland in the production of gross body activity. Endocrinology 17: 73–87, 1933.

    Article  Google Scholar 

  191. Richter E. A., H. Galbo, and N. J. Christensen. Control of exercise-induced muscular glycogenolysis by adrenal medullary hormones in rats. J. Appl. Physiol. 50: 21–26, 1981.

    PubMed  Google Scholar 

  192. Richter E. A., H. Galbo, B. Sonne, J. J. Holst, and N. J. Christensen. Adrenal medullary control of muscular and hepatic glycogenolysis and of pancreatic hormonal secretion in exercising rats. Acta Physiol. Scand. 108: 235–242, 1980.

    Article  PubMed  CAS  Google Scholar 

  193. Richter E. A., L. P. Garetto, M. N. Goodman, and N. B. Ruderman. Muscle glucose metabolism following exercise in the rat. Increased sensitivity to insulin. J. Clin. Invest. 69: 785–789, 1982.

    Article  PubMed  CAS  Google Scholar 

  194. Richter E. A., L. P. Garetto, M. N. Goodman, and N. B. Ruderman. Enhanced muscle glucose metabolism following exercise in the rat: modulation by local factors. Am. J. Physiol. 246 (Endocrinol. Metab. 9): E476 - E482, 1984.

    PubMed  CAS  Google Scholar 

  195. Richter E. A., N. B. Ruderman, H. Gavras, E. Belur, and H. Galbo. Muscle glycogenolysis during exercise: dual control by epinephrine and contractions. Am. J. Physiol. 242 (Endocrinol. Metab. 5): E25 - E32, 1982.

    PubMed  CAS  Google Scholar 

  196. Richter E. A., B. Sonne, N. J. Christensen, and H. Galbo. Role of epinephrine for muscular glycogenolysis and pancreatic hormonal secretion in running rats. Am. J. Physiol. 240 (Endocrinol. Metab. 3): E526 - E532, 1981.

    PubMed  CAS  Google Scholar 

  197. Rosell S. Release of free fatty acids from subcutaneous adipose tissue in dogs following sympathetic nerve stimulation. Acta Physiol. Scand. 67: 343–351, 1966.

    Article  PubMed  CAS  Google Scholar 

  198. Rowell L. B., E. J. Masoro, and M. J. Spencer. Splanchnic metabolism in exercising man. J. Appl. Physiol. 20: 1032–1037, 1965.

    PubMed  CAS  Google Scholar 

  199. Ruderman N. B., O. P. Ganda, and K. Johansen. Effects of physical training on glucose tolerance and plasma lipids in maturity onset diabetes mellitus. Diabetes 28 (Suppl.): 89, 1979.

    PubMed  Google Scholar 

  200. Ruderman N. B., Saha A. K., Vavvas D., and L. A. Witters. Malonyl CoA, fuel sensing and insulin resistance. Am. J. Physiol. 276 (Endocrinol. Metab. 39): E1 - E18, 1999.

    PubMed  CAS  Google Scholar 

  201. Ruderman N. B., C. R. Houghton, and R. Hems. Evaluation of the isolated perfused rat hindquarter for the study of muscle metabolism. Biochem. J. 124: 639–651, 1971.

    PubMed  CAS  Google Scholar 

  202. Saltin B., F. Lindgarde, M. Houston, R. Horlin, E. Nygaard, and P. Gad. Physical training and glucose tolerance in middle-aged men with chemical diabetes. Diabetes 28 (Suppl. 1): 30–32, 1979.

    PubMed  Google Scholar 

  203. Sellers T. L., A. W. Jaussi, H. T. Yang, R. W. Heninger, and W. W. Winder. Effect of the exercise-induced increase in glucocorticoids on endurance in the rat. J. Appl. Physiol. 65: 173–178, 1988.

    PubMed  CAS  Google Scholar 

  204. Selye, H. Stress. Montreal: Acta. 1950, p. 37.

    Google Scholar 

  205. Sembrowich W. L., C. D. Ianuzzo, C. W. Saubert, R. E. Sheperd, and P. D. Gollnick. Substrate mobilization during prolonged exercise in 6-hydroxydopamine treated rats. Pflugers Arch. 349: 57–62, 1974.

    Article  PubMed  CAS  Google Scholar 

  206. Shephard R. J. and K. H. Sidney. Effects of physical exercise on plasma growth hormone and cortisol levels in human subjects. Exerc. Sport Sci. Rev. 3: 1–30, 1975.

    Article  PubMed  CAS  Google Scholar 

  207. Shi Z. Q., A. Giacca, K. Yamatani, S. J. Fisher, H. L. Lickley, and M. Vranic. Effects of subbasal insulin infusion on resting and exercise-induced glucose turnover in depancreatized dogs. Am. J. Physiol. 264 (Endocrinol. Metab. 27): E334 - E341, 1993.

    PubMed  CAS  Google Scholar 

  208. Sigal R. J., S. Fisher, J. B. Halter, M. Vranic, and E. B. Marliss. The roles of catecholamines in glucoregulation in intense exercise as defined by the islet cell clamp technique. Diabetes 45: 148–156, 1996.

    Article  PubMed  CAS  Google Scholar 

  209. Simonson D. C., V. Koivisto, R. S. Sherwin, E. Ferrannini, R. Hendler, J. Juhlin-Dannfeldt, and R. DeFronzo. Adrenergic blockade alters glucose kinetics during exercise in insulin-dependent diabetics. J. Clin. Invest. 73: 1648–1658, 1984.

    Article  PubMed  CAS  Google Scholar 

  210. Song M. K., C. D. Ianuzzo, C. W. Saubert, and P. D. Gollnick. The mode of adrenal gland enlargement in the rat in response to exercise training. Pflugers Arch. 339: 59–68, 1973.

    Article  PubMed  CAS  Google Scholar 

  211. Spriet L. L., J. M. Ren, and E. Hultman. Epinephrine infusion enhances muscle glycogenolysis during prolonged electrical stimulation. J. Appl. Physiol. 64: 1439–1444, 1988.

    PubMed  CAS  Google Scholar 

  212. Stankiewicz-Choroszucha B. and J. Gorski. Effect of beta-adrenergic blockade on intramuscular triglyceride mobilization during exercise. Experientia 34: 357–358, 1978.

    Article  PubMed  CAS  Google Scholar 

  213. Staub A., L. Sinn, and O. B. Behrens. Purification and crystallization of hyperglycemicglycogenolytic factor (HGF). Science 117: 628–629, 1953.

    Article  PubMed  CAS  Google Scholar 

  214. Steele R., J. S. Wall, R. C. deBodo, and N. Altszuler. Measurement of size and turnover rate of body glucose pool by isotope dilution method. Am. J. Physiol. 187: 15–24, 1956.

    PubMed  CAS  Google Scholar 

  215. Struck P. J. and C. M. Tipton. Effect of acute exercise on glycogen levels in adrenalectomized rats. Endocrinology 95: 1385–1391, 1974.

    Article  PubMed  CAS  Google Scholar 

  216. Sutherland E. W. Studies on the mechanism of hormone action. Science 177: 401–408, 1972.

    Article  PubMed  CAS  Google Scholar 

  217. Sutton J. and Lazarus L. Growth hormone in exercise: comparison of physiological and pharmacological stimuli. J. Appl. Physiol. 41: 523–527, 1976.

    PubMed  CAS  Google Scholar 

  218. Sutton J. R. Hormonal and metabolic responses to exercise in subject of high and low work capacities. Med. Sci. Sports 10: 1–6, 1978.

    PubMed  CAS  Google Scholar 

  219. Sutton J. R. and J. H. Casey. The adrenocortical response to competitive athletics in veteran athletes. J. Clin. Endocrinol. Metab. 40: 135–138, 1975.

    Article  PubMed  CAS  Google Scholar 

  220. Sutton J. R., N. L. Jones, and C. J. Toews. Growth hormone secretion in acid-base alterations at rest and during exercise. Clin. Sci. Mol. Med. 50: 241–247, 1976.

    PubMed  CAS  Google Scholar 

  221. Sutton J. R., J. D. Young, L. Lazarus, J. B. Hickie, and J. Maksvytis. The hormonal response to physical exercise. Australis. Ann. Med. 18: 84–90, 1969.

    CAS  Google Scholar 

  222. Suzuki T., K. Otsuka, H. Matsui, S. Ohukuzi, K. Sakai, and Y. Harada. Effect of muscular exercise on adrenal 17-hydroxycorticosteroid secretion in the dog. Endocrinology 80: 1148–1151, 1967.

    Article  PubMed  CAS  Google Scholar 

  223. Tepperman J. A view of the history of biology from an islet of langerhans. In: Endocrinology, edited by S. M. McCann. Bethesda: American Physiological Society, 1988, pp. 285–333.

    Chapter  Google Scholar 

  224. Terjung R. L. and J. E. Koerner. Biochemical adaptations in skeletal muscle of trained thyroidectomized rats. Am. J. Physiol. 230: 1194–1197, 1976.

    PubMed  CAS  Google Scholar 

  225. Terjung R. L. and C. M. Tipton. Plasma thyroxine and thyroid-stimulating hormone levels during submaximal exercise in humans. Am. J. Physiol. 220: 1840–1845, 1971.

    PubMed  CAS  Google Scholar 

  226. Tharp G. D. The role of glucocorticoids in exercise. Med. Sci. Sports 7: 6–11, 1975.

    PubMed  CAS  Google Scholar 

  227. Thorn G. W., D. Jenkins, and J. C. Laidlaw. The adrenal response to stress in man. Recent Progr. Horm. Res. 7: 171–215, 1953.

    Google Scholar 

  228. Tipton C. M., P. J. Struck, K. M. Baldwin, R. D. Matthes, and R. T. Dowell. Response of adrenalectomized rats to chronic exercise. Endocrinology 91: 573–579, 1972.

    Article  PubMed  CAS  Google Scholar 

  229. Treadway J. L., D. E. James, E. Burcel, and N. B. Ruderman. Effect of exercise on insulin receptor binding and kinase activity in skeletal muscle. Am. J. Physiol. 256 (Endocrinol. Metab. 19): E138 - E144, 1989.

    PubMed  CAS  Google Scholar 

  230. Tuomilehto J., J. Lindstrom, J. G. Eriksson, T. T. Valle, H. Hamalainen, P. Ilanne-Parikka, S. Keinanen-Kiukaanniemi, M. Laakso, A. Louheranta, M. Rastas, V. Salminen, and M. Uusitupa. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 344: 1343–1350, 2001.

    Article  PubMed  CAS  Google Scholar 

  231. Vavvas D., A. Apazidis, A. K. Saha, J. Gamble, A. Patel, B. E. Kemp, L. A. Witters, and N. B. Ruderman. Contraction-induced changes in acetyl-CoA carboxylase and 5’AMP-activated kinase in skeletal muscle. J. Biol. Chem. 272: 13255–13261, 1997.

    Article  PubMed  CAS  Google Scholar 

  232. Venning E. H. and V. Kazmin. Excretion of urinary corticoids and 17-ketosteroids in the normal individual. Endocrinology 39: 131–133, 1946.

    Article  PubMed  CAS  Google Scholar 

  233. Viru A. Dynamics of blood corticoid content during and after short term exercise. Endokrinologie 59: 61–68, 1972.

    PubMed  CAS  Google Scholar 

  234. Viru A. and H. Akke. Effects of muscular work on cortisol and corticosterone content in the blood and adrenals of guinea pigs. Acta Endocrinol. (Copenh.) 62: 385–390, 1969.

    CAS  Google Scholar 

  235. Von Euler U. S. and S. Hellner. Excretion of noradrenaline and adrenaline in muscular work. Acta Physiol. Scand. 26: 183–191, 1952.

    Article  Google Scholar 

  236. Vranic M., S. Horvath, and J. Wahren. Proceedings of a conference on diabetes and exercise. Sponsored by the Kroc Foundation, Santa Ynez Valley, California. Diabetes 28 (Suppl. 1): 1–113, 1979.

    Article  Google Scholar 

  237. Vranic M., R. Kawamori, S. Pek, N. Kovacevic, and G. Wrenshall. The essentiality of insulin and the role of glucagon in regulating glucose utilization and production during strenuous exercise in dogs. J. Clin. Invest. 57: 245–256, 1976.

    Article  PubMed  CAS  Google Scholar 

  238. Vranic M., S. Pek, and B. Kawamori. Increased “glucagon immunoreactivity” in plasma of totally depancreatized dogs. Diabetes 23: 905–912, 1974.

    PubMed  CAS  Google Scholar 

  239. Vranic M. and G. A. Wrenshall. Exercise, insulin and glucose turnover in dogs. Endocrinology 85: 165–171, 1969.

    Article  PubMed  CAS  Google Scholar 

  240. Wahren J., P. Felig, G. Ahlborg, and L. Jorfeldt. Glucose metabolism during leg exercise in man. J. Clin. Invest. 50: 2715–2725, 1971.

    Article  PubMed  CAS  Google Scholar 

  241. Wahren J., L. Hagenfeldt, and P. Felig. Splanchnic and leg exchange of glucose, amino acids and free fatty acids and ketones in insulin-dependent diabetics during exercise. J. Clin. Invest. 55: 1303–1314, 1975.

    Article  PubMed  CAS  Google Scholar 

  242. Wahren J., L. Hagenfeldt, and R Felig. Splanchnic and leg exchange of glucose, amino acids, and free fatty acids during exercise in diabetes mellitus. J. Clin. Invest. 55: 1303–1314, 1975.

    Article  PubMed  CAS  Google Scholar 

  243. Wallberg-Henriksson H. and J. O. Holloszy. Activation of glucose transport in the diabetic muscles: responses to contraction and insulin. Am. J. Physiol. 249 (Cell Physiol. 18): C233 - C237, 1985.

    PubMed  CAS  Google Scholar 

  244. Wasserman D., P. E. Williams, and D. B. Lacy. Exercise-induced fall in insulin and hepatic carbohydrate metabolism during muscular work. Am. J. Physiol. 256 (Endocrinol. Metab. 19): E500–509, 1989.

    PubMed  CAS  Google Scholar 

  245. Wasserman D. H., H. L. A. Lickley, and M. Vranic. Interactions between glucagon and other counterregulatory hormones during normoglycemic and hypoglycemic exercise. J. Clin. Invest. 74: 1404–1413, 1984.

    Article  PubMed  CAS  Google Scholar 

  246. Wasserman D. H., H. L. A. Lickley, and M. Vranic. Effect of hematocrit reduction on hormonal and metabolic responses to exercise. J. Appl. Physiol. 58: 1257–1262, 1985.

    PubMed  CAS  Google Scholar 

  247. Wasserman D. H., T. Mohr, P. Kelly, D. B. Lacy, and D. Bracy. Impact of insulin deficiency on glucose fluxes and muscle glucose metabolism during exercise. Diabetes 41: 1229–1238, 1992.

    Article  PubMed  CAS  Google Scholar 

  248. Wasserman D. H., J. S. Spalding, D. B. Lacy, C. A. Colburn, R. E. Goldstein, and A. D. Cherrington. Glucagon is a primary controller of hepatic glycogenolysis and gluconeogenesis during muscular work. Am. J. Physiol. 257 (Endocrinol. Metab. 20): E108 - E117, 1989.

    PubMed  CAS  Google Scholar 

  249. Winder W. W., K. M. Baldwin, R. L. Terjung, and J. O. Holloszy. Effects of thyroid hormone administration on skeletal muscle mitochondria. Am. J. Physiol. 228: 1341–1345, 1975.

    PubMed  CAS  Google Scholar 

  250. Winder W. W., M. A. Beattie, and R. T. Holman. Endurance training attenuates stress hormone responses to exercise in fasted rats. Am. J. Physiol. 243 (Regulatory Integrative Comp. Physiol. 12): R179 - R184, 1982.

    PubMed  CAS  Google Scholar 

  251. Winder W. W., M. A. Beattie, C. Picquette, and R. T. Holman. Decrease in liver norepinephrine in response to exercise and hypoglycemia. Am. J. Physiol. 244 (Regulatory Integrative Comp. Physiol. 13): R845 - R849, 1983.

    PubMed  CAS  Google Scholar 

  252. Winder W. W., J. Boullier, and R. D. Fell. Liver glycogenolysis during exercise without a significant increase in cAMP. Am. J. Physiol. 237 (Regulatory Integrative Comp. Physiol. 5): R147 - R152, 1979.

    PubMed  CAS  Google Scholar 

  253. Winder W. W., S. R. Fisher, S. P. Gygi, J. A. Mitchell, E. Ojuka, and D. A. Weidman. Divergence of muscle and liver fructose 2,6-diphosphate in fasted exercising rats. Am. J. Physiol. 260 (Endocrinol. Metab. 23): E756 - E761, 1991.

    PubMed  CAS  Google Scholar 

  254. Winder W. W., S. J. Garhart, and B. N. Premachandra. Peripheral markers of thyroid status unaffected by endurance training in rats. Pflugers Arch. 389: 195–198, 1981.

    Article  PubMed  CAS  Google Scholar 

  255. Winder W. W., J. M. Hagberg, R. C. Hickson, A. A. Ehsani, and J. A. McLane. Time course of sympathoadrenal adaptation to endurance exercise training in man. J. Appl. Physiol. 45: 370–374, 1978.

    PubMed  CAS  Google Scholar 

  256. Winder W. W. and Hardie DG. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am. J. Physiol. 270 (Endocrinol. Metab. 33): E299 - E304, 1996.

    PubMed  CAS  Google Scholar 

  257. Winder W. W. and R. W. Heninger. Effect of exercise on tissue levels of thyroid hormones in the rat. Am. J. Physiol. 221: 1139–1143, 1971.

    PubMed  CAS  Google Scholar 

  258. Winder W. W. and R. W. Heninger. Effect of exercise on degradation of thyroxine in the rat. Am. J. Physiol. 224: 572–575, 1973.

    PubMed  CAS  Google Scholar 

  259. Winder W. W., R. C. Hickson, J. M. Hagberg, A. A. Ehsani, and J. A. McLane. Training-induced changes in hormonal and metabolic responses to submaximal exercise. J. Appl. Physiol. 46: 766–771, 1979.

    PubMed  CAS  Google Scholar 

  260. Winder W. W., M. L. Terry, and V. M. Mitchell. Role of plasma epinephrine in fasted exercising rats. Am. J. Physiol. 248 (Regulatory Integrative Comp. Physiol. 17): R302 - R307, 1985.

    PubMed  CAS  Google Scholar 

  261. Wolfe R. R., E. R. Nadel, J. H. F. Shaw, L. A. Stephenson, and M. Wolfe. Role of changes in insulin and glucagon in glucose homeostasis in exercise. J. Clin. Invest. 77: 900–907, 1986.

    Article  PubMed  CAS  Google Scholar 

  262. Yamatani K., Z. Shi, A. Giacca, R. Gupta, S. Fisher, L. Lickley, and M. Vranic. Role of FFA-glucose cycle in glucoregulation during exercise in total absence of insulin. Am. J. Physiol. 263 (Endocrinol. Metab. 26): E646 - E653, 1992.

    PubMed  CAS  Google Scholar 

  263. Zinman B., F. T. Murray, M. Vranic, A. M. Albisser, B. S. Leibel, P. A. McClean, and E. B. Marliss. Glucoregulation during moderate exercise in insulin treated diabetics. J. Clin. Endocrinol. Metab. 45: 641–652, 1977.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 American Physiological Society

About this chapter

Cite this chapter

Riddell, M.C., Ruderman, N.B., Tsiani, E., Vranic, M. (2003). The Endocrine System: Metabolic Effects of the Pancreatic, Adrenal, Thyroidal, and Growth Hormones. In: Tipton, C.M. (eds) Exercise Physiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7543-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7543-9_9

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7543-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics