Skip to main content

Effects of Ischemia, Hypoxia, and Acidosis on Cardiac Systolic and Diastolic Function, and Glycolytic Metabolism in Normal and Hypertrophied Hearts

  • Chapter
Hypoxia, Metabolic Acidosis, and the Circulation

Part of the book series: Clinical Physiology Series ((CLINPHY))

  • 311 Accesses

Abstract

The normal heart, especially during states of increased cardiac work such as exercise, functions precariously close to the limits of the coronary circulation to supply oxygen. Oxygen extraction by the myocardium is greater than for any other tissue. Since there is little oxygen content or “oxygen reserve” in coronary venous blood under resting conditions, significant increases in myocardial oxygen demand must be met by decreasing coronary vascular resistance and increasing coronary blood flow. A normal heart can increase its coronary flow by five- to sixfold. However, such coronary “flow reserve” is reduced in common clinical conditions such as left ventricular hypertrophy and coronary atherosclerosis, and ischemia occurs when myocardial oxygen demand increases during exercise. With severe atherosclerosis, resting coronary flow may be reduced, resulting in ischemia in the absence of an increased oxygen demand. Myocardial tissue hypoxia can also occur in the presence of normal or increased coronary flow if arterial hypoxemia is present secondary to pulmonary disease, right-to-left cardiac shunts, or other rarer causes such as exposure to high altitude or carbon monoxide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, D. G., D. A. Eisner and C. H. Orchard: Factors influencing free intracellular calcium concentration in quiescent ferret ventricular muscle. J. Physiol. 350: 615–630, 1984.

    PubMed  CAS  Google Scholar 

  2. Allen, D. G., and C. H. Orchard: The effects of changes of pH on intracellular calcium transients in mammalian cardiac muscle. J. Physiol. 335: 555–567, 1983.

    PubMed  CAS  Google Scholar 

  3. Allen, D. G., and C. H. Orchard: Myocardial contractile function during ischemia and hypoxia. Circ. Res. 60: 153–168, 1987.

    PubMed  CAS  Google Scholar 

  4. Allen, D. G., P. G. Morris, and C. H. Orchard: A transient alkalosis precedes acidosis during hypoxia in ferret heart. J. Physiol. 34: 58P - 59P, 1983.

    Google Scholar 

  5. Apstein, C. S., and J. D. Ogilby: Effects of “paradoxical” systolic fiber stretch on ischemic myocardial contracture, compliance, and contractility in the rabbit. Circ. Res. 46: 745–754, 1980.

    PubMed  CAS  Google Scholar 

  6. Apstein, C. S., L. F. Wexler, W. M. Vogel, E. O. Weinberg, and J. S. Ingwall: Comparative effects of ischemia and hypoxia on ventricular relaxation in isolated perfused hearts. In: Diastolic Relaxation of the Heart, edited by W. Grossman and B. H. Lorell. Boston: Martinus Nijhoff Publishing, 1987, p. 169–184.

    Google Scholar 

  7. Apstein, C. S., L. Deckelbaum, M. Mueller, L. Hagopian, and W. B. Hood, JR.: Graded global ischemia and reperfusion: Cardiac function and lactate metabolism. Circulation 55: 864–872, 1977.

    PubMed  CAS  Google Scholar 

  8. Apstein, C. S., L. Deckelbaum, L. Hagopian, and W. B. Hood, JR.: Acute cardiac ischemia and reperfusion. Contractility, relaxation and glycolysis. Am. J. Physiol. 236 (Heart Circ. Physiol.) 4: H637 — H648, 1978.

    Google Scholar 

  9. Apstein, C. S., F. N. Gravino, and C. C. Haudenschild: Determinants of a protective effect of glucose and insulin on the ischemic myocardium: Effects on contractile function, diastolic compliance, metabolism and ultrastructure during ischemia and reperfusion. Circ. Res. 52: 515–526, 1983.

    PubMed  CAS  Google Scholar 

  10. Apstein, C. S., M. Mueller, and W. B. Hood, JR.: Ventricular contracture and compliance changes with global ischemia and reperfusion and their effect on coronary resistance in the rat. Circ. Res. 41: 206–217, 1977.

    PubMed  CAS  Google Scholar 

  11. Apstein, C. S., M. Mueller, L. Hagopian, and W. B. Hood, JR.: Variable effect of glucose and insulin with myocardial ischemia and hypoxia. Clin. Res. 23: 379A, 1975.

    Google Scholar 

  12. Apstein, C. S., and W. Grossman: Opposite initial effects of supply and demand ischemia on left ventricular diastolic compliance: The ischemia—diastolic paradox. J. Mol. Cell. Cardiol. 19: 119–128, 1987.

    PubMed  CAS  Google Scholar 

  13. Bache, R. J., T. R. Vrobel, W. S. Ring, ET AL.: Regional myocardial blood flow during exercise in dogs with chronic left ventricular hypertrophy. Circ. Res. 48: 76–87, 1981.

    PubMed  CAS  Google Scholar 

  14. Bache, R. J., C. E. Arentzen, A. B. Simon, ET AL.: Abnormalities in myocardial perfusion during tachycardia in dogs with left ventricular hypertrophy: Metabolic evidence for ischemia. Circulation 69: 409–417, 1984.

    PubMed  CAS  Google Scholar 

  15. Badeer, H. S.: Biological significance of cardiac hypertrophy. Am. J. Cardiol. 14: 133138, 1964.

    Google Scholar 

  16. Barry, W. H., J. Z. Brooker, E. L. Alderman, and D. C. Harrison’ Changes in diastolic stiffness and tone of the left ventricle during angina pectoris. Circulation 49: 255263, 1974.

    Google Scholar 

  17. Bing, O. H. L., W. W. Brooks, A. N. Inamdar, and J. V. Messer: Tolerance of isolated heart muscle to hypoxia: Turtle vs. rat. Am. J. Physiol. 223: 1481–1485, 1972.

    PubMed  CAS  Google Scholar 

  18. Bittl, J. A., and J. S. Ingwall: Intracellular high energy phosphate turnover during hypoxia: 31P Nmr surface coil studies in living rat. Circ. Res. 60: 871–878, 1987.

    PubMed  CAS  Google Scholar 

  19. Bittl, J. A., and J. S. Ingwall: Intracellular high energy phosphate transfer in normal and hypertrophied myocardium. Circulation 75 (Suppl. I): 96–101, 1987.

    Google Scholar 

  20. Bourdillon, P. D., and P. A. PooLE-WilsoN: The effects of verapamil, quiescence and cardioplegia on calcium exchange and mechanical function in ischemic rabbit myocardium. Circ. Res. 50: 360–368, 1982.

    PubMed  CAS  Google Scholar 

  21. Bourdillon, P. D., B. H. Lorell, I. Mirsky, W. J. Paulus, J. Wynne, and W. Grossman: Increased regional myocardial stiffness of the left ventricle during pacing-induced angina in man. Circulation 67: 316–323, 1983.

    PubMed  CAS  Google Scholar 

  22. Braunwald, E., and J. Ross, JR.: The ventricular end-diastolic pressure: Appraisal of its value in the recognition of ventricular failure in man. Am. J. Med. 34: 147–150, 1963.

    PubMed  CAS  Google Scholar 

  23. Braunwald, E., and J. D. Rutherford: Reversible ischemic left ventricular dysfunction: Evidence for the “hibernating myocardium.” J. Am. Coll. Cardiol. 8: 1467–1470, 1986.

    PubMed  CAS  Google Scholar 

  24. Bricknell, O. L., P. S. Daries, and L. H. Opie: A relationship between adenosine triphosphate, glycolysis and ischemic contracture in the isolated rat heart. J. Mol. Cell. Cardiol. 13: 941–945, 1981.

    PubMed  CAS  Google Scholar 

  25. Brooks, W. W., J. S. Ingwall, C. H. Conrad, ET AL.: Tolerance to hypoxia of myocardium from adult and aged spontaneously hypertensive rats. Am. J. Physiol. 252: (Heart Circ. Physiol.) H1096 - H1104, 1987.

    PubMed  CAS  Google Scholar 

  26. Carroll, J. D., D. M. Hess, H. O. Hirzel, ET AL.: Dynamics of left ventricular filling pressure at rest and during exercise. Circulation 68: 59–67, 1983.

    PubMed  CAS  Google Scholar 

  27. Carroll, J. D., D. M. Hess, H. O. Hirzel, and H. P. Krayenbuehl: Exercise-induced ischemia: The influence of altered relaxation on early diastolic pressures. Circulation 67: 521–528, 1983.

    PubMed  CAS  Google Scholar 

  28. Cobbe, S. M., and P. A. Poole-Wilson: The time of onset and severity of acidosis in myocardial ischemia. J. Mol. Cell. Cardiol. 12: 745–760, 1980.

    PubMed  CAS  Google Scholar 

  29. Coleman, G. M., S. Gradinac, H. Taegtmeyer, M. Sweeney, and O. H. Frazier: Efficacy of metabolic support with glucose-insulin-potassium for left ventricular pump failure after aortocoronary bypass surgery. Circulation 80 (Suppl. I): I-91-I-96, 1989.

    Google Scholar 

  30. Cunningham, M. J., C. S. Apstein, E. O. Weinberg, W. M. Vogel, and B. H. Lorell: Influence of glucose and insulin on the exaggerated diastolic and systolic dysfunction of hypertrophied rats during hypoxia. Circ. Res. 66: 406–415, 1990.

    PubMed  CAS  Google Scholar 

  31. Deckelbaum, L., R. Green, M. Mueller, W. B. Hood, JR., and C. S. Apstein: Acute hypoxic heart failure: Comparison of hypoxemia and ischemia. Am. J. Cardiol. 35: 131, 1975.

    Google Scholar 

  32. Donaldson, S. K. B., E. Bond, L. Seeger, ET AL.: Intracellular pH vs. Mg Atp2- concentration: Relative importance as determinants of Cat+-activated force generation of disrupted rabbit cardiac cells. Cardiovasc. Res. 15: 268–275, 1981.

    PubMed  CAS  Google Scholar 

  33. Donaldson, S. K. B., and L. Hermansen: Differential, direct effects of H+ on Cat+-activated force of skinned fibers from the soleus, cardiac and abductor magnus muscles of rabbits. Pflugers Arch. 376: 55–56, 1978.

    PubMed  CAS  Google Scholar 

  34. Dwyer, E. M.: Left ventricular pressure-volume alterations and regional disorders of contraction during myocardial ischemia induced by atrial pacing. Circulation 42: 1111 1122, 1970.

    Google Scholar 

  35. Edwards II, C. H., J. S. Rankin, P. A. Mchale, D. Ling, and R. W. Anderson: Effects of ischemia on left ventricular regional function in the conscious dog. Am. J. Physiol. 239: (Heart Circ. Physiol.) H413 - H420, 1981.

    Google Scholar 

  36. Fabiato, A., and F. Fabiato: Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from the cardiac and skeletal muscle. J. Physiol. 276: 233255, 1978.

    Google Scholar 

  37. Flaherty, J. T., M. L. Weidfeldt, B. H. Bulkley, ET AL.: Mechanisms of ischemic myocardial cell damage assessed by phosphorus31 nuclear magnetic resonance. Circulation 65: 561–571, 1982.

    PubMed  CAS  Google Scholar 

  38. Forrester, J. S., G. Diamond, W. W. Parmley, and H. J. Swan: Early increase in left ventricular compliance after myocardial infarction. J. Clin. Invest. 51: 598–602, 1972.

    PubMed  CAS  Google Scholar 

  39. Frist, W. H., I. Palacios, and W. H. Powell, JR.: Effect of hypoxia on myocardial relaxation in isometric cat papillary muscle. J. Clin. Invest. 61: 1218–1224, 1978.

    PubMed  CAS  Google Scholar 

  40. Fujita, M., A. Mikuniya, D. MckowN, ET AL.: Regional myocardial volume alterations induced by brief repeated coronary occlusion in conscious dogs. J. Am. Coll. Cardiol. 12: 1048–1053, 1988.

    PubMed  CAS  Google Scholar 

  41. Gaasch, W. H., O. H. Bing, A. Franklin, D. Rhodes, S. A. Bernard, and R. M. Weintraub: The influence of acute alterations in coronary blood flow on left ventricular diastolic compliance and wall thickness. Eur. J. Cardiol. 7(Suppl. 1): 47–161, 1978.

    Google Scholar 

  42. Gaasch, W. H., M. R. Zile, P. K. Hoshino, E. O. Weinberg, D. R. Rhodes, and C. S. AP-Stein: Tolerance of the hypertrophic heart to ischemia. Circulation 81: 1644–1653, 1990.

    PubMed  CAS  Google Scholar 

  43. Garlick, P. B., G. K. Ratta, and P. J. Seely: Studies of acidosis in the ischemic heart by phosphorus nuclear magnetic resonance. Biochem. J. 184: 547–554, 1979.

    PubMed  CAS  Google Scholar 

  44. Glantz, S. A., and W. W. Parmley: Factors which affect the diastolic pressure-volume curve. Circ. Res. 42: 171–180, 1978.

    PubMed  CAS  Google Scholar 

  45. Gould, K. L., K. Lipscomb, G. W. Hamilton, ET AL.: Left ventricular hypertrophy in coronary artery disease: A cardiomyopathy syndrome following myocardial infarction. Am. J. Med. 55: 595–601, 1973.

    PubMed  CAS  Google Scholar 

  46. Grossman, W., and W. H. Barry: Diastolic pressure—volume relations in the diseased heart. Federation Proc. 39: 148–155, 1980.

    CAS  Google Scholar 

  47. Grossman, W., and L. P. Mclaurin: Diastolic properties of the left ventricle. Ann. Intern. Med. 84: 316–326, 1976.

    PubMed  CAS  Google Scholar 

  48. Grossman, W., L. P. Mclaurin, and E. L. RoLett: Alterations in left ventricular relaxation and diastolic compliance in congestive cardiomyopathy. Cardiovasc. Res. 13: 514–522, 1979.

    PubMed  CAS  Google Scholar 

  49. Gudbjarnson, S., P. Mathes, and K. G. Raven: Functional compartmentation of Atp and creatine phosphate in heart muscle. J. Mol. Cell. Cardiol. 1: 325–339, 1970.

    Google Scholar 

  50. Hearse, D. J., P. B. Garlick, and S. M. Humphrey: Ischemic contracture of myocardium. Mechanisms and prevention. Am. J. Cardiol. 39: 986–993, 1977.

    PubMed  CAS  Google Scholar 

  51. Heinl, P., H. J. KuHN, and J. C. Reugg: Tension responses to quick length changes of glycerinated skeletal muscle fibers from the frog and tortoise. J. Physiol. (Lond.) 237: 243–258, 1974.

    Google Scholar 

  52. Henquell, L., C. L. Odoroff, and C. R. Honig: Intercapillary distance and capillary reserve in hypertrophied rat hearts beating in situ. Circ. Res. 41: 400–408, 1977.

    PubMed  CAS  Google Scholar 

  53. Ingwall, J. S.: Phosphorus nuclear magnetic resonance spectroscopy of cardiac and skeletal muscle. Am. J. Physiol. 242: (Heart Circ. Physiol.) H729 — H744, 1982.

    PubMed  CAS  Google Scholar 

  54. Isoyama, S., C. S. Apstein, L. F. Wexler, W. N. Grice, and B. H. Lorell: Acute decrease in left ventricular diastolic chamber distensibility during simulated angina in isolated hearts. Circ. Res. 61: 925–933, 1987.

    PubMed  CAS  Google Scholar 

  55. Jacobus, W. E., I. H. Pores, S. K. Lucas, ET AL.: Intracellular acidosis and contractility in the normal and ischemic heart as examined by 31P Nmr. J. Mol. Cell. Cardiol. 14 (Suppl. 3 ): 13–20, 1982.

    Google Scholar 

  56. Kihara, Y., W. Grossman, and J. P. Morgan: Direct measurement of changes in intracellular calcium transients during hypoxic, ischemia and reperfusion of the intact mammalian heart. Circ. Res. 65: 1029–1044, 1989.

    PubMed  CAS  Google Scholar 

  57. Kitakaze, M., and E. Maraban: Cellular mechanism of the modulation of contractile function by coronary perfusion pressure in ferret hearts. J. Physiol. 414: 455–472, 1989.

    PubMed  CAS  Google Scholar 

  58. Kubler, W., and A. Katz: Mechanism of early “pump” failure of the ischemic heart. Possible role of adenosine triphosphate depletion and inorganic phosphate accumulation. Am. J. Cardiol. 40: 467–471, 1977.

    PubMed  CAS  Google Scholar 

  59. Kusuoka, H., M. L. Weisfeldt, J. L. Zweier, W. E. Jacobus, and E. Marban: Mechanism of early contractile failure during hypoxia in intact ferret heart: Evidence for modulation of maximal Cat, -activated force by inorganic phosphate. Circ. Res. 59: 270282, 1986.

    Google Scholar 

  60. Levine, H. J.: Compliance of the left ventricle. Circulation 46: 423–426, 1972.

    PubMed  CAS  Google Scholar 

  61. Lorell, B. H., and W. Grossman: Cardiac hypertrophy: The consequences for diastole. J. Am. Coll. Cardiol. 9: 1189–1193, 1987.

    CAS  Google Scholar 

  62. Lorell, B. H., W. N. Grice, and C. S. Apstein: Impaired diastolic tolerance to low flow ischemia in blood-perfused hypertrophied rat hearts. Circulation 80 (Suppl. II): II - 97, 1989.

    Google Scholar 

  63. Lorell, B. H., W. N. Grice, and C. S. Apstein: Influence of hypertension with minimal hypertrophy on diastolic function during demand ischemia. Hypertension 13: 36 1370, 1989.

    Google Scholar 

  64. Lorell, B. H., S. Isoyama, W. N. Grice, and C. S. Apstein: Effects of ouabain and isoproterenol on left ventricular function during low flow ischemia in isolated, blood-perfused rabbit hearts. Circ. Res. 63: 457–467, 1988.

    PubMed  CAS  Google Scholar 

  65. Lorell, B. H., L. F. Wexler, S. Momomura, E. Weinberg, and C. S. Apstein: The influence of pressure overload left ventricular hypertrophy on diastolic properties during hypoxia in isovolumically contracting rat hearts. Circ. Res. 58: 653–663, 1986.

    PubMed  CAS  Google Scholar 

  66. Lorell, B. H., L. F. Wexler, S. Momomura, E. Weinberg, J. Ingwall, and C. S. Apstein: Effects of hypoxia on relaxation of the hypertrophied ventricle. In: Diastolic Relaxation of the Heart, edited by W. Grossman and B. H. Lorell. Boston: Martinus Nijhoff Publishing, 1987, p. 185–191.

    Google Scholar 

  67. Mandel, F., R. G. Kranias, A. G. Degende, ET AL.: The effect of pH on the transient state of kinetics of Cat’-Mgt+-Atpase of cardiac sarcoplasmic reticulum. Circ. Res. 50: 310–317, 1982.

    PubMed  CAS  Google Scholar 

  68. Mann, T., S. Goldberg, G. H. Mudge, JR., And W. Grossman: Factors contributing to altered left ventricular diastolic properties during angina pectoris. Circulation 59: 1420, 1979.

    Google Scholar 

  69. Mann, T., B. R. Brodie, W. Grossman, and L. P. Mclaurin: Effect of angina on the left ventricular diastolic pressure-volume relationship. Circulation 55: 761–766, 1977.

    PubMed  CAS  Google Scholar 

  70. Marcus, M. L., D. G. Harrison, W. M. Chillian, ET AL.: Alteration in the coronary circulation in hypertrophied ventricles. Circulation 75 (Suppl. I): 1–19, 1987.

    Google Scholar 

  71. Marcus, M. L., D. B. Don, L. F. Hiratzka, ET AL.: Decreased coronary reserve: A mechanism for angina pectoris in patients with aortic stenosis and normal coronary arteries. N. Engl. J. Med. 307: 1362–1366, 1982.

    PubMed  CAS  Google Scholar 

  72. Marcus, M. L., S. Koyanagi, D. G. Harrison, D. B. DoTY, L. F. Hiratzka, and C. L. East-Ham: Abnormalities in the coronary circulation that occur as a consequence of cardiac hypertrophy. Am. J. Med. 75: 62–66, 1983.

    Google Scholar 

  73. Marshall, R. C., and D. Y. Zhang: Correlation of contractile dysfunction with oxidative energy production and tissue high energy phosphate stores during partial coronary flow disruption in rabbit hearts. J. Clin. Invest. 82: 86–95, 1988.

    PubMed  CAS  Google Scholar 

  74. Mathews, P. M., G. K. Ratta, and D. J. Taylor: A 91P Nmr study of metabolism in the hypoxic perfused rat heart. Trans. Biochem. Soc. 9: 236–237, 1981.

    Google Scholar 

  75. Mcelroy, D. D., W. E. Walker, and H. Taegtmeyer: Glycogen loading improves left ventricular function of the rabbit heart after hypothermic ischemic arrest. J. Appl. Cardiol. 4: 455–465, 1989.

    Google Scholar 

  76. Mclaurin, L. P., E. L. RoLett, and W. Grossman: Impaired left ventricular relaxation during pacing-induced ischemia. Am. J. Cardiol. 32: 751–757, 1973.

    PubMed  CAS  Google Scholar 

  77. Menasche, P., C. Grousset, C. S. Apstein, F. Marotte, C. Mouas, and A. PIwNica: Increased injury of hypertrophied myocardium with ischemic arrest. Preservation with hypothermia and cardioplegia. Am. Heart J. 110: 1204–1209, 1985.

    PubMed  CAS  Google Scholar 

  78. Momomura, S., J. S. Ingwall, J. A. Parker, P. Sahagian, J. J. Ferguson, and W. Gross-Man: The relationships of high energy phosphates, tissue pH, and regional blood flow to diastolic distensibility in the ischemic dog myocardium. Circ. Res. 57: 822–835, 1985.

    PubMed  CAS  Google Scholar 

  79. Momomura, S., A. B. Bradley, and W. Grossman: Left ventricular diastolic pressure-segment length relations and end-diastolic distensibility in dogs with coronary stenoses. Circ. Res. 55: 203–214, 1984.

    PubMed  CAS  Google Scholar 

  80. MooN, R. B., and H. Richards: Determination of intracellular pH as observed by 31P magnetic resonance. J. Biol. Chem. 248: 7276–7278, 1973.

    Google Scholar 

  81. Morgenstern, C., U. Holies, G. Arnold, and W. Lochner: The influence of coronary pressure and coronary flow on intracoronary blood volume and geometry of the left ventricle. Pflugers Arch. 340: 101–111, 1973.

    PubMed  CAS  Google Scholar 

  82. Mueller, T. M., M. L. Marcus, R. E. Kerber, ET AL.: Effect of renal hypertension and left ventricular hypertrophy on the coronary circulation in dogs. Circ. Res. 42: 543–549, 1978.

    PubMed  CAS  Google Scholar 

  83. Nayler, W. G., and A. Williams: Relaxation in heart muscle: Some morphologic and biochemical considerations. Eur. J. Cardiol. 7(Suppl.:): 35–50, 1978.

    Google Scholar 

  84. Nayler, W. G., C. E. Yopez, and P. A. Poole-Wilson: The effect of beta-adrenoreceptor and calcium“ antagonist drugs on the hypoxia-induced increase in resting tension. Cardiovasc. Res. 12: 666–674, 1978.

    PubMed  CAS  Google Scholar 

  85. Neely, J. R., and D. Feuvray: Metabolic products and myocardial ischemia. Am. J. Pathol. 102: 282–291, 1982.

    Google Scholar 

  86. Neeley, J. R., and L. W. Grotyohann: Role of glycolytic products in damage to ischemic myocardium. Dissociation of adenosine triphosphate levels and recovery of function of reperfused ischemic hearts. Circ. Res. 55: 816–824, 1984.

    Google Scholar 

  87. Ogilby, J. D., and C. S. Apstein: Preservation of myocardial compliance and reversal of contracture (“Stone Heart”) during ischemic arrest by applied intermittent ventricular stretch. Am. J. Cardiol. 46: 397–404, 1980.

    PubMed  CAS  Google Scholar 

  88. Olson, C. O., D. E. Attarian, R. N. Jones, R. C. Hill, J. D. Sink, K. L. Lee, and A. S. Wechsler: The coronary pressure-flow determinants of left ventricular compliance in dogs. Circ. Res. 49: 856–865, 1981.

    Google Scholar 

  89. Opherk, D., G. Mall, H. Zebe, ET AL.: Reduction of coronary reserve: A mechanism for angina pectoris in patients with arterial hypertension and normal coronary arteries. Circulation 69: 1–7, 1984.

    PubMed  CAS  Google Scholar 

  90. Opie, L. H.: Effects of anoxia and regional ischemia on metabolism of glucose and fatty acids. Circ. Res. 38 (Suppl. I): I-52-I-74, 1976.

    Google Scholar 

  91. Parrish, D. G., W. S. Ring, and R. J. Bache: Myocardial perfusion in compensated and failing hypertrophied left ventricle. Am. J. Physiol. 249: (Heart Circ. Physiol.) H534 - H539, 1985.

    PubMed  CAS  Google Scholar 

  92. Paulus, W. J., W. Grossman, T. Serizawa, P. D. Bourdillon, A. Pasipoulardes, and I. Mirsky: Different effects of two types of ischemia on myocardial systolic and diastolic function. Am. J. Physiol. 248: (Heart Circ. Physiol.) H719 — H728, 1985.

    PubMed  CAS  Google Scholar 

  93. Paulus, W. J., T. Serizawa, and W. GRossMan: Altered left ventricular diastolic properties during pacing-induced ischemia in dogs with coronary stenoses: Potentiation by caffeine. Circ. Res. 50: 218–277, 1982.

    PubMed  CAS  Google Scholar 

  94. Pepine, C., and L. Wiener: Relationship of anginal symptoms to lung mechanics during myocardial ischemia. Circulation 46: 863–869, 1972.

    PubMed  CAS  Google Scholar 

  95. Pichard, A. D., R. Gorlin, H. Smith, ET AL.: Coronary flow studies in patients with left ventricular hypertrophy of the hypertensive type: Evidence for an impaired coronary vascular reserve. Am. J. Cardiol. 47: 547–554, 1981.

    PubMed  CAS  Google Scholar 

  96. Pirzada, F. A., E. A. Ekong, P. S. Vokonas, C. S. Apstein, W. B. Hood, JR.: Experimental myocardial infarction. Xiii. Sequential changes in left ventricular pressure-length relationships in the acute phase. Circulation 53: 970–975, 1974.

    Google Scholar 

  97. Poole-Wilson, P. A.: Measurement of myocardial intracellular pH in pathological states. J. Mol. Cell. Cardiol. 10: 511–526, 1978.

    Google Scholar 

  98. Rembert, J. C., L. H. Kleinman, J. M. Fedor, ET AL.: Myocardial blood flow distribution in concentric left ventricular hypertrophy. J. Clin. Invest. 62: 379–386, 1978.

    PubMed  CAS  Google Scholar 

  99. Rickards, A. F., and R. Seabra-Gomes: Observations on the effect on angina on the left ventricle with special reference in diastolic behavior. Eur. J. Cardiol. 7 (Suppl. 1): 213–238, 1978.

    Google Scholar 

  100. Rovetto, J. M., W. F. Lamberton, and J. R. Neely: Mechanisms of glycolytic inhibition in ischemic rat hearts. Circ. Res. 37: 742–751, 1975.

    PubMed  CAS  Google Scholar 

  101. Rubin, S. A., M. C. Fishbein, and H. J. C. Swan: Compensatory hypertrophy in the heart after myocardial infarction in the rat. J. Am. Coll. Cardiol. 1: 1435–1441, 1983.

    PubMed  CAS  Google Scholar 

  102. Salisbury, P. F., C. E. Cross, and P. A. Rieben: Influence of coronary artery pressure upon myocardial elasticity. Circ. Res. 8: 794–800, 1960.

    PubMed  CAS  Google Scholar 

  103. Serizawa, T., B. A. Carabello, and W. Grossman: Effect of pacing-induced ischemia on left ventricular diastolic pressure—volume relations in dogs with coronary stenoses. Circ. Res. 46: 430–439, 1980.

    PubMed  CAS  Google Scholar 

  104. Serizawa, T., W. M. Vogel, C. S. APsTein, and W. Grossman: Comparison of acute alterations in left ventricular relaxation and diastolic chamber stiffness induced by hypoxia and ischemia: Role of myocardial oxygen supply—demand imbalance. J. Clin. Invest. 68: 91–102, 1981.

    PubMed  CAS  Google Scholar 

  105. Shine, K. I., A. M. Douglas, and N. Ricchiuti: Ischemia in isolated ventricular septae: Mechanical events. Am. J. Physiol. 231: 1225–1232, 1976.

    PubMed  CAS  Google Scholar 

  106. Strauer, B. E.: Ventricular function and coronary hemodynamics in hypertensive heart disease. Am. J. Cardiol. 44: 999–1006, 1979.

    PubMed  CAS  Google Scholar 

  107. Theroux, P., D. Franklin, J. Ross, JR., and W. S. Kemper: Regional myocardial function during acute coronary artery occlusion and its modification by pharmacologic agents in the dog. Circ. Res. 35: 896–908, 1974.

    PubMed  CAS  Google Scholar 

  108. Theroux, P., J. Ross, JR., D. Franklin, J. W. Covell, C. M. Bloor, and S. Sasayama: Regional myocardial function and dimensions early and late after myocardial infarction in the unanesthetized dog. Circ. Res. 40: 158–165, 1977.

    CAS  Google Scholar 

  109. Trenouth, R. S., C. Phelps, and W. A. Neill: Determinants of left ventricular hypertrophy and oxygen supply in chronic aortic valve disease. Circulation 53: 644–650, 1976.

    PubMed  CAS  Google Scholar 

  110. Tsien, R. W.: Possible effects of hydrogen ions in ischemic myocardium. Circulation 53 (Suppl. I): 14–16, 1976.

    Google Scholar 

  111. Tyberg, J. V., J. S. Forrester, H. L. Wyatt, S. J. Goldner, W. W. Parmley, and H. J. Swan: An analysis of segmental ischemic dysfunction utilizing the pressure-length loop. Circulation 49: 748–754, 1974.

    PubMed  CAS  Google Scholar 

  112. Ventura-Clapier, R., and G. Vassort: Rigor tension during metabolic and ionic rises in resting tension in rat heart. J. Mol. Cell. Cardiol. 13: 551–561, 1981.

    Google Scholar 

  113. Vogel, W. M., L. L. Briggs, and C. S. Apstein: Separation of inherent diastolic myocardial fiber tension and coronary vascular “erectile” contributions to wall stiffness of rabbit hearts damaged by ischemia, hypoxia, calcium paradox and reperfusion. J. Mol. Cell. Cardiol. 17: 57–70, 1985.

    PubMed  CAS  Google Scholar 

  114. Vogel, W. M., and C. S. Apstein: Direct mechanical effect of coronary perfusion on systolic function in early ischemia. Circulation 66 (Suppl. II): II - 255, 1982.

    Google Scholar 

  115. Vogel, W. M., C. S. Apstein, L. L. Briggs, W. H. Gaasch, and J. Ahn: Acute alterations in left ventricular diastolic chamber stiffness: Role of the “erectile” effect of coronary arterial pressure and flow in normal and damaged hearts. Circ. Res. 51: 465–478, 1982.

    PubMed  CAS  Google Scholar 

  116. Vrobel, T. R., W. S. Ring, R. W. Anderson, ET AL.: Effect of heart rate on myocardial blood flow in dogs with left ventricular hypertrophy. Am. J. Physiol. 239: (Heart Circ. Physiol.) H621 — H627, 1980.

    PubMed  CAS  Google Scholar 

  117. Weiner, J. M., C. S. Apstein, J. H. Arthur, F. A. Pirzada, and W. B. Hood, JR.: Persistence of myocardial injury following brief periods of coronary occlusion. Cardiovasc. Res. 10: 678–686, 1976.

    PubMed  CAS  Google Scholar 

  118. Weiss, J., and B. Hiltbrand: Functional compartmentalization of glycolytic versus oxidative metabolism in isolated rabbit heart. J. Clin. Invest. 75: 436–447, 1985.

    PubMed  CAS  Google Scholar 

  119. Weiss, J., and S. T. Lamp: Glycolysis preferentially inhibits Atp-sensitive K` channels in isolated guinea pig cardiac myocytes. Science 238: 67–69, 1987.

    PubMed  CAS  Google Scholar 

  120. Wexler, L. F., W. N. Grice, M. Huntington, J. F. Plehn, and C. S. Apstein: Coronary hypertension and diastolic compliance in isolated rabbit hearts. Hypertension 13: 598–606, 1989.

    PubMed  CAS  Google Scholar 

  121. Wexler, L. F., B. H. Lorell, S. Momomura, E. O. Weinberg, J. S. Ingwall, and C. S. Apstein: Enhanced sensitivity to hypoxia-induced diastolic dysfunction in pressure overload left ventricular hypertrophy in the rat: Role of high energy phosphate depletion. Circ. Res. 62: 766–775, 1988.

    PubMed  CAS  Google Scholar 

  122. Wexler, L. F., E. O. Weinberg, J. S. Ingwall, and C. S. Apstein: Acute alterations in diastolic left ventricular chamber distensibility: Mechanistic differences between hypoxemia and ischemia in isolated perfused rabbit and rat hearts. Circ. Res. 59: 515528, 1986.

    Google Scholar 

  123. Yonekura, Y., A. B. Brill, P. Som, et al.: Regional myocardial substrate uptake in hypertensive rats: A quantitative autoradiographic measurement. Science 22: 1494 1496, 1985.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 American Physiological Society

About this chapter

Cite this chapter

Apstein, C.S. (1992). Effects of Ischemia, Hypoxia, and Acidosis on Cardiac Systolic and Diastolic Function, and Glycolytic Metabolism in Normal and Hypertrophied Hearts. In: Arieff, A.I. (eds) Hypoxia, Metabolic Acidosis, and the Circulation. Clinical Physiology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7542-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7542-2_4

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7542-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics