Skip to main content

Clinical Implications of the Pathophysiology of Lactic Acidosis: The Role of Defects in Lactate Disposal

  • Chapter
Hypoxia, Metabolic Acidosis, and the Circulation

Part of the book series: Clinical Physiology Series ((CLINPHY))

Abstract

By far the most common reason for clinical lactic acidosis is circulatory insufficiency. The role of ischemia and consequent anaerobic glycolysis in generating large quantities of lactate and accompanying protons is well appreciated. However, the pathophysiological events that lead to diminished rates of lactate disposal in shock are perhaps less well understood, and the bulk of this short review is devoted to this topic. Comment is made on the current controversy concerning the value of bicarbonate therapy in the lactic acidosis of shock, and also on the surprisingly low frequency with which significant lactic acidosis occurs during diabetic ketoacidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arieff, A. I., R. Park, W. J. Leach, and V. C. Lazarowitz: Pathology of experimental lactic acidosis in dogs. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 8 ) 239: F135 - F141, 1980.

    Google Scholar 

  2. Arieff, A. I., R. Park, W. Leach, and V. Lazarowitz: Systemic effects of NaHco3 in experimental lactic acidosis in dogs. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 11 ) 242: F586 - F591, 1982.

    Google Scholar 

  3. Baron, P. G., R. A. Iles, and R. D. Cohen: Effect of varying Pco2 on intracellular pH and lactate consumption in the isolated perfused rat liver. Clin. Sci. Mol. Med. 55: 175–181, 1978.

    PubMed  CAS  Google Scholar 

  4. Beech, J. S., S. R. Williams, R. D. Cohen, and R. A. Iles: Gluconeogenesis and the protection of hepatic intracellular pH during diabetic ketoacidosis in rats. Biochem. J. 263: 737–744, 1989.

    PubMed  CAS  Google Scholar 

  5. Bersin, R. M., and A. I. Arieff: Improved hemodynamic function during hypoxia with Carbicarb, a new agent for the management of acidosis. Circulation 77: 227–233, 1988.

    Article  PubMed  CAS  Google Scholar 

  6. Cohen, R. D. and W. G. Guder: Carbohydrate metabolism and pH. In: pH Homeostasis, edited by D. Hansinger, London: Academic Press, 1988, p. 403–426.

    Google Scholar 

  7. Cohen, R. D., R. M. Henderson, R. A. Iles, and J. A. Smith: Metabolic interrelationships of intracellular pH measured by double-barrelled microelectrodes in perfused rat liver. J. Physiol. (Lond.) 330: 69–80, 1982.

    CAS  Google Scholar 

  8. Cohen, R. D., R. M. Henderson, R. A. Iles, J. P. Monson, and J. A. Smith: The techniques and uses of intracellular pH measurement. In: Metabolic Acidosis (Ciba Foundation Symposium No. 87). London: Pitman, 1982, p. 20–35.

    Google Scholar 

  9. Cohen, R. D., R. A. Iles, D. Barnett, M. E. O. Howell, and J. Strunin: The effect of changes in lactate uptake in the intracellular pH of the perfused rat liver. Clin. Sci. 41: 159–170, 1971.

    PubMed  CAS  Google Scholar 

  10. Cohen, R. D., and H. F. Woods: Clinical and Biochemical Aspects of Lactic Acidosis. Oxford: Blackwell Scientific Publications, 1976.

    Google Scholar 

  11. Cohen, R. D., and H. F. Woods: Lactic acidosis revisited. Diabetes 32: 181–191, 1983.

    PubMed  CAS  Google Scholar 

  12. Edlund, G. L., and A. P. Halestrap: The kinetics of transport of lactate and pyruvate into rat hepatocytes. Biochem. J. 249: 117–126, 1988.

    PubMed  CAS  Google Scholar 

  13. Exton, J. H., and C. R. Park: Control of gluconeogenesis in liver. J. Biol. Chem. 243: 41894196, 1968.

    Google Scholar 

  14. Fafournoux, P., C. Demignb, and C. RÊMBsY: Carrier-mediated uptake of lactate in rat hepatocytes. J. Biol. Chem. 260: 292–299, 1985.

    PubMed  CAS  Google Scholar 

  15. Graf, H., W. Leach, and A. I. Arieff• Effects of dichloroacetate in the treatment of hypoxic lactic acidosis in dogs. J. Clin. Invest. 76: 919–923, 1985.

    Article  PubMed  CAS  Google Scholar 

  16. Hems, R., B. D. Ross, M. N. Berry, and H. A. Krebs: Gluconeogenesis in the perfused rat liver. Biochem. J. 101: 284–292, 1966.

    PubMed  CAS  Google Scholar 

  17. Hermansen, L., and I. Stensvold: Production and removal of lactate during exercise. Acta Physiol. Scand. 86: 191–201, 1973.

    Article  Google Scholar 

  18. Iles, R. A.: Ph.D. thesis, University of London, 1974.

    Google Scholar 

  19. Iles, R. A., P. G. Baron, and R. D. Cohen: Mechanisms of the effect of varying Pcoz on gluconeogenesis from lactate in the perfused rat liver. Clin. Sci. Mol. Med. 55: 183188, 1978.

    Google Scholar 

  20. Iles, R. A., P. G. Baron, and R. D. Cohen: The effect of reduction of perfusion rate on lactate and oxygen uptake, glucose output and energy supply in the isolated perfused liver of starved rats. Biochem. J. 184: 635–642, 1979.

    PubMed  CAS  Google Scholar 

  21. Iles, R. A., R. D. Cohen, A. H. Rist, and P. G. Baron: The mechanism of inhibition by acidosis of gluconeogenesis from lactate. Biochem. J. 164: 185–191, 1977.

    PubMed  CAS  Google Scholar 

  22. Kashiwagura, T., C. J. Deutsch, J. Taylor, M. Erecinska, and D. F. Wilson: Dependence of gluconeogenesis, urea synthesis and energy metabolism of hepatocytes in intracellular pH. J. Biol. Chem. 259: 237–243, 1984.

    CAS  Google Scholar 

  23. Lloyd, M. H., R. A. Iles, B. R. Simpson, J. M. Strunin, J. M. Layton, and R. D. CoHen: The effect of simulated metabolic acidosis on intracellular pH and lactate metabolism in the isolated perfused liver. Clin. Sci. Mol. Med. 45: 543–549, 1973.

    PubMed  CAS  Google Scholar 

  24. Martin, A. D., and M. A. Titheridge: Stimulation of mitochondrial pyruvate metabolism and citrulline synthesis by dexamethasone. Biochem. J. 222: 379–387, 1984.

    PubMed  CAS  Google Scholar 

  25. Metcalfe, H. K., J. P. Monson, C. Padgham, and R. D. Cohen: Enhanced carrier-mediated lactate entry into isolated hepatocytes from starved and diabetic rats. J. Biol. Chem. 263: 19505–19509, 1988.

    PubMed  CAS  Google Scholar 

  26. Metcalfe, H. K., J. P. Monson, C. Padgham, and R. D. Cohen: Nutritional effects on carrier-mediated lactate transport in the isolated perfused rat liver. Clin. Sci. 74 (Suppl. 18 ): 51P, 1988.

    Google Scholar 

  27. Metcalfe, H. K., J. P. Monson, S. G. Welch, and R. D. Cohen: Inhibition of lactate removal by ketone bodies in rat liver. Evidence for a quantitatively important role of the plasma membrane lactate transporter in lactate metabolism. J. Clin. Invest. 78: 743–747, 1986.

    Article  PubMed  CAS  Google Scholar 

  28. Monson, J. P., J. A. Smith, R. D. Cohen, and R. A. Iles: Evidence for a lactate transporter in the plasma membranes of rat hepatocytes. Clin. Sci. 62: 411–420, 1982.

    PubMed  CAS  Google Scholar 

  29. Narins, R. G., and J. J. Cohen: Bicarbonate therapy for organic acidosis: the case for its continued use. Ann. Intern. Med. 106: 615–618, 1987.

    Article  PubMed  CAS  Google Scholar 

  30. Sestoft, L., and M. O. Marshall: Hepatic lactate uptake is enhanced by low pH at low lactate concentration in perfused rat liver. Clin. Sci. 70: 19–22, 1986.

    PubMed  CAS  Google Scholar 

  31. Stacpoole, P. W., E. M. Harman, S. H. Curry, T. G. Baumgartner, and R. I. Misbin: Treatment of lactic acidosis with dichloroacetate. N. Engl. J. Med. 309: 390–396, 1983.

    Article  PubMed  CAS  Google Scholar 

  32. Tashkin, D. P., P. J. Goldstein, and D. H. Simmons: Hepatic lactate uptake during decreased liver perfusion. Am. J. Physiol. 232: 968–974, 1972.

    Google Scholar 

  33. Tung, S. H., J. BErrIce, B. C. Wang, and E. Brown: Intracellular and extracellular acid-base changes in haemorrhagic shock. Resp. Phys. 26: 229–237, 1976.

    CAS  Google Scholar 

  34. UI, M.: A role of phosphofructokinase in pH-dependent regulation of glycolysis. Biochem. Biophys. Acta 124: 310–322, 1966.

    Article  PubMed  CAS  Google Scholar 

  35. Weil, M. H., E. C. Rackow, R. Trevino, W. Grundler, J. L. Falk, and M. I. Griffel: Difference in acid-base state between venous and arterial blood during cardiopulmonary resuscitation. N. Engl. J. Med. 315: 153–156, 1986.

    Article  PubMed  CAS  Google Scholar 

  36. Welbourne, T. C.: Inter-organ glutamine fluxes in acid-base disturbances. In: pH Homeostasis, edited by D. Häussinger. London: Academic Press, 1988, p. 379–402.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 American Physiological Society

About this chapter

Cite this chapter

Cohen, R.D. (1992). Clinical Implications of the Pathophysiology of Lactic Acidosis: The Role of Defects in Lactate Disposal. In: Arieff, A.I. (eds) Hypoxia, Metabolic Acidosis, and the Circulation. Clinical Physiology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7542-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7542-2_5

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7542-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics