Skip to main content

Regulation of Myocardial Blood Flow and Oxygen Delivery during Hypoxia

  • Chapter

Part of the book series: Clinical Physiology Series ((CLINPHY))

Abstract

The causes of cellular hypoxia can be classified by considering the flow of oxygen from air to tissues (Table 2-1). Arterial hypoxemia, anemia, and some of the abnormal hemoglobins jeopardize myocardial oxygen supply or delivery (defined as the product of arterial oxygen content and myocardial blood flow) by reducing the arterial oxygen content, and oxygen delivery must be maintained by an adequate increase in blood flow. If this cannot be achieved, oxygen extraction will have to be increased or else cell hypoxia will develop. Certain abnormal hemoglobins are associated with a normal arterial oxygen content but with a shift of P50 to the left that makes it harder to unload oxygen at the tissue level. Consequently, to avert cell hypoxia, blood flow has to increase so that myocardial oxygen delivery is above normal. Polycythemia or arterial stenosis tend to reduce myocardial blood flow for different reasons, but both may not only reduce myocardial oxygen delivery but also may lead to inadequate removal of metabolites. Finally, metabolic poisons such as cyanide, and perhaps those due to reperfusion injury, produce cell hypoxia in the face of a normal oxygen supply to organs; they will not be discussed further. For all of the other causes of cell hypoxia, the oxygen supply to the organs is deficient. The end result—cell hypoxia—is similar in all, but the associated features may depend on arterial oxygen tension, the oxygen dissociation curve, blood viscosity, and, for polycythemia and ischemia, on the inability of the reduced blood flows to remove metabolites adequately. In addition, associated responses of the sympathetic nervous system and its interactions with humoral agents may differ under different circumstances and lead to modifications of the basic myocardial responses (see Chapter 1, Circulatory Regulation during Hypoxia and Hypercapnia).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abendschein, D. R., J. E. Fewell, C. J. Carlson, and E. Rapaport: Myocardial blood flow during acute isovolemic anemia and treadmill exercise in dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 53: 203–206, 1982.

    CAS  Google Scholar 

  2. Adams, J. D., H. H. Erickson, and H. L. Stone: Myocardial metabolism during exposure to carbon monoxide in the conscious dog. J. Appl. Physiol. 34: 238–242, 1973.

    PubMed  CAS  Google Scholar 

  3. Arts, T., and R. S. Reneman: Interaction between intramyocardial pressure (Imp) and myocardial circulation. J. Biomech. Eng. 107: 51–56, 1985.

    Article  PubMed  CAS  Google Scholar 

  4. Ayres, S. M., S. Gianelli, JR., and H. Mueller: Myocardial and systemic responses to carboxyhemoglobin. Ann. Nyacad. Sci. 174: 268–293, 1970.

    Article  CAS  Google Scholar 

  5. Baer, R. W., G. J. Vlahakes, P. N. Uhlig, and J. I. E. Hoffman: Maximal myocardial oxygen transport during anemia and polycythemia in dogs. Am. J. Physiol. 252 (Heart Circ. Physiol. 21 ): H1086 — H1095, 1987.

    Google Scholar 

  6. Berne, R. M., J. R. Blackmon, and T. H. Gardner: Hypoxia and coronary blood flow. J. Clin. Invest. 36: 1101–1106, 1957.

    Article  PubMed  CAS  Google Scholar 

  7. Bernstein, D., D. Teitel, D. Sidi, M. A. Heymann, and A. M. Rudolph: Redistribution of regional blood flow and oxygen delivery in experimental cyanotic heart disease in newborn lambs. Pediatr. Res. 22: 389–393, 1987.

    Article  PubMed  CAS  Google Scholar 

  8. Bhatia, M. L., S. C. Manchanda, and S. B. Roy: Coronary haemodynamic studies in chronic severe anaemia. Br. Heart J. 31: 365–374, 1969.

    Article  PubMed  CAS  Google Scholar 

  9. Biro, G. P., and D. Beresford-Kroeger:: Myocardial blood flow and 02-supply following dextran-haemodilution and methaemoglobinaemia in the dog. Cardiovasc. Res. 13: 459–468, 1979.

    Google Scholar 

  10. Brazier, J., N. Cooper, and G. D. Buckberg: The adequacy of subendocardial oxygen delivery: The interaction of determinants of flow, arterial oxygen content and myocardial oxygen need. Circulation 49: 968–977, 1974.

    Article  PubMed  CAS  Google Scholar 

  11. Briden, K. L., M. Teltser, and H. R. WEiss: The effects of mild normovolemic hemodilution on regional flow, oxygenation, and small vessel blood content in the rabbit heart subjected to acute coronary occlusion. Circ. Shock 6: 223–233, 1979.

    PubMed  CAS  Google Scholar 

  12. Canty, J. M., JR.: Coronary pressure-function and steady-state pressure-flow relations during autoregulation in the unanesthetized dog. Circ. Res. 63: 821–836, 1988.

    Article  PubMed  Google Scholar 

  13. Case, R. B., E. Berglund, and S. J. Sarnoff: Ventricular function: Vii. Changes in coronary resistance and ventricular function resulting from acutely induced anemia and the effect thereon of coronary stenosis. Am. J. Med. 18: 397–405, 1955.

    Article  PubMed  CAS  Google Scholar 

  14. Cohn, H. E., E. J. Sacks, M. A. Heymann, and A. M. Rudolph: Cardiovascular responses to hypoxemia and acidemia in fetal lambs. Am. J. Obstet. Gynecol. 120: 817–824, 1974.

    PubMed  CAS  Google Scholar 

  15. Daugherty, R. M., JR., J. B. Scott, J. M. Dabney, and F. J. Haddy: Local effects of 02 and CO2 on limb, renal and coronary vascular resistances. Am. J. Physiol. 213: 1102–1110, 1967.

    PubMed  Google Scholar 

  16. Davies, J. M., and W. A. Tweed: The regional distribution and determinants of myocardial blood flow during asphyxia in the fetal lamb. Pediatr. Res. 18: 764–767, 1984.

    Article  PubMed  CAS  Google Scholar 

  17. Delivoria-Papadopolous, M., N. P. Roncevic, and F. A. Oski: Postnatal changes in oxygen transport of term, premature, and sick infants: The role of red cell 2,3-diphosphoglycerate and adult hemoglobin. Pediatr. Res. 5: 235–245, 1971.

    Article  Google Scholar 

  18. Dole, W. P.: Autoregulation of the coronary circulation. Prog. Cardiovasc. Dis. 29: 293323, 1987.

    Google Scholar 

  19. Dole, W. P., and D. W. NuNo: Myocardial oxygen tension determines the degree and pressure range of coronary autoregulation. Circ. Res. 59: 202–215, 1986.

    Article  PubMed  CAS  Google Scholar 

  20. Dole, W. P., N. Yamada, V. S. Bishop, and R. A. OLssoN: role of adenosine in coronary blood flow regulation after reductions in perfusing pressure. Circ. Res. 56: 517–524, 1985.

    Article  PubMed  CAS  Google Scholar 

  21. Drake-Holland, A. J., J. D. Laird, M. I. M. Noble, J. A. E. Spaan, and I. Vergroesen: Oxygen and coronary vascular resistance during autoregulation and metabolic vasodilatation in the dog. J. Physiol. (Lond.) 348: 285–299, 1984.

    CAS  Google Scholar 

  22. Duvelleroy, M. A., J. L. Martin, B. Tesseire, Y. Gauduel, and M. Duruble: Abnormal hemoglobin oxygen affinity and the coronary circulation. Bibl. Haematol. 46: 70–77, 1980.

    PubMed  Google Scholar 

  23. Duvelleroy, M. A., H. Mehmel, and M. B. Laver: Hemoglobin—oxygen equilibrium and coronary blood flow: An analog model. J. Appl. Physiol. 35: 480–484, 1973.

    PubMed  CAS  Google Scholar 

  24. Fan, F. C., R. Y. Z. Chen, G. B. Schuessler, and S. Chien: Effects of hematocrit variations on regional hemodynamics and oxygen transport in the dog. Am. J. Physiol. 238 (Heart Circ. Physiol. 7): H545 — H552, 1980.

    PubMed  CAS  Google Scholar 

  25. Fisher, D. J.: Increased regional myocardial blood flows and oxygen deliveries during hypoxemia in lambs. Pediatr. Res. 18: 602–606, 1984.

    Article  PubMed  CAS  Google Scholar 

  26. Fisher, D. J.: Comparative effects of metabolic acidemia and hypoxemia on cardiac output and regional blood flows in unanesthetized newborn lambs. Pediatr. Res. 20: 756–760, 1986.

    Article  PubMed  CAS  Google Scholar 

  27. Fisher, D. J., M. A. Heymann, and A. M. Rudolph: Fetal myocardial oxygen and carbohydrate consumption during acutely induced hypoxemia. Am. J. Physiol. 242 (Heart Circ. Physiol. 11 ): H657 — H661, 1982.

    Google Scholar 

  28. Fisher, D. J., M. A. Heymann, and A. M. Rudolph: Fetal myocardial oxygen and carbohydrate metabolism in sustained hypoxemia in utero. Am. J. Physiol. 243 (Heart Circ. Physiol. 12 ): H959 — H963, 1982.

    Google Scholar 

  29. Geffin, G. A., M. A. Vasu, D. D. O’Keefe, D. C. Pennington, A. J. Erdmann Iii, E. LowEnstein, W. J. Powell, JR., and W. M. Daggett: Ventricular performance and myocardial water content during hemodilution in dogs. Am. J. Physiol. 235 (Heart Circ. Physiol. 4): H767 — H775, 1978.

    Google Scholar 

  30. Geha, A. S.: Coronary and cardiovascular dynamics and oxygen availability during acute normovolemic anemia. Surgery 80: 47–53, 1976.

    PubMed  CAS  Google Scholar 

  31. Grover, R. F., R. Lufschanowski, and J. K. Alexander: Decreased coronary blood flow in man following ascent to high altitude. Adv. Cardiol. 5: 72–79, 1970.

    Google Scholar 

  32. Grover, R. F., R. Lufschanowski, and J. A. Alexander: Alterations in the coronary circulation of man following ascent to 3,100 m altitude. J. Appl. Physiol. 41: 832–838, 1976.

    PubMed  CAS  Google Scholar 

  33. Guz, A., G. S. Kurland, and A. S. Freedberg: Relation of coronary flow to oxygen supply. Am. J. Physiol. 199: 179–182, 1960.

    PubMed  CAS  Google Scholar 

  34. Hanley, F. L., M. T. Grattan, M. B. Stevens, and J. I. E. Hoffman: role of adenosine in coronary autoregulation. Am. J. Physiol. 250 (Heart Circ. Physiol. 19 ): H558 — H566, 1986.

    Google Scholar 

  35. Heiss, H. W., M. TÖPfer, J. Barmeyer, K. Wink, G. Huber, and J. Keul: Studies on the regulation of myocardial blood flow in man. II. Effects of acute arterial hypoxia. Clin. Cardiol. 1: 35–42, 1978.

    PubMed  CAS  Google Scholar 

  36. Hilton, R., and F. Eichholtz: The influence of chemical factors on the coronary circulation. J. Physiol. (Lond.) 59: 413–425, 1925.

    CAS  Google Scholar 

  37. Hoffman, J. I. E.: Maximal coronary flow and the concept of coronary vascular reserve. Circulation 70: 153–159, 1984.

    Article  PubMed  CAS  Google Scholar 

  38. Hoffman, J. I. E.: A critical view of coronary reserve. Circulation 75 (Suppl I): 6–11, 1987.

    Google Scholar 

  39. Hoffman, J. I. E.: Transmural myocardial perfusion. Prog. Cardiovasc. Dis. 29: 429–464, 1987.

    Article  PubMed  CAS  Google Scholar 

  40. Hoffman, J. I. E.: Coronary physiology and pathophysiology. In: Ischaemic Heart Disease, edited by K. M. Fox. Dordrecht, The Netherlands: Mtp Press Ltd., 1987, p. 69–89.

    Chapter  Google Scholar 

  41. Hoffman, J. I. E., R. W. Baer, F. L. Hanley, L. M. Messina, and M. T. Grattan: Regulation of transmural myocardial blood flow. J. Biomech. Eng. 107: 2–9, 1985.

    Article  PubMed  CAS  Google Scholar 

  42. Hoffman, J. I. E., and G. D. Buckberg: Transmural variations in myocardial perfusion. In: Progress in Cardiology, Vol. 5, edited by P. Yu and J. F. Goodwin. Philadelphia: Lea & Febiger, 1976, p. 37–89.

    Google Scholar 

  43. Hoffman, J. I. E., M. T. Grattan, F. L. Hanley, and L. M. Messina: Total and transmural perfusion of the hypertrophied heart. In: Cardiac Left Ventricular Hypertrophy, edited by H. E. D. J. ter Keurs and J. J. Schipperheyn. The Hague: Martinus Nijhoff Publishers, 1983, p. 130–151.

    Chapter  Google Scholar 

  44. Hoffman, J. I. E., and J. A. E. Spaan: Pressure—flow relations in coronary circulation. Physiol. Rev. 70: 331–390, 1990.

    PubMed  CAS  Google Scholar 

  45. Holtz, J., E. Bassenge, W. Von Restorff, and E. Mayer: Transmural differences in myocardial blood flow and in coronary dilatory capacity in hemodiluted conscious dogs. Basic Res. Cardiol. 71: 36–46, 1976.

    Article  PubMed  CAS  Google Scholar 

  46. Holzman, I. R., B. Tabata, and D. I. Edelstone: Blood flow and oxygen delivery to the organs of the neonatal lamb as a function of hematocrit. Pediatr. Res. 20: 1274–1279, 1986.

    Article  PubMed  CAS  Google Scholar 

  47. Jan, K.-M., and S. Chien: Effect of hematocrit variations on coronary hemodynamics and oxygen utilization. Am. J. Physiol. 233 (Heart Circ. Physiol. 2 ): H106 — H113, 1977.

    Google Scholar 

  48. Jones, D. P., R. Damiano, J. L. Cox, and W. G. Wolfe: The effect of altitude induced hypoxia on regional myocardial blood flow. J. Thorac. Cardiovasc. Surg. 82: 216–220, 1981.

    PubMed  CAS  Google Scholar 

  49. Katz, A. M., L. N. Katz, and F. L. Williams: Regulation of coronary flow. Am. J. Physiol. 180: 392–402, 1955.

    PubMed  CAS  Google Scholar 

  50. Kitamura, K., C. R. Jorgensen, F. L. Gobel, H. L. Taylor, and Y. Wang: Hemodynamic correlates of myocardial oxygen consumption during upright exercise. J. Appl. Physiol. 32: 516–522, 1972.

    PubMed  CAS  Google Scholar 

  51. Kroll, K., and Feigl, E. O.: Adenosine is unimportant in controlling coronary blood flow in unstressed dog hearts. Am. J. Physiol. 249 (Heart Circ. Physiol. 18 ): H1176 — H1187, 1985.

    Google Scholar 

  52. Kuramoto, K., S. Matsushita, T. Matsuda, J. Mifune, M. Sakai, T. Iwasaki, T. Shinagawa, N. Moroni, and M. MuRakami: Effect of hematocrit and viscosity on coronary circulation and myocardial oxygen utilization. Jpn. Circ. J. 44: 443–448, 1980.

    Article  PubMed  CAS  Google Scholar 

  53. Laird, J. D.: Cardiac metabolism and the control of coronary blood flow. In: Cardiac Metabolism, edited by A. J. Drake-Holland and M. I. M. Noble. New York: John Wiley & Sons, 1983, p. 257–278.

    Google Scholar 

  54. Lee, J. C., K. H. Halloran, J. F. N. Taylor, and S. E. Downing: Coronary flow and myocardial metabolism in newborn lambs: Effects of hypoxia and acidemia. Am. J. Physiol. 224: 1381–1387, 1973.

    PubMed  CAS  Google Scholar 

  55. Levy, B. I., A. Tedgui, and J. B. Michel: A mechanical model of the dynamics of the coronary circulation in dog. J. Theor. Biol. 116: 225–242, 1985.

    Article  PubMed  CAS  Google Scholar 

  56. Lister, G., T. K. Walter, H. T. Versmold, P. R. Dallman, and A. M. Rudolph: Oxygen delivery in lambs: Cardiovascular and hematologic development. Am. J. Physiol. 237 (Heart Circ. Physiol. 6 ): H668 — H675, 1979.

    Google Scholar 

  57. Loarie, D. J., P. Wilkinson, J. Tyberg, and A. White: The hemodynamic effects of halo-thane in anemic dogs. Anesth. Analg. 58: 195–200, 1979.

    Article  PubMed  CAS  Google Scholar 

  58. Love, W. D., and M. D. Tyler: Effect of hypoxemia and hypercapnia on regional distribution of myocardial blood flow. Am. J. Physiol. 208: 1211–1216, 1965.

    PubMed  CAS  Google Scholar 

  59. Manchanda, S. C., L. M. Srivastava, R. Tandon, and S. B. Roy: Coronary circulation response to altitude. Indian J. Physiol. Pharmacol. 17: 79–82, 1973.

    PubMed  CAS  Google Scholar 

  60. Marchetti, G. L., L. Merlo, V. Noseda, and O. Visioli: Myocardial blood flow in experimental cardiac hypertrophy in dogs. Cardiovasc. Res. 7: 519–527, 1973.

    Article  PubMed  CAS  Google Scholar 

  61. Mehmel, H., M. A. Duvelleroy, and M. B. Laver: Response of coronary blood flow to pH-induced changes in hemoglobin-02 affinity. J. Appl. Physiol. 35: 484–489, 1973.

    Google Scholar 

  62. Mohrman, D. E., and E. O. Feigl: Competition between sympathetic vasoconstriction and metabolic vasodilation in the canine coronary circulation. Circ. Res. 42: 79–86, 1978.

    Article  PubMed  Google Scholar 

  63. Moret, P. E. Covarrubias, J. Coudert, and F. Duchosal: Cardiocirculatory adaptation to chronic hypoxia. Comparative study of coronary flow, myocardial oxygen consumption, and efficiency between sea level and high altitude residents. Acta Cardiol. 27: 283305, 1972.

    Google Scholar 

  64. Mueller, T. M., M. L. Marcus, R. E. Kerber, J. A. Young, R. W. Barnes, and F. M. Abboud: Effect of renal hypertension and left ventricular hypertrophy on the coronary circulation in dogs. Circ. Res. 42: 543–549, 1978.

    Article  PubMed  CAS  Google Scholar 

  65. Murray, J. F., P. Gold, and B. L. Johnson, JR.: The circulatory effects of hematocrit variations in normovolemic and hypervolemic dogs. J. Clin. Invest. 42: 1150–1159, 1963.

    Article  PubMed  CAS  Google Scholar 

  66. Murray, J. F., and E. Rapaport: Coronary blood flow and myocardial metabolism in acute experimental anaemia. Cardiovasc. Res. 6: 360–367, 1972.

    Article  PubMed  CAS  Google Scholar 

  67. Nakamura, Y., M. Takahashi, F. Takei, N. Matsumura, N. S. Scholke, and H. Sasamoto: The change in coronary vascular resistance during acute induced hypoxemia with special reference to coronary vascular reserve. Cardiologia 54: 91–103, 1969.

    Article  PubMed  CAS  Google Scholar 

  68. O’Keefe, D. D., J. I. E. Hoffman, R. Cheitlin, M. J. O’Neill, J. R. Allard, and E. Shapkin: Coronary blood flow in experimental canine left ventricular hypertrophy. Circ. Res. 43: 43–51, 1978.

    Article  Google Scholar 

  69. Peeters, L. L. H., R. E. Sheldon, M. D. Jones, JR., E. L. Makowski, and G. Meslhia: Blood flow to fetal organs as a function of arterial oxygen content. Am. J. Obstet. Gynecol. 135: 637–645, 1979.

    Google Scholar 

  70. Race, D., H. Dedichen, and W. G. Schenk, JR.: Regional blood flow during dextran-induced normovolemic hemodilution in the dog. J. Thorac. Cardiovasc. Surg. 53: 578–586, 1967.

    PubMed  CAS  Google Scholar 

  71. Regan, T. J., M. J. Frank, P. H. Lehan, J. G. Galante, and H. K. Hellems: Myocardial blood flow and oxygen uptake during acute red cell volume increments. Circ. Res. 13: 172–181, 1963.

    Article  PubMed  CAS  Google Scholar 

  72. Von Restorff, W., B. HÖFling, J. Holtz, and E. Bassenge: Effect of increased blood fluidity through hemodilution on coronary circulation at rest and during exercise in dogs. Pflugers Arch. 357: 15–24, 1975.

    Article  Google Scholar 

  73. Roughton, F. J. W.: Transport of oxygen and carbon dioxide. In: Handbook of Physiology, Section 3: Respiration, Volume 1, edited by W. O. Fenn and H. Rahn. Washington, D.C.: American Physiological Society, 1964, p. 767–825.

    Google Scholar 

  74. Sacks, L. M., And M. Delivoria-Papadopolous:: Hemoglobin—oxygen interactions Semin. Perinatol. 8: 168–182, 1984.

    PubMed  CAS  Google Scholar 

  75. Scharf, S. M., S. Permutt, and B. Bromberger-Barnea: Effects of hypoxia and CO hypoxia on isolated hearts. J. Appl. Physiol. 39: 752–758, 1975.

    PubMed  CAS  Google Scholar 

  76. Scott, J. C., L. J. Finkelstein, and M. N. Croll: Effects of hypoxemia on coronary blood flow and cardiac output in normal and hypothyroid dogs. Am. J. Cardiol. 10: 840–845, 1962.

    Article  PubMed  CAS  Google Scholar 

  77. Sidi, D., D. F. Teitel, J. R. G. Kuipers, M. A. Heymann, and A. M. Rudolph: Effect of (3adrenergic receptor blockade on responses to acute hypoxemia in lambs. Pediatr. Res. 23: 229–234, 1988.

    Article  PubMed  CAS  Google Scholar 

  78. Surjadhana, A., J. Rouleau, L. E. Boerboom, and J. I. E. Hoffman: Myocardial blood flow and its distribution in anesthetized polycythemic dogs. Circ. Res. 43: 619–631, 1978.

    Article  PubMed  CAS  Google Scholar 

  79. Vergroesen, I.: Local regulation of coronary flow. Ph.D. thesis, University of Leiden, The Netherlands, 1987.

    Google Scholar 

  80. Vergroesen, I., M. I. M. Noble, P. A. Wieringa, and J. A. E. Spaan: Quantification of oxygen-consumption and arterial pressure as independent determinants of coronary flow. Am. J. Physiol. 252 (Heart Circ. Physiol. 21 ): H545 — H553, 1987.

    Google Scholar 

  81. Vogel, J. H. K., G. Jamieson, M. Delivoria-Papadopolous, R. D. Lurker, H. L. Brammell, and D. Brake: Coronary blood flow during short term exposure to high altitude. Adv. Cardiol. 5: 80–85, 1970.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 American Physiological Society

About this chapter

Cite this chapter

Hoffman, J.I.E. (1992). Regulation of Myocardial Blood Flow and Oxygen Delivery during Hypoxia. In: Arieff, A.I. (eds) Hypoxia, Metabolic Acidosis, and the Circulation. Clinical Physiology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7542-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7542-2_2

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7542-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics