Nitric Oxide and Endothelin in the Developing Pulmonary Circulation: Physiologic and Clinical Implications

  • Steven H. Abman
  • John P. Kinsella
  • Jean-Christophe Mercier
Part of the Clinical Physiology Series book series (CLINPHY)


Within minutes after birth, pulmonary vascular resistance (PVR) rapidly falls from high fetal levels. This allows pulmonary blood flow to increase nearly tenfold and enables the lung to assume its postnatal role in gas exchange. Failure of the pulmonary circulation to successfully achieve and sustain this decrease in PVR causes severe hypoxemia in many neonatal cardiopulmonary disorders, which are referred to as the syndrome persistent pulmonary hypertension of the newborn (PPHN). Mechanisms leading to severe pulmonary hypertension after birth are poorly understood, but they include altered pulmonary vascular reactivity and structure. Persistent pulmonary hypertension of the newborn is a major clinical problem, contributing substantially to morbidity and mortality in both full-term and premature neonates. An understanding of basic mechanisms that underlie normal development of the pulmonary circulation in utero and that contribute to the marked pulmonary vasodilation during the normal transition at birth may provide insight into PPHN and related disorders.


Nitric Oxide Pulmonary Hypertension Pulmonary Circulation Pulmonary Blood Flow Lung Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abman, S.H. and F.J. Accurso. Acute effects of partial compression of the ductus arteriosus on the fetal pulmonary circulation. Am. J. Physiol. 257: H626–634, 1989.PubMedGoogle Scholar
  2. 2.
    Abman, S.H. and F.J. Accurso. Sustained fetal pulmonary vasodilation during prolonged infusion of atrial natriuretic factor and 8-bromo-guanosine monophosphate. Am. J. Physiol. 260: H183–H192, 1991.PubMedGoogle Scholar
  3. 3.
    Abman, S.H., B.A. Chatfield, S.L. Hall, and I.F. McMurtry. Role of endothelium-derived relaxing factor during transition of pulmonary circulation at birth. Am. J. Physiol. 259: H1921–H1927, 1990.PubMedGoogle Scholar
  4. 4.
    Abman, S.H., B.A. Chatfield, D.M. Rodman, S.L. Hall, and I.F. McMurtry. Maturation-related changes in endothelium-dependent relaxation of ovine pulmonary arteries. Am. J. Physiol. 260: L280–L285, 1991.PubMedGoogle Scholar
  5. 5.
    Abman, S.H., J.P. Kinsella, M.S. Schaffer, and R.B. Wilkening. Inhaled nitric oxide therapy in a premature newborn with severe respiratory distress and pulmonary hypertension. Pediatrics 92: 606–609, 1993.PubMedGoogle Scholar
  6. 6.
    Abman, S.H., P.F. Shanley, and F.J. Accurso. Failure of postnatal adaptation of the pulmonary circulation after chronic intrauterine pulmonary hypertension in fetal lambs. J. Clin. Invest. 83: 1849–1858, 1989.PubMedGoogle Scholar
  7. 7.
    Accurso, F.J., B. Alpert, R.B. Wilkening, R.G. Petersen, and G. Meschia. Time-dependent response of fetal pulmonary blood flow to an increase in fetal oxygen tension. Respir. Physiol. 63: 43–52, 1986.PubMedGoogle Scholar
  8. 8.
    Allen, K. and S.G. Haworth. Impaired adaptation of intrapulmonary arteries to extrauterine life in newborn pigs exposed to hypoxia. An ultrastructural study. Fed. Proc. 45: 879, 1986.Google Scholar
  9. 9.
    Allen, S.W., B.A. Chatfield, S.L. Koppenhafer, M.S. Schaffer, R.R. Wolfe, and S.H. Abman. Circulating immunoreactive ET-1 in children with pulmonary hypertension: association with acute hypoxic pulmonary vasoreactivity. Am. Rev. Respir. Dis. 148: 519–522, 1993.PubMedGoogle Scholar
  10. 10.
    Archer, S.L., J.M.C. Huang, V. Hampl, D.F. Nelson, P.J. Shultz, and E.K. Weir. NO and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 91: 7583–7587, 1994.PubMedGoogle Scholar
  11. 11.
    Arnal, J.F., J. Yamin, S. Dockery, and D.G. Harrison. Regulation of endothelial NO synthase mRNA, protein, and activity during cell growth. Am. J. Physiol. 267: C1381–C1388, 1994.PubMedGoogle Scholar
  12. 12.
    Beavo, J.A. and D.H. Reifsnyder. Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors. Trends Pharmacol. Sci. 11: 150–155, 1990.PubMedGoogle Scholar
  13. 13.
    Belik, J. and N.L. Stephens. Developmental differences in vascular smooth muscle mechanics in pulmonary and systemic circulations. J. Appl. Physiol. 74: 682–687, 1993.PubMedGoogle Scholar
  14. 14.
    Bolotina, V.M., S. Najibi, J.J. Palacino, P.H. Pagano, and R.A. Cohen. NO directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368: 850–853, 1994.PubMedGoogle Scholar
  15. 15.
    Bonvallet, S.T., M.A. Zamora, K. Hasunuma, K. Sato, N. Hanasato, D. Anderson, K. Sato, and T.J. Stelzner. BQ123, an ETA-receptor antagonist, attenuates hypoxic pulmonary hypertension in rats. Am. J. Physiol. 266: H1327–H331, 1994.PubMedGoogle Scholar
  16. 16.
    Boulanger, C. and T.F. Luscher. Release of endothelin from the porcine aorta. Inhibition by endothelium-derived nitric oxide. J. Clin. Invest. 85: 87–90, 1990.Google Scholar
  17. 17.
    Bustamante, S.A., Y. Pang, S. Romero, M.R. Pierce, C.A. Voelker, J.H. Thompson, M. Sandoval, X. Liu, and M.J. Miller. Inducible NOS and the regulation of central vessel caliber in the fetal rat. Circulation 1948–1953, 1996.Google Scholar
  18. 18.
    Braner, D.A., J.R. Fineman, R. Chang, and S.J. Soifer. MandB 22948, a cGMP phosphodiesterase inhibitor, is a pulmonary vasodilator in lambs. Am. J. Physiol. 764: H252–H258, 1993.Google Scholar
  19. 19.
    Cassin, S. Role of prostaglandins, thromboxanes and leukotrienes in the control of the pulmonary circulation in the fetus and newborn. Semin. Perinatol. 11: 53–63, 1987.PubMedGoogle Scholar
  20. 20.
    Cassin, S., G.S. Dawes, J.C. Mott, B.B. Ross, and L.B. Strang. Vascular resistance of the foetal and newly ventilated lung of the lamb. J. Physiol. Lond. 171: 61–79, 1964.PubMedGoogle Scholar
  21. 21.
    Cassin, S., T. Kristova, T. Davis, P. Kadowitz, and G. Gause. Tone-dependent responses to endothelin in the isolated perfused fetal sheep pulmonary circulation in situ. J. Appl. Physiol. 70: 1228–1234, 1991.PubMedGoogle Scholar
  22. 22.
    Chatfield, B.A., I.F. McMurtry, S.L. Hall, and S.H. Abman. Hemodynamic effects of endothelin-1 on the ovine fetal pulmonary circulation. Am. J. Physiol. 261: R182–R187, 1991.PubMedGoogle Scholar
  23. 23.
    Cohen, A.H., K. Hanson, K. Morris, B. Fouty, I.F. McMurtry, W. Clarke, and D.M. Rodman. Inhibition of cGMP-specific phosphodiesterase selectively vasodilates the pulmonary circulation in chronically hypoxic rats. J. Clin. Invest. 97: 172–179, 1996.PubMedGoogle Scholar
  24. 24.
    Cornfield, D.N., B.A. Chatfield, J.A. McQueston, I.F. McMurtry, and S.H. Abman. Effects of birth-related stimuli on L-arginine-dependent pulmonary vasodilation in the ovine fetus. Am. J. Physiol. 262: H1474–H1481, 1992.PubMedGoogle Scholar
  25. 25.
    Cornfield, D.N., J.A. McQueston, I.F. McMurtry, D.M. Rodman, and S.H. Abman. Role of ATPsensitive K+channels in ovine fetal pulmonary vascular tone. Am. J. Physiol. 263: H1363–H1368, 1992.PubMedGoogle Scholar
  26. 26.
    Cornfield, D.N., H.L. Reeves, S. Tolarova, E.K. Weir, and S.L. Archer. Oxygen causes fetal pulmonary vasodilation through activation of a calcium-dependent potassium channel. Proc. Natl. Acad. Sci. USA 93: 8089–8094, 1996.PubMedGoogle Scholar
  27. 27.
    Davidson, D. and A. Eldemerdash. Endothelium-derived relaxing factor: evidence that it regulates pulmonary vascular resistance in the isolated newborn guinea pig lung. Pediatr. Res. 29: 538–542, 1991.PubMedGoogle Scholar
  28. 28.
    Dubin, D., R.E. Pratt, J.P. Cooke, and V.J. Dzau. Endothelin, a potent vasoconstrictor, is a vascular smooth muscle mitogen. J. Vasc. Med. Biol. 1: 150–154, 1989.Google Scholar
  29. 29.
    Fineman, J.R., J. Wong, F.C. Morin, L.M. Wild, and S.J. Soifer. Chronic NO inhibition in utero produces persistent pulmonary hypertension in newborn lambs. J. Clin. Invest. 93: 9675–9683, 1994.Google Scholar
  30. 30.
    Flowers, M.A., Y. Wang, R.J. Stewart, B. Patel, and P.A. Marsden. Reciprocal regulation of endothelin-1 and endothelial NOS in proliferating endothelial cells. Am. J. Physiol. 269: H1988–H1997, 1995.PubMedGoogle Scholar
  31. 32.
    Fratacci, M.D., C.G. Frostell, T.Y. Chen, and W.M. Zapol. Inhaled NO: a selective pulmonary vasodilator of heparin-protamine vasoconstriction in sheep. Anesthesiology 75: 990–999, 1991.PubMedGoogle Scholar
  32. 33.
    Garg, U.C. and A. Hassid. NO-generating vasodilators and 8-bromo-cGMP inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle ceils. J. Clin. Invest. 83: 1774–1777, 1989.PubMedGoogle Scholar
  33. 34.
    Geggel, R.L. and L.M. Reid. The structural basis of persistent pulmonary hypertension of the newborn. Clin. Perinatol. 3: 525–549, 1984.Google Scholar
  34. 35.
    Giaid, A. and D. Saleh. Reduced expression of endothelial NO synthase in the lungs of patients with pulmonary hypertension. N. Engl. J. Med. 333: 214–221, 1995.PubMedGoogle Scholar
  35. 36.
    Giaid, A., M. Yanagasawa, D. Langleben, R.P. Michel, R. Levy, H. Shennib, S. Kimura, T. Masaki, W.P. Duguid, and D.J. Stewart. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N. Engl. J. Med. 328: 1732–1739, 1993.PubMedGoogle Scholar
  36. 37.
    Goldberg, S.J., R.A. Levy, and B. Siassi. Effects of maternal hypoxia and hyperoxia upon the neonatal pulmonary vasculature. Pediatrics 48: 528–533, 1971.PubMedGoogle Scholar
  37. 38.
    Halbower, A.C., R.M. Tuder, W.A. Franklin, J.S. Pollock, U. Forstermann, and S.H. Abman. Maturation-related changes in endothelial NO synthase immunolocalization in the developing ovine lung. Am. J. Physiol. 267: L585–L591, 1994.PubMedGoogle Scholar
  38. 39.
    Hanson, K.A., J.A. Beavo, S.H. Abman, and W.R. Clarke. Chronic intrauterine pulmonary hypertension increases lung cGMP hydrolytic activity and decreases cGMP kinase content in the ovine fetus [Abstract]. Am. J. Respir. Crit. Care Med. 155: A632, 1997.Google Scholar
  39. 40.
    Hanson, K.A., S. Uezono, J. Beavo, and W.R. Clarke. Developmental regulation of pulmonary cGMP phosphodiesterase activity in fetal and maternal lung [Abstract]. Am. J. Respir. Crit. Care Med. 151: A437, 1995.Google Scholar
  40. 41.
    Heymann, M.A. and S.J. Soifer. Control of fetal and neonatal pulmonary circulation. In: Pulmonary vascular physiology and pathophysiology, edited by E.K. Weir and J.T. Reeves. New York: Marcel Dekker, 1989, p. 33–50.Google Scholar
  41. 42.
    Hirata, Y., Y.H. Yoshima, S. Eguchi, K. Kanno, T. Imai, K. Ohta, and F. Marumo. ET receptor subtype B mediates synthesis of NO by cultures bovine endothelial cells. J. Clin. Invest. 91: 1367–1373, 1993.PubMedGoogle Scholar
  42. 43.
    Hobbs, A.J. and L.J. Ignarro. NO-cGMP signal transduction system. In: Nitric Oxide and the Lung, edited by W.M. Zapol and K. Bloch, New York: Marcel Dekker, 1996, p. 1–57.Google Scholar
  43. 44.
    Isozaki-Fukuda, Y., T. Kojima, Y. Hirata, N. Ono, S. Sawaragi, I. Sawaragi, and Y. Kobayashi. Plasma immunoreactive ET-1 concentration in human fetal blood: its relation to asphyxia. Pediatr. Res. 30: 244–247, 1991.PubMedGoogle Scholar
  44. 45.
    Ivy, D.D., J.P. Kinsella, and S.H. Abman. Physiologic characterization of endothelin A and B receptor activity in the ovine fetal pulmonary circulation. J. Clin. Invest. 93: 2141–2148, 1994.PubMedGoogle Scholar
  45. 46.
    Ivy, D.D., T.A. Parker, J.W. Ziegler, H.L. Galan, J.P. Kinsella, and S.H. Abman. Prolonged endothelin A receptor blockade attenuates chronic intrauterine pulmonary hypertension. J. Clin. Invest. 99: 1179–1186, 1997.PubMedGoogle Scholar
  46. 47.
    Ivy, D.D., J.W. Ziegler, M.F. Dubus, J.J. Fox, J.P. Kinsella, and S.H. Abman. Chronic intrauterine pulmonary hypertension alters endothelin receptor activity in the ovine fetus. Pediatr. Res. 39: 335–342, 1995.Google Scholar
  47. 48.
    Ivy, D.D., J.W. Ziegler, J.P. Kinsella, and S.H. Abman. Endothelin blockade augments fetal pulmonary vasodilation. J. Appl. Physiol. 81: 2481–2487, 1996.PubMedGoogle Scholar
  48. 49.
    Jones, O.W. and S.H. Abman. Systemic and pulmonary hemodynamic effects of big endothelin-1 and phosphoramidon in the ovine fetus. Am. J. Physiol. 266: R929–R935, 1994.PubMedGoogle Scholar
  49. 50.
    Kinsella, J.P., A.C. Halbower, J.W. Ziegler, J.F. Fox, D.D. Ivy, and S.H. Abman. Effects of inhaled NO on pulmonary edema and lung neutrophil accumulation in severe experimental hyaline membrane disease. Pediatr. Res. 41: 457–463, 1997.PubMedGoogle Scholar
  50. 51.
    Kinsella, J.P., D.D. Ivy, and S.H. Abman. Inhaled nitric oxide improves gas exchange and lowers pulmonary vascular resistance in severe experimental hyaline membrane disease. Pediatr. Res. 36: 402–408, 1994.PubMedGoogle Scholar
  51. 52.
    Kinsella, J.P., D.D. Ivy, and S.H. Abman. Ontogeny of NO activity and response to inhaled NO in the developing ovine pulmonary circulation. Am. J. Physiol. 267: H1955–H1961, 1994.PubMedGoogle Scholar
  52. 53.
    Kinsella, J.P., J.A. McQueston, A.A. Rosenberg, and S.H. Abman. Hemodynamic effects of exogenous nitric oxide in ovine transitional pulmonary circulation. Am. J. Physiol. 263: H875–H880, 1992.PubMedGoogle Scholar
  53. 54.
    Kinsella, J.P., S.R. Neish, D.D. Ivy, E. Shaffer, and S.H. Abman. Clinical responses to prolonged treatment of persistent pulmonary hypertension of the newborn. J. Pediatr. 123: 103–108, 1993.PubMedGoogle Scholar
  54. 55.
    Kinsella, J.P., S. Neish, E. Shaffer, and S.H. Abman. Low dose inhalational nitric oxide in persistent pulmonary hypertension of the newborn. Lancet 340: 819–820, 1992.PubMedGoogle Scholar
  55. 56.
    Kobzik, L., D.S. Bredt, C.J. Lowenstein, J. Drazen, B. Gaston, D. Sugarbaker, and J.S. Stamler. NOS in human and rat lung: immunocytochemical and histochemical localization. Am. J. Respir. Cell Mol. Biol. 9: 371–377, 1993.PubMedGoogle Scholar
  56. 57.
    Kourembanas, D., L. McQuillan, G. Leung, and D. Faller. NO regulates the expression of vasoconstrictors and growth factors by vascular endothelium under normoxia and hypoxia. J. Clin. Invest. 92: 99–104, 1993.PubMedGoogle Scholar
  57. 58.
    Kourembanas, S., P.A. Marsden, L.P. McQuillan, and D.V. Faller. Hypoxia induces endothelin gene expression and secretion in cultured human endothelium. J. Clin. Invest. 88: 1054–1057, 1991.PubMedGoogle Scholar
  58. 59.
    Le Cras, T.D., C. Xue, A. Rengesamy, and R.A. Johns. Chronic hypoxia upregulates endothelial and inducible NO synthase gene and protein expression in rat lung. Am. J. Physiol. 270: L164–L170, 1996.PubMedGoogle Scholar
  59. 60.
    Leffler, C.W., J.R. Hessler, and R.S. Green. Mechanism of stimulation of pulmonary prostacyclin synthesis at birth. Prostaglandins 28: 877–87, 1984.PubMedGoogle Scholar
  60. 61.
    Leffler, C.W., T.L. Tyler, and S. Cassin. Effect of indomethacin on pulmonary vascular response to ventilation of fetal goats. Am. J. Physiol. 234: H346–H351, 1978.PubMedGoogle Scholar
  61. 62.
    Lerman, A., E.K. Sandok, F.L. Hildebrand, and J.C. Burnett. Inhibition of EDRF enhances endothelin-mediated vasoconstriction. Circulation 85: 1894–1898, 1992.PubMedGoogle Scholar
  62. 63.
    Levin, D.L., M.A. Heymann, J.A. Kitterman, G.A. Gregory, R.H. Phibbs, and A.M. Rudolph. Persistent pulmonary hypertension of the newborn. J. Pediatr. 89: 626–633, 1976.PubMedGoogle Scholar
  63. 64.
    Levin, D.L., A.I. Hyman, M.A. Heymann, and A.M. Rudolph. Fetal hypertension and the development of increased pulmonary vascular smooth muscle: a possible mechanism for persistent pulmonary hypertension of the newborn infant. J. Pediatr. 92: 265–269, 1978.PubMedGoogle Scholar
  64. 65.
    Lewis, A.B., M.A. Heymann, and A.M. Rudolph. Gestational changes in pulmonary vascular responses in fetal lambs in utero. Circ. Res. 39: 536–541, 1976.PubMedGoogle Scholar
  65. 66.
    Li, H., S. Chen, Y. Chen, Q. Meng, J. Durand, S. Oparil, and T. Elton. Enhanced endothelin-1 and endothelin receptor gene expression in chronic hypoxia. J. Appl. Physiol. 77: 1451–1459, 1994.PubMedGoogle Scholar
  66. 67.
    MacCumber, M.W., C.A. Ross, B.M. Glaser, and S.H. Snyder. Endothelin: visualization of mRNAs by in situ hybridization provides evidence for local action. Proc. Natl. Acad. Sci. USA 86: 7285–7289, 1989.PubMedGoogle Scholar
  67. 68.
    McQueston, J.A., D.N. Cornfield, I.F. McMurtry, and S.H. Abman. Effects of oxygen and exogenous L-arginine on endothelium-derived relaxing factor activity in the fetal pulmonary circulation. Am. J. Physiol. 264: H865–7871, 1993.PubMedGoogle Scholar
  68. 69.
    McQueston, J.A., J.P. Kinsella, D.D. Ivy, I.F. McMurtry, and S.H. Abman. Chronic pulmonary hypertension in utero impairs endothelium-dependent vasodilation. Am. J. Physiol. 268: H288–H294, 1995.PubMedGoogle Scholar
  69. 70.
    McQuillan, L.P., G.K. Leung, P.A. Marsden, S.K. Kostyk, and S. Kourembanas. Hypoxia inhibits expression of eNOS via transcriptional and posttranscriptional mechanisms. Am. J. Physiol. 267: H1921–H1927, 1994.PubMedGoogle Scholar
  70. 71.
    Michael, J.R. and B.A. Markewitz. Endothelins and the lung. Am. J. Respir. Crit. Care Med. 154: 555–581, 1996.PubMedGoogle Scholar
  71. 72.
    Moncada, S., R.M.J. Palmer, and E.A. Higgs. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43: 109–142, 1991.PubMedGoogle Scholar
  72. 73.
    Morbidelli, L., C.H. Chang, J.G. Douglas, H.J. Granger, C.A. Maggi, P. Geppetti, F. Ledda. NO mediates mitogenic effect of VEGF on coronary venular endothelium. Am. J. Physiol. 270: H411–H415, 1996.PubMedGoogle Scholar
  73. 74.
    Morin, F.C. Ligating the ductus arteriosus before birth causes persistent pulmonary hypertension in the newborn lamb. Pediatr. Res. 25: 245–250, 1989.PubMedGoogle Scholar
  74. 75.
    Morin, F.C., E.A. Egan, W. Ferguson, and C.E.G. Lundgren. Development of pulmonary vascular response to oxygen. Am. J. Physiol. 254: H542–H546, 1988.PubMedGoogle Scholar
  75. 76.
    Neonatal Inhaled NO Study Group. Inhaled NO in full-term and nearly full-term infants with hypoxic respiratory failure. N. Engl. J. Med. 336: 597–604, 1997.Google Scholar
  76. 77.
    North, A.J., R.A. Star, T.S. Brannon, K. Ujiie, L.B. Wells, C.J. Lowenstien, S.H. Snyder, and P.W. Shaul. NO synthase type I and type III gene expression are developmentally regulated in rat lung. Am. J. Physiol. 266: L635–L641, 1994.PubMedGoogle Scholar
  77. 78.
    Rairigh, R., T.D. LeCras, D.D. Ivy, J.P. Kinsella, G. Richter, M. Horan, I. Fan, and S.H. Abman. Role of inducible NOS in regulation of pulmonary vascular tone in the ovine fetus. J. Clin Invest 101: 15–21, 1998.PubMedGoogle Scholar
  78. 79.
    Roberts, J.D., T. Chen, N. Kawai, J. Wain, P. Dupuy, A. Shimouchi, K. Bloch, D. Polaner, and W.M. Zapol. Inhaled NO reverses pulmonary vasoconstriction in the hypoxic and acidoticnewborn lamb. Circ. Res. 72: 246–254, 1993.PubMedGoogle Scholar
  79. 80.
    Roberts, J.D., J.R. Fineman, F.C. Morin, P.W. Shaul, S. Rimar, M.D. Schreiber, R.A. Polin, M.S. Zwass, M.M. Zayek, I. Gross, M.A. Heymann, and W.M. Zapol. Inhaled nitric oxide and persistent pulmonary hypertension of the newborn. N. Engl. J. Med. 336: 605–610, 1997.PubMedGoogle Scholar
  80. 81.
    Roberts, J.D., J.P. Kinsella, and S.H. Abman. Inhaled NO in neonatal pulmonary hypertension and severe RDS: experimental and clinical studies. In: Nitric Oxide and the Lung, edited by W.M. Zapol and K. Bloch, New York: Marcel Dekker, 1996, p. 333–363.Google Scholar
  81. 82.
    Roberts, J.D., D.M. Polaner, P. Lang, and W.M. Zapol. Inhaled nitric oxide in persistent pulmonary hypertension of the newborn. Lancet 340: 818–819, 1992.PubMedGoogle Scholar
  82. 83.
    Rossaint, R., K.J. Falcke, F. Lopez, K. Slama, U. Pison, and W.M. Zapol. Inhaled NO for the adult respiratory distress syndrome. N. Engl. J. Med. 328: 399–405, 1993.PubMedGoogle Scholar
  83. 84.
    Rosenberg, A.A., J. Kennaugh, S.L. Koppenhafer, M. Loomis, and S.H. Abman. Increased immunoreactive endothelin-1 levels in persistent pulmonary hypertension of the newborn. J. Pediatr. 123: 109–114, 1993.PubMedGoogle Scholar
  84. 85.
    Rudolph, A.M. Fetal and neonatal pulmonary circulation. Annu. Rev. Physiol. 41: 383–395, 1979.PubMedGoogle Scholar
  85. 86.
    Rudolph A.M., M.A. Heymann, and A.B. Lewis. Physiology and pharmacology of the pulmonary circulation in the fetus and newborn. In: Development of the lung, edited by W. Hodson, New York: Marcel Dekker, 1977, p. 497–453.Google Scholar
  86. 87.
    Shaul, P.W., E.J. Smart, L.J. Robinson, Z. German, I.S. Yuhanna, Y. Ying, R.G.W. Anderson, and T. Michel. Acylation targets endothelial NO synthase to plasmalemal calveolae. J. Biol. Chem. 271: 6518–6522, 1996.PubMedGoogle Scholar
  87. 87b.
    Shaul, P.W., I.S. Yuhanna, Z. German, Z. Chen, R.H. Steinhorn, and F.C. Morin. Pulmonary endothelial nitric oxide synthase gene expression is decreased in fetal lambs with pulmonary hypertension. Am. J. Physiol. 272: L1005–L1012, 1997.PubMedGoogle Scholar
  88. 88.
    Soifer, S.J., R.D. Loitz, C. Roman, and M.A. Heymann. Leukotriene end organ antagonists increase pulmonary blood flow infeal lambs. Am. J. Physiol. 249: H570–H576, 1985.PubMedGoogle Scholar
  89. 89.
    Steinhorn, R.H., J.A. Russell, and F.C. Morin. Pulmonary arteries from newborn lambs with persistent pulmonary hypertension have decreased sensitivity to NO [Abstract]. Pediatr. Res. 35: 354A, 1994.Google Scholar
  90. 90.
    Stenmark, K.R., S.H. Abman, and F.J. Accurso. Etiologic mechanisms of persistent pulmonary hypertension of the newborn. In: Pulmonary vascular physiology and pathophysiology, edited by E.K. Weir and J.T. Reeves. New York: Marcel Dekker, 1989, p. 335–402.Google Scholar
  91. 91a.
    Stewart, D.J., R.D. Levy, P. Cernacek, and D. Langleben. Increased plasma endothelin-1 in pulmonary hypertension: marker or mediator of disease? Ann. Intern. Med. 114: 464–469, 1991.PubMedGoogle Scholar
  92. 91b.
    Thébaud, B., P. de Lagausie, E. Souil, Y. Aigrain, J.C. Mercier, and A.T. Dinh-Xuan. Pulmonary vasodilation is not impaired in congenital diaphragmatic hernia [Abstract]. Am. J. Respir. Crit. Care Med. 155: A948, 1997.Google Scholar
  93. 92.
    Thomae, K.R., D.K. Nakayama, T.R. Billiar, R.L. Simmons, B.R. Pitt, and P. Davies. Effect of NO on fetal pulmonary artery smooth muscle growth. J. Surg. Res. 270: H411–H415, 1996.Google Scholar
  94. 93.
    Velvis, H., P. Moore, and M.A. Heymann. Prostaglandin inhibition prevents the fall in pulmonary vascular resistance as the result of rhythmic distension of the lungs in fetal lambs. Pediatr. Res. 30: 62–67, 1991.PubMedGoogle Scholar
  95. 94.
    Villamor, E., T.D. Le Cras, M.P. Horan, A.C. Halbower, R.M. Tuder, and S.H. Abman. Chronic intrauterine hypertension impairs endothelial nitric oxide sythase in the ovine fetus. Am. J. Physiol. 272: L1013–L1020, 1997.PubMedGoogle Scholar
  96. 95.
    Wang, Y. and F. Coceani. Isolated pulmonary resistance vessels from fetal lambs: contractile behavior and responses to indomethacin and endothelin-1. Circ. Res. 71: 320–330, 1992.PubMedGoogle Scholar
  97. 96.
    Wallen, L.D., S.F. Perry, J.T. Alston, and J.E. Maloney. Morphometric study of the role of pulmonary arterial flow in fetal lung growth in sheep. Pediatr. Res. 27: 122–127, 1990.PubMedGoogle Scholar
  98. 97.
    Walther, F.J., F.J. Bender, and J.O. Leighton. Persistent pulmonary hypertension in premature neonates with severe RDS. Pediatrics 90: 899–904, 1992.PubMedGoogle Scholar
  99. 98.
    Winters, J.W., J. Wong, D. van Dyke, M. Johengen, M.A. Heymann, and J.R. Fineman. Endothelin blockade does not alter the increase in pulmonary blood flow during oxygen ventilation in fetal lambs. Pediatr. Res. 40: 152–157, 1996.PubMedGoogle Scholar
  100. 99.
    Wong, J., J.R. Fineman, and M.A. Heymann. The role of endothelin and endothelin receptor subtypes in regulation of fetal pulmonary vascular tone. Pediatr. Res. 35: 664–670, 1994.PubMedGoogle Scholar
  101. 100.
    Yanagisawa, M., H. Kurihara, S. Kirmura, Y. Tomobe, M. Kobayashi, Y. Mitsui, Y. Yazaki, K. Goto, and T. Masaki. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411–415, 1988.PubMedGoogle Scholar
  102. 101.
    Ziche, M., L. Morbidelli, E. Masini, S. Amerini, H.J. Granger, C.A. Maggi, P. Geppetti, and F. Ledda. NO mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J. Clin. Invest. 94: 2036–2044, 1994.PubMedGoogle Scholar
  103. 102.
    Ziegler, J.W., D.D. Ivy, J.J. Fox, J.P. Kinsella, W.R. Clarke, and S.H. Abman. Dipyridamole, a cGMP phosphodiesterase inhibitor, causes pulmonary vasodilation in the ovine fetus. Am. J. Physiol. 269: H473–H479, 1995.PubMedGoogle Scholar

Copyright information

© American Physiological Society 1999

Authors and Affiliations

  • Steven H. Abman
  • John P. Kinsella
  • Jean-Christophe Mercier

There are no affiliations available

Personalised recommendations