Skip to main content

Beyond Interface Design: Considering Learner Cognition When Designing E-Learning Systems

  • Conference paper
  • First Online:
Building Sustainable Information Systems

Abstract

By developing e-learning systems with an understanding of users’ cognitive load, rather than just focusing on traditional usability constructs, it is envisaged that better learning outcomes will occur. This conceptual paper presents a review of how an understanding of cognitive load can assist with the processes of developing e-learning systems that allow for increased learning outcomes. Through a comparative analysis of human–computer interaction (HCI) methods and cognitive load theory (CLT), a greater understanding of design principles can be gained. The paper focuses on the three main effects discussed in CLT literature—split-attention, redundancy, and element interactivity—and how a developer could use these methods to reduce cognitive load and improve learning outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alasraj A, Freeman MB, Chandler P (2011) Considering cognitive load theory within e-learning environments. Paper presented at the Pacific Asia conference on information systems (PACIS) 2011, Brisbane, Australia

    Google Scholar 

  2. Blin F, Munro M (2008) Why hasn’t technology disrupted academics’ teaching practices? Understanding resistance to change through the lens of activity theory. Comput Educ 50:475–490. doi:10.1016/j.compedu.2007.09.017

    Article  Google Scholar 

  3. Carroll JM (1990) The Nurnberg funnel: designing minimalist instruction for practical computer skill. MIT Press, Cambridge

    Google Scholar 

  4. Chalmers PA (2003) The role of cognitive theory in human-computer interface. Comput Hum Behav 19:593–607. doi:10.1016/S0747-5632(02)00086-9

    Article  Google Scholar 

  5. Chandler P, Sweller J (1991) Cognitive load theory and the format of instruction. Cognition Instruct 8:293–332. doi:10.1207/s1532690xci0804_2

    Article  Google Scholar 

  6. Chandler P, Sweller J (1996) Cognitive load while learning to use a computer program. Appl Cognitive Psych 10:151–170. doi:10.1002/(SICI)1099-0720(199604)10:2

    Article  Google Scholar 

  7. Clark RC, Nguyen F, Sweller J, Baddeley M (2006) Efficiency in learning: evidence based guidelines to manage cognitive load. Perform Improv 45:46–47. doi:10.1002/pfi.4930450920

    Article  Google Scholar 

  8. Clarke T, Ayres P, Sweller J (2005) The impact of sequencing and prior knowledge on learning mathematics through spreadsheet applications. Educ Technol Res Dev 53:15–24. doi:10.1007/BF02504794

    Article  Google Scholar 

  9. Hauck R (2008) Good practices for e-learning in higher education courses. Paper presented at the World conference on e-learning in corporate, government, healthcare, and higher education 2008, Las Vegas, NV

    Google Scholar 

  10. Hegarty M, Kriz S, Cate C (2003) The roles of mental animations and external animations in understanding mechanical systems. Cognition Instruct 21:209–249. doi:10.1207/s1532690xci2104_1

    Article  Google Scholar 

  11. Herrington J, Reeves TC, Oliver R (2006) Authentic tasks online: a synergy among learner, task, and technology. Dist Educ 27:233–247. doi:10.1080/01587910600789639

    Article  Google Scholar 

  12. Kalyuga S (2008) Relative effectiveness of animated and static diagrams: an effect of learner prior knowledge. Comput Hum Behav 24:852–861. doi:10.1016/j.chb.2007.02.018

    Article  Google Scholar 

  13. Kennedy DM, McNaught C (1997) Design elements for interactive multimedia. Aust J Educ Tech 13:1–22

    Google Scholar 

  14. Kocur D, Košč P (2009) E-Learning implementation in higher education. Acta Electrotech et Inform 9:20–26

    Google Scholar 

  15. Koohang A, Du Plessis J (2004) Architecting usability properties in the e-learning instructional design process. IJEL 3:38–44

    Google Scholar 

  16. Mayer RE, Moreno R (2003) Nine ways to reduce cognitive load in multimedia learning. Educ Psychol 38:43–52. doi:10.1207/S15326985EP3801_6

    Article  Google Scholar 

  17. Miller GA (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 63:81–97. doi:10.1037/h0043158

    Article  Google Scholar 

  18. Morrison GR, Anglin GJ (2005) Research on cognitive load theory: application to e-learning. Educ Technol Res Dev 53:94–104. doi:10.1007/BF02504801

    Article  Google Scholar 

  19. Muldoon N (2008) Self-direction and lifelong learning in the information age can PLEs help? Paper presented at the Lifelong learning: reflecting on successes and framing futures. Keynote and refereed papers from the 5th international lifelong learning conference, Rockhampton, 16–19 June 2008

    Google Scholar 

  20. Nielsen J (2005) 10 Heuristics for user interface design. http://www.useit.com/papers/heuristic/heuristic_list.html. Accessed 26 Mar 2012

  21. Oviatt S (2006) Human-centered design meets cognitive load theory: designing interfaces that help people think. In: Multimedia 2006. 14th annual ACM international conference on multimedia, Santa Barbara. pp 871–880. doi:10.1145/1180639.1180831

    Google Scholar 

  22. Paas FG, Renkl A, Sweller J (2003) Cognitive load theory and instructional design: recent developments. Educ Psychol 38:1–4. doi:10.1207/S15326985EP3801_1

    Article  Google Scholar 

  23. Paas FG, Van Merriënboer JJG (1994) Variability of worked examples and transfer of geometrical problem-solving skills: a cognitive-load approach. J Educ Psychol 86:122–133. doi:10.1037/0022-0663.86.1.122

    Article  Google Scholar 

  24. Peterson L, Peterson MJ (1959) Short-term retention of individual verbal items. J Exp Psychol 58:193–198. doi:10.1037/h0049234

    Article  Google Scholar 

  25. Sharp H, Rogers Y, Preece J (2007) Interaction design: beyond human–computer interaction, 2nd edn. Wiley, Chichester

    Google Scholar 

  26. Stephenson J (2001) Teaching & learning online: pedagogies for new technologies. Stylus, Sterling

    Google Scholar 

  27. Sweller J (1994) Cognitive load theory, learning difficulty, and instructional design. Learn Instr 4:295–312. doi:10.1016/0959-4752(94)90003-5

    Article  Google Scholar 

  28. Sweller J (1999) Instructional design in technical areas. Australian Council for Educational Research Press, Camberwell

    Google Scholar 

  29. Sweller J (2003) Evolution of human cognitive architecture. Psychol Learn Motiv 43:215–266

    Article  Google Scholar 

  30. Sweller J, Chandler P (1994) Why some material is difficult to learn. Cognition Instruct 12:185–233. doi:10.1207/s1532690xci1203_1

    Article  Google Scholar 

  31. Sweller J, Chandler P, Tierney P, Cooper M (1990) Cognitive load as a factor in the structuring of technical material. J Exp Psychol Gen 119:176–192. doi:10.1037/0096-3445.119.2.176

    Article  Google Scholar 

  32. Sweller J, Van Merrienboer JJG, Paas FG (1998) Cognitive architecture and instructional design. Educ Psychol Rev 10:251–296. doi:10.1.1.89.9802

    Article  Google Scholar 

  33. Te’eni D, Carey J, Zhang P (2007) Human computer interaction: developing effective organizational information systems. Wiley, Hoboken

    Google Scholar 

  34. Tselios N, Avouris N, Dimitracopoulou A (2001) Evaluation of distance learning environments: impact of usability on student performance. Int J Educ Telecommun 7:355–378

    Google Scholar 

  35. Tselios N, Avouris N, Komis V (2008) The effective combination of hybrid usability methods in evaluating educational applications of ICT: issues and challenges. Educ Inf Technol 13:55–76. doi:10.1007/s10639-007-9045-5

    Article  Google Scholar 

  36. Van Nimwegen C, Van Oostendorp H, Burgos D, Koper R (2006) Does an interface with less assistance provoke more thoughtful behavior? In: 7th international conference on learning sciences, Bloomington. pp 785–791

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Freeman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this paper

Cite this paper

Freeman, M., Alasraj, A., Chandler, P. (2013). Beyond Interface Design: Considering Learner Cognition When Designing E-Learning Systems. In: Linger, H., Fisher, J., Barnden, A., Barry, C., Lang, M., Schneider, C. (eds) Building Sustainable Information Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-7540-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7540-8_10

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-7539-2

  • Online ISBN: 978-1-4614-7540-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics