Skip to main content

Development of the Pulmonary Vasculature

  • Chapter
Lung Development

Part of the book series: Clinical Physiology Series ((CLINPHY))

Abstract

The cardiovascular system is the first organ system that forms during embryonic development. The primitive blood vessels must be in place to accommodate the cardiac output of the fetal heart which begins to beat as early as the 14th day of gestation in humans. Since the endothelial cell defines the lumen of the developing vasculature, it can be said to be one of the first cells in the organism to acquire a specialized function. The continued growth of endothelial tubes is necessitated by the nutritional and respiratory demands of the embryonic tissues beyond the reach of simple diffusion. Thus the spatial pattern of the developing vasculature is defined initially by the endothelial tubes and appears to be under strict developmental control. The continued growth of the endothelial tubes during organ morphogenesis is critical for the normal development of that organ. Development of larger blood vessels (i.e. arteries, arterioles, venules, and veins) from these initial vessels involves recruitment of smooth muscle cell (SMC) precursor cells into the region surrounding the endothelial tubes with subsequent morphogenesis of the appropriate blood vessel. This process requires that cells in the developing vessel, committed to becoming SMC, acquire specific functions and properties that distinguish them from other cell types. In addition, these cells must function to control blood flow while also participating in the process forming a complex vascular structure. Thus dramatic changes in cellular (SMC) proliferation, matrix production, and contractile protein expression take place over the course of vascular development. The SMC in the adult vessel wall perform mostly contractile functions but must also retain the capability of re-expressing certain characteristics of earlier development (migration/proliferation and matrix production) in response to injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abman, S.H., B.A. Chatfield, S.L. Hall, and I.F. McMurtry. Role of endothelium-derived relaxing factor during transition of the pulmonary circulation at birth. Am. J. Physiol. 259: H1921–H1927, 1990.

    PubMed  CAS  Google Scholar 

  2. Abman, S.H., B.A. Chatfield, D.M. Rodman, S.L. Hall, and I.F. McMurtry. Maturational changes in endothelium-derived relaxing factor activity of ovine pulmonary arteries in vitro. Am. J. Physiol. 260: L280–L285, 1991.

    PubMed  CAS  Google Scholar 

  3. Abman, S.H. and K.R. Stenmark. Changes in lung eicosanoid content during normal and abnormal transition in perinatal lambs. Am. J. Physiol. 262: L214–L222, 1992.

    PubMed  CAS  Google Scholar 

  4. Amaya, E., T.J. Musci, and M.W. Kirschner. Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell 66: 257–270, 1991.

    Article  PubMed  CAS  Google Scholar 

  5. Antonelli-Orlidge, A., K.B. Saunders, S.R. Smith, and P.A. D’Amore. An activated form of transforming growth factor beta is produced by cocultures of endothelial cells and pericytes. Proc. Natl. Acad. Sci. USA 86: 4544–4548, 1989.

    Article  PubMed  CAS  Google Scholar 

  6. Au, Y.P., R.D. Kenagy, M.M. Clowes, and A.W. Clowes. Mechanisms of inhibition by heparin of vascular smooth muscle cell proliferation and migration. Haemostasis 23: 177–182, 1993.

    PubMed  CAS  Google Scholar 

  7. Ausprunk, D.H. Distribution of hyaluronic acid and sulfated glycosaminoglycans during blood vessel development in the chick chorioallantoic membrane. Am. J. Anat. 177: 313–331, 1986.

    Article  PubMed  CAS  Google Scholar 

  8. Ausprunk, D.H., S.M. Dethlefsen, and E.R. Higgins. Distribution of fibronectin, laminin and type IV collagen during development of blood vessels in the chick chorioallantoic membrane. In: The Development of the Vascular System, Issues in Biomedicine, Vol. 14. edited by R.N. Feinberg, G.K. Sherer, and R. Auerbach, Basel: Karger, 1991, p. 93–108.

    Google Scholar 

  9. Azar, Y. and H. Eyal-Giladi. Marginal zone cells-the primitive streak-inducing component of the primary hypoblast in the chick. J. Embryol. Exp. Morphol. 52: 79–88, 1979.

    PubMed  CAS  Google Scholar 

  10. Barnes, K., L.J. Murphy, M. Takahashi, K. Tanzawa, and A.J. Turner. Localization and biochemical characterization of endothelin-converting enzyme. J. Cardiovasc. Pharmacol. 26 (Suppl. 3): S37–S39, 1995.

    PubMed  CAS  Google Scholar 

  11. Barzu, T., J.-M. Herbert, A. Desmouliere, P. Carayon, and M. Pascal. Characterization of rat aortic smooth muscle cells resistant to the antiproliferative activity of heparin following long-term heparin treatment. J. Cell. Physiol. 160: 239–248, 1994.

    Article  PubMed  CAS  Google Scholar 

  12. Belknap, J.K., E.C. Orton, B. Ensley, and K.R. Stenmark. Hypoxia increases bromodeoxyuridine labeling indices in bovine neonatal pulmonary arteries. Am. J. Respir. Cell. Mol. Biol. 16: 366–371, 1997.

    Article  PubMed  CAS  Google Scholar 

  13. Belknap, J.K., M.C.M. Weiser, S.S. Grieshaber, N.A. Grieshaber, and R.A. Majack, K.R. Stenmark. Relationship between perlecan and tropoelastin gene expression and cell replication in the developing rat pulmonary vasculature. Am. J. Respir. Cell Mol. Biol. (In Press).

    Google Scholar 

  14. Benitz, W.E., R.T. Kelley, C.M. Anderson, D.E. Lorant, and M. Bernfield. Endothelial heparan sulfate proteoglycan. I. Inhibitory effects on smooth muscle cell proliferation. Am. J. Resp. Cell. Molec. Biol. 2: 13–24, 1990.

    Article  CAS  Google Scholar 

  15. Berk, B.C., V. Verkstein, H.M. Gordon, and T. Tsuda. Angiotension II-stimulated protein synthesis in cultured vascular smooth muscle cells. Hypertension 13: 305–314, 1989.

    Article  PubMed  CAS  Google Scholar 

  16. Bobik, A., A. Grooms, J.W. Millar, A. Mitchell, and S. Grinpukl. Growth factor activity of endothelin on vascular smooth muscle. Am. J. Physiol. (Cell. Physiol.) 258: C408–C415, 1990.

    CAS  Google Scholar 

  17. Botney, M.D., M.J. Liptay, L.R. Kaiser, J.D. Cooper, W.C. Parks, and R.P. Mecham. Active collagen synthesis by pulmonary vascular cells in human primary pulmonary hypertension. Am. J. Pathol. 143: 121–129, 1993.

    PubMed  CAS  Google Scholar 

  18. Bowersox, J.C. and N. Sogente. Chemotaxis of aortic endothelial cells in response to fibrin. Cancer Res. 42: 2547–2551, 1982.

    PubMed  CAS  Google Scholar 

  19. Boyd, J.D. Development of the heart. In: Handbook of Physiology, Section 2, Circulation, Vol. III, edited by W.F. Hamilton, Washington, DC: American Physiological Society, 1965, p. 2511–2543.

    Google Scholar 

  20. Boyden, E.A. The developing bronchial arteries in a fetus of the twelfth week. Am. J. Anat. 129: 357–368, 1970.

    Article  PubMed  CAS  Google Scholar 

  21. Brain, S.D., D.C. Crossman, T.L. Buckley, and T.J. Williams. Endothelin-1: demonstration of potent effects on the microcirculation of human and other species. J. Cardiovasc. Pharmacol. 13: 147–149, 1989.

    Article  Google Scholar 

  22. Brannon, T.S., A.J. North, L.B. Wells, and P.W. Shaul. Prostacyclin synthesis in ovine pulmonary artery is developmentally regulated by changes in cyclooxygenase-1 gene expression. J. Clin. Invest. 93: 2230–2235, 1994.

    Article  PubMed  CAS  Google Scholar 

  23. Breier, G., M. Clauss, and W. Risau. Coardinate expression of vascular endothelial growth factor receptor-1 (fit-1) and its ligand suggests a paracrine regulation of of murine vascular development. Dev. Dyn. 204: 228–239, 1995.

    Article  PubMed  CAS  Google Scholar 

  24. Brooks, P.C., R.A.F. Clark, and D.A. Cheresh. Requirement of vascular integrin av(33 for angiogenesis. Science 264: 569–571, 1994.

    Article  PubMed  CAS  Google Scholar 

  25. Brown, A.J. The development of the pulmonary vein in the domestic cat. Anat. Rec. 7: 299–329, 1913.

    Article  Google Scholar 

  26. Bucher, U. and L. Reid. Development of the intrasegmental bronchial tree: the pattern of branching and development of cartilage at various stages of intra-uterine life. Thorax 16: 207–218, 1961.

    Article  PubMed  CAS  Google Scholar 

  27. Burgess, W.H. and T. Maciag. The heparin binding (fibroblast) growth factor family of proteins. Annu. Rev. Biochem. 58: 575–601, 1989.

    Article  PubMed  CAS  Google Scholar 

  28. Burri, P.H. Fetal and postnatal development of the lung. Annu. Rev. Physiol. 46: 617–628, 1984.

    Article  PubMed  CAS  Google Scholar 

  29. Butler, H. Some derivatives of the foregut venous plexus of the albino rat, with reference to man. J. Anat. 86: 95–109, 1952.

    PubMed  CAS  Google Scholar 

  30. Carey, D.J. Control of growth and differentiation of vascular cells by extracellular matrix proteins. Annu. Rev. Physiol. 53: 161–177, 1991.

    Article  PubMed  CAS  Google Scholar 

  31. Cassin, S., G.S. Dawes, and B.B. Ross. Pulmonary blood flow and vascular resistance in immature fetal lambs. J. Physiol. (Lond.) 171: 80–89, 1964.

    CAS  Google Scholar 

  32. Cassin, S., M.L. Tod, J. Phillips, F. Frisinger, J. Jordan, and C. Gibbs. Effects of prostaglandin DZ on the perinatal circulation. Am. J. Physiol. 240: H755–H760, 1981.

    PubMed  CAS  Google Scholar 

  33. Cassin, S., T. Tyler, C. Leffler, and R. Wallis. Pulmonary and systemic vascular responses of perinatal goats to prostaglandin El and E2. Am. J. Physiol. 236: H828–H832, 1979.

    PubMed  CAS  Google Scholar 

  34. Castelott, J.J., M.L. Addonzio, R.D. Rosenberg, and M.J. Karnovsky. Cultured endothelial cells produce a heparin-like inhibitor of smooth muscle cell growth. J. Cell. Biol. 90: 372–379, 1981.

    Article  Google Scholar 

  35. Claesson-Welsh, L., M. Welsh, N. Ito, B. Anand-Apte, S. Soker, B. Zetter, M. O’Reilly, and J. Folkman. Angiostatin induces endothelial cell apoptosis and activation of focal adhesion kinase independently of the integrin-binding motif RGD. Proc. Natl. Acad. Sci. USA 95: 5579–5583, 1998.

    Article  PubMed  CAS  Google Scholar 

  36. Clozel, J.-P., C. Saunier, D. Hartemann, and W. Fischli. Effects of cilazapril, a novel angiotensin converting enzyme inhibitor, on the structure of pulmonary arteries of rats exposed to chronic hypoxia. J. Cardiovasc. Pharmacol. 17: 36–40, 1991.

    Article  PubMed  CAS  Google Scholar 

  37. Coffin, J.D. and T.J. Poole. Embryonic vascular development: immunohistochemical identification of the origin and subsequent morphogenesis of the major vessel primordia in quail embryos. Development 102: 735–748, 1988.

    PubMed  CAS  Google Scholar 

  38. Congdon, E.D. Transformation of the aortic arch system during the development of the human embryo. Carnegie Inst. Contrib. Embryol. 14: 47–110, 1922.

    Google Scholar 

  39. Cook, C.L., M.C.M. Weiser, P.E. Schwartz, C.L. Jones, and R.A. Majack. Developmentally timed expression of an embryonic growth phenotype in vascular smooth muscle cells. Circ. Res. 74: 189–196, 1993.

    Article  Google Scholar 

  40. Cornfield, D.N., H.L. Reeve, S. Tolarova, E.K. Weir, and S. Archer. Oxygen causes fetal pulmonary vasodilation through activation of a calcium-dependent potassium channel. Proc. Natl. Acad. Sci. USA 93: 8089–8094, 1996.

    Article  PubMed  CAS  Google Scholar 

  41. Davidson, D. Pulmonary hemodynamics at birth: effects of acute cyclooxygenase inhibition in lambs. J. Appl. Physiol. 64: 1676–1682, 1988.

    PubMed  CAS  Google Scholar 

  42. Davidson, J.M., K.E. Hill, M.L. Mason, and M.G. Giro. Longitudinal gradient of collagen and elastin gene expression in the procine aorta. J. Biol. Chem. 260: 1901–1908, 1985.

    PubMed  CAS  Google Scholar 

  43. Davis, S., T.H. Aldrich, P.F. Jones, A. Acheson, D.L. Compton, V. Jain, R.E. Ryan, J. Bruno, C. Radziejewski, P.C. Maisonpierre, and G.D. Yancopoulos. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87: 1161–1169, 1996.

    Article  PubMed  CAS  Google Scholar 

  44. DeFouw, D.O. Structural heterogeneity within the pulmonary microcirculation of the normal rat. Anat. Rec. 221: 645–654, 1988.

    Article  PubMed  CAS  Google Scholar 

  45. Dempsey, E.C., D.B. Badesch, E. Dobyns, and K.R. Stenmark. Enhanced growth capacity of neonatal pulmonary artery smooth muscle cells in vitro: Dependence on cell size, time of harvest, insulin-like growth factor-1, and auto-activation of protein kinase C. J. Cell. Physiol. 160: 469–481, 1994.

    Article  PubMed  CAS  Google Scholar 

  46. Dempsey, E.C., S.J. Walchak, J.L Peach, and K.R. Stenmark. Adult bovine PA adventitial fibroblasts, but not matched SMC, have a potential PKC-dependent autocrine growth loop. Am. Rev. Respir. Dis. 145: A481, 1992.

    Google Scholar 

  47. DeLisser, H.M. H.S. Baldwin, and S.M. Albelda. Platelet endothelial cell adhesion molecule 1 (PECAM-1/CD31): a multifunctional vascular cell adhesion molecule. Trends Cardiovasc. Med. 7: 203–210, 1997.

    Article  PubMed  CAS  Google Scholar 

  48. DeLisser, H.M., M. Christofidou-Solomidou, R.M. Strieter, M.D. Burdick, C.S. Robinson, R.S. Wexler, J.S. Kerr, C. Garlanda, J.R. Merwin, J.A. Madri, and S.M. Albelda. Involvement of endothelial PECAM-1/CD31 in angiogensis. Am J. Pathol. 151: 671–677, 1997.

    PubMed  CAS  Google Scholar 

  49. deMello D.E., D. Sawyer, N. Galvin, and L.M. Reid. Early fetal development of lung vasculature. Am. J. Respir. Cell. Mol. Biol. 16: 568–581, 1997.

    Article  PubMed  CAS  Google Scholar 

  50. DeRuiter, M.C., A.C. Gittenberger-de-Groot, R.E. Poelmann, L. Vanlperen, and M.M. Mentink. Development of the pharyngeal arch system related to the pulmonary and bronchial vessels in the avian embryo. With a concept on systemic-pulmonary collateral artery formation. Circulation 87: 1306–1319, 1993.

    Article  PubMed  CAS  Google Scholar 

  51. DeRuiter, M.C., A.C. Gittenberger-de Groot, S. Ramos, and R.E. Poelmann. The special status of the pulmonary arch artery in the branchial arch system of the rat. Anat. Embryol. 179: 319–325, 1989.

    Article  CAS  Google Scholar 

  52. Dickson, M.C., J.S. Martin, F.M. Cousins, A.B. Kulkarni, S. Karlsson, and R.J. Akhurst. Defective hematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 121: 1845–1854, 1995.

    PubMed  CAS  Google Scholar 

  53. Drake, C.J. and C.D. Little. Exogenous vascular endothelial growth factor induces malformed and hyperfused vessels during embryonic neovascularization. Proc. Natl. Acad. Sci. USA 92: 7657–7661, 1995.

    Article  PubMed  CAS  Google Scholar 

  54. Dumont, D.J., G.-H. Fong, M.C. Puri, G. Gradwohl, K. Alitalo, and M.L. Breitman. Vascularization of the mouse embryo: a study of flk-1, tek, and tie, and vascular endothelial growth factor expression during development. Dev. Dyn. 203: 80–92, 1995.

    Article  PubMed  CAS  Google Scholar 

  55. Dumont, D.J., G.J. Gradwohl, G.-H. Fong, R. Auerbach, and M.L. Breitman. The endothelial-specific receptor tyrosine kinase, tek, is a member of a new subfamily of receptors. Oncogene 8: 1293–1301, 1993.

    PubMed  CAS  Google Scholar 

  56. Dumont, D.J., G.J. Gradwohl, G.-H. Fong, M.C. Puri, M. Gertsenstein, A. Auerbach, and M.L. Breitman. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev. 8: 1897–1909, 1994.

    Article  PubMed  CAS  Google Scholar 

  57. Dumont, D.J., T.P. Yamaguchi, R.A. Conlon, J. Rossant, and M.L. Breitman. tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors. Oncogene 7: 1471–1480, 1992.

    PubMed  CAS  Google Scholar 

  58. Durmowicz, A.G., W.C. Parks, D.M. Hyde, R.P. Mecham, and K.R. Stenmark. Persistence, re-expression, and induction of pulmonary arterial fibronectin, tropoelastin, and type I procollagen mRNA expression in neonatal hypoxic pulmonary hypertension. Am. J. Pathol. 145: 1411–1420, 1994.

    PubMed  CAS  Google Scholar 

  59. Ferrara, N., K.A. Houck, L.B. Jakeman, J. Winer, and D.W. Leung. The vascular endothelial growth factor family of polypeptides. J. Cell. Biochem. 47: 211–218, 1991.

    Article  PubMed  CAS  Google Scholar 

  60. Flamme, I., G. Breier, and W. Risau. Vascular endothelial growth factor (VEGF) and VEGF receptor 2 (flk-1) are expressed during vasculogenesis and vascular differentiation in the quail embryo. Dev. Biol. 169: 699–712, 1995.

    Article  PubMed  CAS  Google Scholar 

  61. Flamme, I. and W. Risau. Induction of vasculogenesis and hematopoiesis in vitro. Development 116: 435–439, 1992.

    PubMed  CAS  Google Scholar 

  62. Folkman, J. and P.A. D’Amore. Blood vessel formation: what is its molecular basis. Cell 87: 1153–1155, 1996.

    Article  PubMed  CAS  Google Scholar 

  63. Folkman, J. and M. Klagsbrun. Vascular physiology. A family of angiogenic peptides. Nature 329: 671–672, 1987.

    Article  PubMed  CAS  Google Scholar 

  64. Fong, G.H., J. Rossaant, M. Gertsenstein, and M.L. Breitman. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376: 66–70, 1995.

    Article  PubMed  CAS  Google Scholar 

  65. Form, D.M., B.M. Pratt, and J.A. Madri. Endothelial cell proliferation during angiogenesis. In vitro modulation by basement membrane components. Lab. Invest. 55: 521–530, 1986.

    PubMed  CAS  Google Scholar 

  66. Frid, M.G., A.A Aldashev, E.C. Dempsey and K.R. Stenmark. Smooth Muscle Cells Isolated From Discrete Compartments of the Mature Vascular Media Exhibit Unique Phenotypes and Distinct Growth Capabilities. Circ. Res. 81: 940–952, 1997.

    Article  PubMed  CAS  Google Scholar 

  67. Frid, M.G., B.V. Shekhonin, V.E. Koteliansky, and M.A. Glukhova. Phenotypic changes of human smooth muscle cells during development: late expression of heavy caldesmon and calponin. Dev. Biol. 153: 185–193, 1992.

    Article  PubMed  CAS  Google Scholar 

  68. Frid, M.G., and K.R. Stenmark. An immature smooth muscle cell subpopulation exists in the normal adult bovine pulmonary arterial media. Am. J. Respir. Crit. Care Med. 149: A823, 1994.

    Google Scholar 

  69. Frid, M.G. and K.R. Stenmark. Distinct adult bovine arterial smooth muscle cell subpopulations exhibit unique growth characteristics in vitro. Am. J. Respir. Crit. Care Med. 151: A526, 1995.

    Google Scholar 

  70. Friedlander, M., C.L. Theesfeld, M. Sugita, M. Fruttiger, M.A. Thomas, S. Chang, and D.A. Cheresh. Involvement of integrins oVß3 and aVß5 in ocular neovascular diseases. Proc. Natl. Acad. Sci. USA 93: 9764–9769, 1996.

    Article  PubMed  CAS  Google Scholar 

  71. Friedlander, M., P.C. Brooks, R.W. Shaffer, C.M. Kincaid, J.A. Varner, and D.A. Cheresh. Definition of two angiogenic pathways by distinct aV intigrins. Science 270: 1500–1502, 1995.

    Article  PubMed  CAS  Google Scholar 

  72. Friesel, R.E. and T. Maciag. Molecular mechanisms of angiogenesis: fibroblast growth factor signal transduction. FASEB J. 9: 919–925, 1995.

    PubMed  CAS  Google Scholar 

  73. Fritze, L.M., C.F. Reilly, and R.D. Rosenberg. An antiproliferative heparan sulfate species produced by postconfluent smooth muscle cells. J. Cell. Biol. 100: 1041–1049, 1985.

    Article  PubMed  CAS  Google Scholar 

  74. Fu, Y.-M., P. Spirito, Z.-X. Yu, S. Biro, J. Sasse, J. Lei, V.J. Ferrans, S.E. Epstein, and W. Casscells. Acidic fibroblast growth factor in the developing rat embryo. J. Cell Biol. 114: 1261–1273, 1991.

    Article  PubMed  CAS  Google Scholar 

  75. Fujita, H., K. Shimokado, C. Yutani, S. Takaichi, J. Masuda, and J. Ogata. Human neonatal and adult vascular smooth muscle cells in culture. Exp. Mol. Pathol. 58: 25–39, 1993.

    Article  PubMed  CAS  Google Scholar 

  76. Geisterfer, A.A.T., M.J. Peach, and G.K. Owens. Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ. Res. 62: 749–756, 1988.

    Article  PubMed  CAS  Google Scholar 

  77. George, E.L., E.N. Georges-Labouesse, R.S. Patel-King, H. Rayburn, and R.O. Hynes. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119: 1079–1091, 1993.

    PubMed  CAS  Google Scholar 

  78. Giaid, A., J.M. Polak, V. Gaitonde, Q.A. Hamid, G. Moscoso, S. Legon, D. Uwanogho, M. Roncalli, O. Shinmi, T. Sawamura, and D.R. Springall. Distribution of endothelin-like immunoreactivity and mRNA in the developing and adult human lung. Am. J. Respir. Cell. Mol. Biol. 4: 50–58, 1991.

    Article  PubMed  CAS  Google Scholar 

  79. Gibbons, G.H., R.E. Pratt, and V.J. Dzau. Vascular smooth muscle cell hypertrophy vs. hyperplasia. Autocrine transforming growth factor-I3 expression determines growth response to angiotensin II. J. Clin. Invest. 90: 456–461, 1992.

    Article  PubMed  CAS  Google Scholar 

  80. Glukhova, M.A., M.G. Frid, and V.E. Koteliansky. Developmental changes in expression of contractile and cytoskeletal proteins in human aortic smooth muscle. J. Biol. Chem. 265: 13042–13046, 1990.

    PubMed  CAS  Google Scholar 

  81. Glukhova, M.A., M.G. Frid, B.V. Shekhonin, Y.V. Balabanov, and V.E. Koteliansky. Expression of fibronectin variants in vascular and visceral smooth muscle cells in development. Dev. Biol. 141: 193–202, 1990.

    Article  PubMed  CAS  Google Scholar 

  82. Glukhova, M.A., A.E. Kabakov, A.M. Belkin, M.G. Frid, O.I. Ornatsky, N.I. Zhidkova, and V.E. Koteliansky. Metavinculin distribution in adult human tissues and cultured cells. FEBS Lett. 207: 139–141, 1986.

    Article  PubMed  CAS  Google Scholar 

  83. Glukhova, M.A., A.E. Kabakov, M.G. Frid, O.L. Ornatsky, A.M. Belkin, and D.N. Mukhin, et al. Modulation of human aorta smooth muscle cell phenotype: a study of muscle-specific variants of vinculin, caldesmon, and actin expression. Proc. Natl. Acad. Sci. USA 85: 9542–9546. 1988.

    Article  PubMed  CAS  Google Scholar 

  84. Glukhova, M.A. and V.E. Koteliansky. Integrins, cytoskeletal and extracellular matrix proteins in developing smooth muscle cells of human aorta. In: The Vascular Smooth Muscle Cell, edited by S.M. Schwartz and R.P. Mecham, San Diego: Academic Press, 1995, p. 37–79.

    Chapter  Google Scholar 

  85. Gonzalez, A.-M., M. Buscaglia, M. Ong, and A. Baird. Distribution of basic fibroblast growth factor in the 18 day rat fetus: localization in the basement membranes of diverse tissues. J. Cell Biol. 110: 753–765, 1990.

    Article  PubMed  CAS  Google Scholar 

  86. Gordon, J.B., M.L. Tod, R.C. Wetzel, M.L. McGeady, N.F. Adkinson, and J.T. Sylvester. Age-dependent effects of indomethacin on hypoxic vasoconstriction in neonatal lamb lungs. Pediatr. Res. 23: 580–584, 1988.

    Article  PubMed  CAS  Google Scholar 

  87. Gospodarowicz, D. and C. Ill. Extracellular matrix and control of proliferation of vascular endothelial cells. J. Clin. Invest. 65: 1351–1364, 1980.

    Article  PubMed  CAS  Google Scholar 

  88. Grady, E.F., L.A. Sechi, C.A. Griffin, M. Schambelan, and J.E. Kalinyak. Expression of AT2 receptors in the developing rat fetus. J. Clin. Invest. 88: 921–933, 1991.

    Article  PubMed  CAS  Google Scholar 

  89. Graf, J., Y. Iwamoto, M. Sasaki, G.R. Martin, H.K. Kleinman, F.A. Robey, and Y. Yamada. Identification of an amino acid sequence in laminin mediating cell attachment, chemotaxis and receptor binding. Cell 48: 989–996, 1987.

    Article  PubMed  CAS  Google Scholar 

  90. Grant, D.S., K.-I. Tashiro, B. Segui-Real, Y. Yamada, G.R. Martin, and H.K. Kleinman. Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures. Cell 58: 933–943, 1989.

    Article  PubMed  CAS  Google Scholar 

  91. Greenblatt, M. and P. Shubik. Tumor angiogenesis: transfilter diffusion studies in the hamster by the transparent chamber technique. J. Natl. Cancer Inst. 41: 111–124, 1968.

    PubMed  CAS  Google Scholar 

  92. Hagiwara, H., T. Nagasawa, T. Yamamoto, K.M. Lodhi, T. Ito, N. Takemura, and S. Hirose. Immunochemical characterization and localization of endothelin ETB receptor. Am. J. Physiol. 264: 777–783, 1993.

    Google Scholar 

  93. Hain, L., G.S. Barsh, R.E. Pratt, V.J. Dzau, and B.K. Kobilka. Behavioral and cardiovascular effects of disrupting the angiotensin II type 2 receptor in mice. Nature 377: 744–747, 1995.

    Article  Google Scholar 

  94. Halbower, A.C., R.M. Tuder, W.A. Franklin, J.S. Pollock, U. Förstermann, and S.H. Abman. Maturation-related changes in endothelial nitric oxide synthase immunolocalization in developing ovine lung. Am. J. Physiol. (Lung Cell. Mol. Physiol.) 267: L585–L591, 1994.

    CAS  Google Scholar 

  95. Hanahan, D. and J. Folkman. Patterns and emerging mechanisms of the angiogenic switch during tumorgenesis. Cell 86: 353–364, 1996.

    Article  PubMed  CAS  Google Scholar 

  96. Harris, A. Are angiostatin and endostatin cures for cancer? Lancet 351: 1598–1599, 1998.

    Article  PubMed  CAS  Google Scholar 

  97. Hedin, U., B.A. Bottger, E. Forsberg, S. Johansson, and J. Thyberg. Diverse effects of fi bronectin and laminin on phenotypic properties of cultured arterial smooth muscle cells. J. Cell Biol. 107: 307–319, 1988.

    Article  PubMed  CAS  Google Scholar 

  98. Herbst, T.J., J.B. McCarthy, E.C. Tsilibary, and L.T. Furcht. Differential effects of laminin, intact type IV collagen, and specific domains of type IV collagen on endothelial cell adhesion and migration. J. Cell Biol. 106: 1365–1373, 1988.

    Article  PubMed  CAS  Google Scholar 

  99. Heymann, M.A., R.K. Creasy, and A.M. Rudolph. Quantitation of blood flow patterns in the foetal lamb in utero. In: Proceedings of the Sir Joseph Barcroft Symposium: Foetal and Neonatal physiology, Cambridge: Cambridge University Press, 1973, p. 129–135.

    Google Scholar 

  100. Heyward, S.A., N. Dubois-Stringfellow, R. Rapoport, and V.L. Bautch. Expression and inducibility of vascular adhesion receptors in development. FASEB J. 9: 956–962, 1995.

    PubMed  CAS  Google Scholar 

  101. Hislop, A. and L. Reid. Intrapulmonary arterial development during fetal life-branching pattern and structure. J. Anat. 113: 35–48, 1972.

    PubMed  CAS  Google Scholar 

  102. Holmgren, L., A. Glaser, S. Pfeifer-Ohlsson, and R. Ohlsson. Angiogenesis during human extraembryonic development involves the spatiotemporal control of PDGF ligand and receptor gene expression. Development 113: 749–754, 1991.

    PubMed  CAS  Google Scholar 

  103. Hori, S., Y. Komatsu, R. Shigemoto, N. Mizuno, and S. Nakanishi. Distinct tissue distribution and cellular localization of two messenger ribonucleic acids encoding different subtypes of rat endothelin receptors. Endocrinology 130: 1885–1895, 1992.

    Article  PubMed  CAS  Google Scholar 

  104. Hu, N. and E.B. Clark. Hemodynamics of the stage 12 to stage 29 chick embryo. Circ. Res. 65: 1665–1670, 1989.

    Article  PubMed  CAS  Google Scholar 

  105. Huntingdon, G.S. The morphology of the pulmonary artery in the mammalia. Anat. Rec. 17: 165–189, 1919.

    Article  Google Scholar 

  106. Hynes, R.P. Integrins: versatility, modulation and signaling in cell adhesion. Cell 69: 11–25, 1992.

    Article  PubMed  CAS  Google Scholar 

  107. Inoue, A., M. Yanagisawa, S. Kimura, Y. Kasuya, T. Miyauchi, K. Goto, and T. Masaki. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc. Natl. Acad. Sci. USA 86: 2863–2867, 1989

    Article  PubMed  CAS  Google Scholar 

  108. Ishimitsu, T., Y. Uehara, M. Ishii, T. Ikeda, H. Matsuoka, and T. Sugimoto. Thromboxane and vascular smooth muscle cell growth in genetically hypertensive rats. Hypertension 12: 46–51, 1988.

    Article  PubMed  CAS  Google Scholar 

  109. Ivy, D.D., J.P. Kinsella, and S.H. Abman. Physiologic characterization of endothelin A and B receptor activity in the ovine fetal pulmonary circulation. J. Clin. Invest. 93: 2141–2148, 1994.

    Article  PubMed  CAS  Google Scholar 

  110. Jones, K.W., M.H. Shapero, M. Chevrettm, and R.E.K. Fournier. Subtractive hybridization cloning of tissue-specific extinguisher: TSE1 encodes a regulatory subunit of protein kinase A. Cell 66: 861–872, 1991.

    Article  PubMed  CAS  Google Scholar 

  111. Jones, O.W. and S.H. Abman. Systemic and pulmonary hemodynamic effects of big endothelin-1 and phosphoramidon in the ovine fetus. Am. J. Physiol. 266: R929–R955, 1994.

    PubMed  Google Scholar 

  112. Kawahara, Y., M. Sunako, T. Tsuda, H. Fukuzaki, Y. Fukumoto, and Y. Takai. Angiotensin II induces expression of the c-fOS gene through protein kinase C activation and calcium ion mobilization in cultured vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 150: 52–59, 1988.

    Article  PubMed  CAS  Google Scholar 

  113. Kawai, N., D.B. Bloch, G. Filippov, D. Rabkina, H.-C. Suen, P.D. Losty, S.P. Janssens, W.M. Zapol, S. de la Monte, and K.D. Bloch. Constitutive endothelial nitric oxide synthase gene expression is regulated during lung development. Am. J. Physiol. 268: L589–L595, 1995.

    PubMed  CAS  Google Scholar 

  114. Keeley, F.W. and M. Rabinovitch. Vascular matrix metabolism in hypertension. In Pulmonary Vascular Remodeling, Vol. 5, edited by J.E. Bishop, J.T. Reeves, and G.J. Laurent. London: Portland Press, 1995, p. 149–169.

    Google Scholar 

  115. Kingsley, D.M. The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev. 8: 133–146, 1994.

    Article  PubMed  CAS  Google Scholar 

  116. Kinsella, J.P., D.D. Ivy, and S.H. Abman. Ontogeny of NO activity and response to inhaled NO in the developing ovine pulmonary circulation. Am. J. Physiol. 267: H1955–H1961, 1994.

    PubMed  CAS  Google Scholar 

  117. Kleinman, H.K., F.B. Cannon, G.W. Laurie, J.R. Hassell, M. Aumailley, V.P. Terranova, G.R. Martin, and M. Dubois-Dalcq. Biological activities of laminin. J. Cell Biol. 27: 317–325, 1985.

    CAS  Google Scholar 

  118. Kocher, O. and G. Gabbiani. Expression of actin mRNA in rat aortic smooth muscle cells during development, experimental intimal thickening, and culture. Differentiation 32: 245–251, 1986.

    Article  PubMed  CAS  Google Scholar 

  119. Komuro, I., H. Kurihara, T. Sugiyama, M. Yoshizumi, E. Takaku, and Y. Yazaki. Endothelin stimulates c-fos and c-myc expression and proliferation of vascular smooth muscle cells. FEBS Lett. 238: 249–252, 1988.

    Article  PubMed  CAS  Google Scholar 

  120. Korhonen, J., A. Polvi, J. Partanen, and K. Alitalo. The mouse tie receptor tyrosine kinase gene: expression during embryonic angiogenesis. Oncogene 9: 395–403, 1994.

    PubMed  CAS  Google Scholar 

  121. Kornblihtt, A.R., K. Umezawa, K. Vige-Pedersen, and E. Baralle. Primary structure os human fibronectin: differential splicing may generate at least 10 polypeptides from a single gene. EMBO J. 4: 1755–1759, 1985.

    PubMed  CAS  Google Scholar 

  122. Kratochwil, K., M. Dziadek, J. Lohler, K. Harbers, and R. Jaenisch. Normal epithelial branching morphogenesis in the absence of collagen. Dev. Biol. 117: 596–606, 1986.

    Article  PubMed  CAS  Google Scholar 

  123. Kubota, Y., H.K. Kleinman, G.R. Martin, and T.J. Lawley. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells in capillary-like structures. J. Cell Biol. 107: 1589–1598, 1988.

    Article  PubMed  CAS  Google Scholar 

  124. Kumar, S., D.C. West, and A. Ager. Heterogeneity in endothelial cells from large vessels and microvessels. Differentiation 36: 57–70, 1987.

    Article  PubMed  CAS  Google Scholar 

  125. Kurihara, Y., H. Kurihara, H. Oda, K. Maemura, R. Nagai, T. Ishikawa, et al. Aortic arch malformations and ventricular septal defect in mice deficient in endothelin-1. J. Clin. Invest. 96: 293–300, 1995.

    Article  PubMed  CAS  Google Scholar 

  126. Kuro-O, M., R. Nagai, H. Tsuchimochi, H. Katoh, Y. Yazaki, A. Ohkubo, and F. Takaku. Developmentally regulated expression of vascular smooth muscle myosin heavy chain isoforms. J. Biol. Chem. 264: 18272–18275, 1989.

    Google Scholar 

  127. Kuzuya, M. and J.L. Kinsella. Reorganization of endothelial cord-like structures on basement membrane complex (Matrigel): involvement of transforming growth factor beta 1. J. Cell. Physiol. 161: 267–276, 1994.

    Article  PubMed  CAS  Google Scholar 

  128. Lebiodes, J., S.J. Soifer, R.I. Clyman, and M.A. Heymann. Piriprost: a putative leukotriene synthesis inhibitor increases pulmonary blood flow in fetal lambs. Pediatr. Res. 22: 350–354, 1987.

    Article  Google Scholar 

  129. Leffler, C.W., J.R. Hessler, and R.S. Green. The onset of breathing at birth stimulates pulmonary vascular prostacylin synthesis. Pediatr. Res. 18: 938–942, 1984.

    Article  PubMed  CAS  Google Scholar 

  130. Lemire, J.M., C.W. Covin, S. White, C.M. Giachelli, and S.M. Schwartz. Characterization of cloned aortic smooth muscle cells from young rats. Am. J. Pathol. 144: 1068–1081, 1994.

    PubMed  CAS  Google Scholar 

  131. Leung, D.Y.M., S. Glagov, and M.B. Mathews. Elastin and collagen accumulation in rabbit ascending aorta and pulmonary trunk during postnatal growth. Circ. Res. 41: 316–323, 1977.

    Article  PubMed  CAS  Google Scholar 

  132. Leveen, P., M. Pekny, S. Gebre-Medhin, B. Swolin, E. Larsson, and C. Betsholtz. Genes Dev. 8: 1875–1887, 1994.

    Article  PubMed  CAS  Google Scholar 

  133. Levine, A.J. The tumorsuppressor genes. Annu. Rev. Biochem. 62: 623–651, 1993.

    Article  PubMed  CAS  Google Scholar 

  134. Li, X., P. Tsai, E.D. Wieder, A. Kribben, V. Van Putten, R.W. Schrier, and R.A. Nemenoff. Vascular smooth muscle cells grown on Matrigel. A model of the contractile phenotype with decreased activation of mitogen-activated protein kinase. J. Biol. Chem. 269: 19653–19658, 1994.

    PubMed  CAS  Google Scholar 

  135. Liu, S.F., A.A. Hislop, S.G. Haworth, and P.J. Barnes. Developmental changes in endothelium-dependent pulmonary vasodilatation in pigs. Br. J. Pharmacol. 106: 324–330, 1992.

    Article  PubMed  CAS  Google Scholar 

  136. Lock, J.E., P.M. Olley, S. Soldin, and F. Coceani. Indomethacin-induced pulmonary vasoconstriction in the conscious newborn lamb. Am. J. Physiol. 238: H639–H651, 1980.

    PubMed  CAS  Google Scholar 

  137. MacCumber, M.W., C.A. Ross, B.M. Glaser, and S.H. Snyder. Endothelin: visualization of mRNAs by in situ hybridization provides evidence for local action. Proc. Natl. Acad. Sci. USA 86: 7285–7289, 1989.

    Article  PubMed  CAS  Google Scholar 

  138. Madri, J.A. Endothelial cell-matrix interactions. In: Progress in Thrombosis and Hemostasis, Vol. 6, edited by T. Spaet, New York: Grune and Stratton, 1982, p. 1–24.

    Google Scholar 

  139. Madri, J.A. and S.K. Williams. Capillary endothelial cell cultures: phenotypic modulation by matrix components. J. Cell Biol. 97: 153–165, 1983.

    Article  PubMed  CAS  Google Scholar 

  140. Maisonpierre, P.C., C. Suri, P.F. Jones, S. Bartunkova, S.J. Wiegand, C. Radziejewski, D. Compton, J. McClain, T.H. Aldrich, N. Papadopoulos, T.J. Daly, S. Davis, T.N. Sato, and G.D. Yancopoulos. Angiopoitin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science, 277: 55–60, 1997.

    Article  PubMed  CAS  Google Scholar 

  141. Majack, R.A. Extinction of autonomous growth potential in embryonic:adult vascular smooth muscle cell heterokaryons. J. Clin. Invest. 95: 464–468, 1995.

    Article  PubMed  CAS  Google Scholar 

  142. Majack, R.A. and A.W. Clowes. Inhibition of vascular smooth muscle cell migration by heparin-like glycosaminoglycans. J. Cell. Physiol. 118: 253–256, 1984.

    Article  PubMed  CAS  Google Scholar 

  143. McQueston, J.A., J.P. Kinsella, D.D. Ivy, I.F. McMurtry, and S.H. Abman. Chronic pulmonary hypertension in utero impairs endothelium-dependent vasodilation. Am J. Physiol. 268: H288–H294, 1995.

    PubMed  CAS  Google Scholar 

  144. Mecham, R.P., K.R. Stenmark, and W.C. Parks. Connective tissue production by vascular smooth muscle in development and disease. Chest 99: 43S–47S, 1991.

    Article  PubMed  CAS  Google Scholar 

  145. Mikawa, T. and D.A. Fischman. Retroviral analysis of cardiac morphogenesis: discontinuous formation of coronary vessels. Proc. Natl. Acad. Sci. USA 89: 9504–9508, 1992.

    Article  PubMed  CAS  Google Scholar 

  146. Millauer B., S. Wizigmann-Voos, H. Schnurch, R. Martinez, N.P. Moller, W. Risau, and A. Ullrich. High-affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72: 835–846, 1993.

    Article  PubMed  CAS  Google Scholar 

  147. Mills, A.N. and S.G. Haworth. Pattern of connective tissue development in swine pulmonary vasculature by immunolocalization. J. Pathol. 153: 171–176, 1987.

    Article  PubMed  CAS  Google Scholar 

  148. Morin, F.C. and K.R. Stenmark. Persistent pulmonary hypertension of the newborn. State-of-the-Art. Am. J. Respir. Crit. Care Med. 151: 2010–2032, 1995.

    Article  PubMed  Google Scholar 

  149. Morrell, N.W., S.S. Grieshaber, S.M. Danilov, R.A. Majack, and K.R. Stenmark. Developmental regulation of angiotensin converting enzyme and angiotensin type I receptor in the rat pulmonary circulation. Am. J. Respir. Cell. Mol. Biol. 14: 526–537, 1996.

    Article  PubMed  CAS  Google Scholar 

  150. Muller, W.A., C.M. Ratti, S.L. McDonnell, and Z.A. Cohn. A human endothelial cellrestricted externally disposed plasmalemmal protein enriched in intercellular junctions. J. Exp. Med. 170: 399–414, 1989.

    Article  PubMed  CAS  Google Scholar 

  151. Muthuchamy, M., L. Pajak, P. Howles, T. Doetschman, and D.F. Wieczorek. Developmental analysis of trypomyosin gene expression in embryonic stem cells and mouse embryos. Mol. Cell. Biol. 13: 3311–3323, 1993.

    PubMed  CAS  Google Scholar 

  152. Myers, B., M. Dubich, J.A. Last, and R.B. Ruche. Elastin synthesis during perinatal lung development in the rat. Biochem. Biophys. Acta 761: 17–22, 1983.

    Article  PubMed  CAS  Google Scholar 

  153. Nakamichi, K., M. Ihara, M. Kobayashi, T. Saeki, K. Ishikawa, and M. Yano. Different distribution of endothelin receptor subtypes in pulmonary tissues revealed by the novel selective ligands BQ-123 and [Ala 1, 3, 11, 15jET-1. Biochem. Biophys. Res. Commun. 182: 144–150, 1992.

    Article  PubMed  CAS  Google Scholar 

  154. Nemecek, G.M., S.R. Coughlin, D.A. Handley, and M.A. Moskowitz. Stimulation of aortic smooth muscle cell mitogenesis by serotonin. Proc. Natl. Acad. Sci. USA 83: 674–678, 1986.

    Article  PubMed  CAS  Google Scholar 

  155. Neylon, C.B., P.V. Avdonin, R.J. Dilley, M.A. Larsen, V.A. Tkachuk, and A. Bobik. Different electrical responses to vasoactive agonists in morphologically distinct smooth muscle cell types. Circ. Res. 75: 733–741, 1994.

    Article  PubMed  CAS  Google Scholar 

  156. Nguyen, M., N.A. Strubel, and J. Bischoff. A role for sialyl Lewis-X/A glycoconjugates in capillary morphogenesis. Nature 365: 267–269, 1993.

    Article  PubMed  CAS  Google Scholar 

  157. Nilsson, J., A.M. Von Euler, and C.J. Dalsgaard. Stimulation of connective tissue cell growth by substance P and substance K. Nature 315: 61–63, 1985.

    Article  PubMed  CAS  Google Scholar 

  158. North, A.J.J., R.A. Star, T.S. Brannon, K. Ujiie, L.B. Wells, C.J. Lowenstein, S.H. Snyder, and P.W. Shaul. Nitric oxide synthase type I and type III gene expression are developmentally regulated in rat lung. Am. J. Physiol. 266: L635–L641, 1994.

    PubMed  CAS  Google Scholar 

  159. O’Reilly, M.S., T. Boehm, Y. Shing, N. Fukai, G. Vasios, W.S. Lane, E. Flinn, J.R. Birk-head, B.R. Olsen, and J. Folkman. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88: 277–285, 1997.

    Article  PubMed  Google Scholar 

  160. Osborn, M., J. Caselitz, and K. Weber. Heterogeneity of intermediate filament expression in vascular smooth muscle: a gradient in desmin positive cells from the rat aortic arch to the level of the arteria iliaca communis. Differentiation 20: 196–202, 1981.

    Article  PubMed  CAS  Google Scholar 

  161. Owens, G.K. Regulation of differentiation of vascular smooth muscle cells. Physiol. Rev. 75: 487–517, 1995.

    PubMed  CAS  Google Scholar 

  162. Palmberg, L., H.E. Clawsson, and J. Thyberg. Leukotrienes stimulate initiation of DNA synthesis in cultured arterial smooth muscle cells. J. Cell Sci. 88: 151–159, 1987.

    PubMed  CAS  Google Scholar 

  163. Pardanaud, L., C. Altman, P. Kitos, F. Dieterlen-Lievre, and C.A. Buck. Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development 100: 339–349, 1987.

    PubMed  CAS  Google Scholar 

  164. Pardanaud, L., F. Yassine, and F. Dieterlen-Li-Avre. Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny. Development 105: 473–485, 1989.

    PubMed  CAS  Google Scholar 

  165. Patterson, B.C. and Q.A. Sang. Angiostatin-converting enzyme activities of human Matrilysin (MMP-7) and Gelatinase B/Type IV collagenase (MMP-9). J. Biol. Chem. 272: 28823–28825, 1997.

    Article  PubMed  CAS  Google Scholar 

  166. Peters, K.G., C. De Vries, and L.T. Williams. Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth. Proc. Natl. Acad. Sci. USA 90: 8915–8919, 1993.

    Article  PubMed  CAS  Google Scholar 

  167. Peters, K.G., S. Werner, G. Chen, and L.T. Williams. Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse. Development 114: 233–243, 1992.

    PubMed  CAS  Google Scholar 

  168. Pitt, B.R., G. Lister, P. Davies, and L. Reid. Correlation of pulmonary ACE activity and capillary surface area during postnatal development. J. Appl. Physiol. 62: 2031–2041, 1987.

    PubMed  CAS  Google Scholar 

  169. Powel, J.T. and P.L. Whitney. Postnatal development of rat lung. Biochem. J. 188: 1–8, 1980.

    Google Scholar 

  170. Prosser, I.W., K.R. Stenmark, M. Suthar, R.P. Mecham, E.C. Crouch, and W.C. Parks. Regional heterogeneity of elastin and collagen gene expression in intralobar arteries in response to hypoxic pulmonary hypertension as demonstrated by in situ hybridization. Am. J. Pathol. 135: 1073–1088, 1989.

    PubMed  CAS  Google Scholar 

  171. Pryde, P.G., A.B. Sedman, C.E. Nugent, and M. Barr. Angiotensin converting enyme inhibitor fetopathy. J. Am. Soc. Nephrol. 3: 1575–1582, 1993.

    PubMed  CAS  Google Scholar 

  172. Rabinovitch, M., N. Boudreau, G. Vella, F. Coceani, and P.M. Olley. Oxygen-related prostaglandin sythesis in ductus arteriosus and other vascular cells. Pediatr. Res. 26: 330–335, 1989.

    Article  PubMed  CAS  Google Scholar 

  173. Rabinovitch, M., W. Gamble, A.S. Nada, O.S. Miettinen, and L. Reid. Rat pulmonary circulation after chronic hypoxia: hemodynamic and structural features. Am. J. Physiol. 236: H818–H827, 1979.

    PubMed  CAS  Google Scholar 

  174. Rastinejad, F., and H.M. Blau. Genetic complementation reveals a novel regulatory role for 3’ untranslated regions in growth and differentiation. Cell 72: 903–917, 1993.

    Article  PubMed  CAS  Google Scholar 

  175. Reagan, F.P. Vascularization phenomena in fragments of embryonic bodies completely isolated from yolk-sac entoderm. Anat. Rec. 9: 329–341, 1915.

    Article  Google Scholar 

  176. Resink, T.J., A.W.A. Hahn, T. Scott-Burden, J. Powell, F. Webber, and F.R. Buhler. Inducible endothelin mRNA expression and peptide secretion in cultured human vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 168: 1303–1310, 1990.

    Article  PubMed  CAS  Google Scholar 

  177. Risau, W. and V. Lemmon. Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Dev. Biol. 125: 441–450, 1988.

    Article  PubMed  CAS  Google Scholar 

  178. Roman, J., C.W. Little, and J.A. McDonald. Potential role of RGD-binding integrins in mammalian lung branching morphogenesis. Development 112: 551–558, 1991.

    PubMed  CAS  Google Scholar 

  179. Rothman, A., T.J. Kulik, M.B. Taubman, B.C, Berk, C.W. J. Smith, and B. Nadal-Ginard. Development and characterization of a cloned rat pulmonary arterial smooth muscle cell line that maintains differentiated properties through multiple subcultures. Circulation 86: 1977–1986, 1992.

    CAS  Google Scholar 

  180. Ruoslahti, E., E. Engvall, and E.G. Hayman. Fibronectin: current concepts of its structure and function. Collagen Res. 1: 95–128, 1981.

    CAS  Google Scholar 

  181. Ruoslahti, E. and M.D. Pierschbacher. New perspectives in cell adhesion. Science 238: 491–497, 1987.

    Article  PubMed  CAS  Google Scholar 

  182. Sariola, H., R. Ekblom, E. Lehtonen, and L. Saxen. Differentiation and vascularization of the metanephric kidney grafted on the chorioallantoic membrane. Dev. Biol. 96: 427–435, 1983.

    Article  PubMed  CAS  Google Scholar 

  183. Sartore, S., M. Scatena, A. Chiavegato, E. Faggin, L. Giuriato, and P. Pauletto. Myosin isoform expression in smooth muscle cells during physiological and pathological vascular remodeling. J. Vasc. Res. 31: 61–81, 1994.

    PubMed  CAS  Google Scholar 

  184. Sato, T.N., Y. Qin, C.A. Kozak, and K.L. Audus. tie-1 and tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system. Proc. Natl. Acad. Sci. USA 90: 9355–9358, 1993.

    Article  PubMed  CAS  Google Scholar 

  185. Sato, T.N., Y. Tozawa, U. Deutsch, K. Wolburg-Buchholz, Y, Fujiwara, M. GendronMaguire, T. Gridley, H. Wolburg, W. Risau, and Y. Qin. Distinct roles of the receptor tryosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376: 70–74, 1995.

    Article  PubMed  CAS  Google Scholar 

  186. Sato, T.N. A new approach to fighting cancer? Proc. Natl. Acad. USA 95: 5843–5844, 1998.

    Article  CAS  Google Scholar 

  187. Schnürch, H. and W. Risau. Expression of tie-2, a member of a novel family of receptor tyrosine kinases, in the endothelial cell lineage. Development 119: 957–968, 1993.

    PubMed  Google Scholar 

  188. Schwartz, S.M., L. Foy, D.F. Bowen-Pope, and R. Ross. Derivation and properties of platelet-derived growth factor-independent rat smooth muscle cells. Am. J. Pathol. 136: 1417–1428, 1990.

    PubMed  CAS  Google Scholar 

  189. Schweiki, D., A. Itin, D. Soffer, and E. Keshet. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359: 843–845, 1992.

    Article  Google Scholar 

  190. Scott-Burden, T., T.J. Resink, A.W.A. Hahn, and F.R. Buhler. Amiloride sensitive activation of S6 kinase by angiotensin II in cultured vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 151: 583–589, 1988.

    Article  PubMed  CAS  Google Scholar 

  191. Scott-Burden, T., T.J. Resink, A.W.A. Hahn, and F.R. Buhler. Angiotensin-induced growth related metabolism is activated in cultured smooth muscle cells from spontaneously hypertensive rats and Wistar-Kyoto rats. Am. J. Hypertens. 4: 183–188, 1991.

    Article  PubMed  CAS  Google Scholar 

  192. Selmin, O., D. Volpin, and G.M. Bressan. Changes of cellular expression of mRNA for tropoelastin in the intraembryonic arterial vessels o developing chick revealed by in situ hybridization. Matrix 11: 347–358, 1991.

    Article  PubMed  CAS  Google Scholar 

  193. Shanahan, C.M., P.L. Weissberg, and J.C. Metcalfe. Isolation of gene markers of differentiated and proliferating vascular smooth muscle cells. Circ. Res. 73: 193–204, 1993.

    Article  PubMed  CAS  Google Scholar 

  194. Shanmugan, S., P. Corvol, and J.-M. Gasc. Ontogeny of the two angiotensin II type I receptor subtypes in rats. Am. J. Physiol. 267: E828–E836, 1994.

    Google Scholar 

  195. Shanmugan, S., P. Corvol, and J.-M. Gasc. Angiotensin II type II receptor mRNA expression in the developing cardiopulmonary system of the rat. Hypertension 28: 91–97, 1996.

    Article  Google Scholar 

  196. Shanmugan, S., C. Monnot, P. Corvol, and J.-M. Gasc. Distribution of type 1 angiotensin II receptor subtype messenger RNAs in the rat fetus. Hypertension 23: 137–141, 1994.

    Article  Google Scholar 

  197. Shapero, M.H., A.A. Langston, and R.E. Fournier. Tissue-specific extinguisher loci in the human genome: a screening study based on random marking and transfer of human chromosomes. Somat. Cell Mol. Genet. 20: 215–231, 1994.

    Article  PubMed  CAS  Google Scholar 

  198. Shaul, P.W., W.B. Campbell, M.A. Farrar, and R.R. Magness. Oxygen modulates prostacyclin synthesis in ovine fetal pulmonary arteries by an effect on cyclooxygenase. J. Clin. Invest. 90: 2147–2155, 1992.

    Article  PubMed  CAS  Google Scholar 

  199. Shaul, P.W., M.A. Farrar, and R.R. Magness. Pulmonary endothelial nitric oxide production is developmentally regulated in the fetus and the newborn. Am. J. Physiol. 65: H1056–H1063, 1993.

    Google Scholar 

  200. Sheppard, A.M., M.D. Onken, G.D. Rosen, P.G. Noakes, and D.C. Dean. Expanding roles for alpha 4 integrin and its ligands in development. Cell Adhesion Commun. 2: 27–43, 1994.

    Article  CAS  Google Scholar 

  201. Sherer, G.K. Vasculogenic mechanisms and epithelio-mesenchymal specificity in endodermal organs. In: The Development of the Vascular System, Issues in Biomedicine, Vol. 14, edited by R.N. Feinberg, G.K. Sherer, and R. Auerbach. Basel: Karger, 1991, p. 37–57.

    Google Scholar 

  202. Shifren, J.L., N. Doldi, N. Ferrara, S. Mesiano, and R.B. Jaffe. In the human fetus, vascular endothelial growth factor is expressed in epithelial cells and myocytes, but not vascular endothelium: implications for mode of action. J. Clin. Endocrinol. Metab. 79: 316–322, 1994.

    Article  PubMed  CAS  Google Scholar 

  203. Shinbrot, E., K.G. Peters, and L.T. Williams. Expression of platelet-derived growth factor beta receptor during organogenesis and tissue differentiation in the mouse embryo. Dev. Dyn. 199: 169–175, 1994.

    Article  PubMed  CAS  Google Scholar 

  204. Skalli, O., P. Ropraz, A. Trzeciak, G. Benzonana, D. Gillessen, and G. Gabbiani. A monoclonal antibody against a-smooth muscle actin: a new probe for smooth muscle differentiation. J. Cell. Biol. 103: 2787–2796, 1986.

    Article  PubMed  CAS  Google Scholar 

  205. Slack, J.M.W., B.G. Darlington, J.K. Heath, and S.F. Godsave. Mesoderm induction in early Xenopus embryos by heparin-binding growth factors. Nature 326: 197–200, 1987.

    Article  PubMed  CAS  Google Scholar 

  206. Soifer, S.J., R.D. Loitz, C. Roman, and M.A. Heyman. Leukotriene end-organ antagonists increase pulmonary blood flow in fetal lambs. Am. J. Physiol. 249: H570–H576, 1985.

    PubMed  CAS  Google Scholar 

  207. Squier, T.L. On the development of the pulmonary circulation in the chick. Anat. Rec. 10: 425–438, 1916.

    Article  Google Scholar 

  208. Stenmark, K.R., D.B. Badesch, E.C. Dempsey, M.G. Frid, R.P. Mecham, and W.C. Parks. Regulation of pulmonary vascular wall cell growth: developmental and site-specific heterogeneity. Eur. Respir. Rev. 3: 629–637, 1993.

    Google Scholar 

  209. Stenmark, K.R., S.L. James, N.F. Voelkel, W.H. Toews, J.T. Reeves, and R.C. Murphy. Leukotriene C4 and D4 in neonates with hypoxaemia and pulmonary hypertension. N. Engl. J. Med. 309: 377–380, 1983.

    Article  Google Scholar 

  210. Stenmark, K.R., R.P. Mecham, A.G. Durmowicz, and W.C. Parks. Persistence of the fetal pattern of tropoelastin gene expression in severe neonatal pulmonary hypertension J. Clin. Invest. 93: 1234–1242, 1994.

    Article  PubMed  CAS  Google Scholar 

  211. Suri C., P.F. Jones, S. Patan, S. Bartunkova, P.C. Maisonpierre, S. Davis, T.N. Sato, and G.D. Yancopoulos. Requisite role of angiopoietin-1, and ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87: 1171–1180, 1996.

    Article  PubMed  CAS  Google Scholar 

  212. Takahashi, M., K. Fukuda, K. Shimada, K. Barnes, A.J. Turner, M. Ikeda, H. Koike, Y. Yamamoto, and K. Tanzawa. Biochem. J. 311: 657–5, 1995.

    PubMed  CAS  Google Scholar 

  213. Takuwa, N., Y. Takuwa, M. Yanagisawa, K. Yamashita, and T. Masaki. A novel vasoactive peptide endothelin stimualtes mitogenesis through inositol lipid turnover in swiss 3T3 fibroblasts. J. Biol. Chem. 264: 7856–7861, 1989.

    PubMed  CAS  Google Scholar 

  214. Tanswell, A.K., R.N. Han, D. Jassal, L.J. Fraher, and M. Post. The response of small vessel endothelial cells from fetal rat lung to growth factors. J. Dev. Physiol. 15: 199–209, 1991.

    PubMed  CAS  Google Scholar 

  215. Terragno, N.A. and A. Terragno. Prostaglandin metabolism in the fetal and maternal vasculature. Fed. Proc. 38: 75–77, 1979.

    PubMed  CAS  Google Scholar 

  216. Thyberg, J., U. Hedin, M. Sjolund, L. Palmberg, and B.A. Bottger. Regulation of differentiated properties and proliferation of arterial smooth muscle cells. Atherosclerosis 10: 966–990, 1990.

    CAS  Google Scholar 

  217. Thyberg, J. and A. Hultgardh-Nilsson. Fibronectin and the basement membrane components laminin and collagen type IV influence the phenotypic properties of subcultured rat aortic smooth muscle cells differently. Cell Tissue Res. 276: 263–271, 1994.

    Article  PubMed  CAS  Google Scholar 

  218. Tomlinson, A., H. Van Vlijmen, A. Loesch, and G. Burnstock. An immunohistochemical study of endothelial cell heterogeneity in the rat: observations in “en face” Hv84utchen preparations. Cell Tissue Res. 263: 173–181, 1991.

    Article  PubMed  CAS  Google Scholar 

  219. Tsutsumi, K., C. Stromberg, M. Viswanathan, and J.M. Saavedra. Angiotensin II receptor subtypes in fetal tissue of the rat: autoradiography, guanine nucleotide sensitivity, and association with phosphoinositide hydrolysis. Endocrinology 129: 1075–1082, 1991.

    Article  PubMed  CAS  Google Scholar 

  220. Tufro-McReddie, A., J.K. Harrison, A.D. Everett, and R.A. Gomez. Ontogeny of type I angiotensin II receptor gene expression in the rat. J. Clin. Invest. 91: 530–537.

    Google Scholar 

  221. Turla, M.B., M.M. Thompson, M.H. Corjay, and G.K. Owens. Mechanisms of angiotensin II- and arginine vasopressin-induced increases in protein synthesis and content in cultured rat aortic smooth muscle cells. Circ. Res. 68: 288–299, 1991.

    Article  PubMed  CAS  Google Scholar 

  222. Ungari, S., R.S. Katari, G. Alessandri, and P.M. Gullino. Cooperation between fibronectin and heparin in the mobilization of capillary endothelium. Invasion Metast. 5: 193–205, 1985.

    CAS  Google Scholar 

  223. Van Grondelle, A., G.S. Worthen, D. Ellis, M.M. Mathias, R.C. Murphy, R.J. Strife, J.T. Reeves, and N.F. Voelkel. Altering hemodynamic variables influences PGIZ production by isolated lungs and endothelial cells. J. Appl. Physiol. 57: 388–395, 1984.

    PubMed  Google Scholar 

  224. Velvis, H., P. Moore, and M.A. Heymann. Prostaglandin inhibition prevents the fall in pulmonary vascular resistance as a result of rhythmic distension of the lungs in fetal lambs. Pediatr. Res. 30: 62–68, 1991.

    Article  PubMed  CAS  Google Scholar 

  225. Viswanathan, M., K. Tsutsumi, F.M.A. Correa, and J.M. Saavedra. Changes in expression of angiotensin receptor subtypes in the rat aorta during development. Biochem. Biophys. Res. Commun. 179: 1361–1367, 1991.

    Article  PubMed  CAS  Google Scholar 

  226. Waldo, K.L. and M.L. Kirby. Cardiac neural crest contribution to the pulmonary artery and sixth aortic arch artery complex in chick embryos aged 6 to 18 days. Anat. Rec. 237: 385–399, 1993.

    Article  PubMed  CAS  Google Scholar 

  227. Wallace, K.B., M.D. Bailie, and J.B. Hook. Angiotensin converting enzyme in developing lung and kidney. Am. J. Physiol. 234: R141–R145, 1978.

    PubMed  CAS  Google Scholar 

  228. Wallace, K.B., M.D. Bailie, and J.B. Hook. Development of angiotensin converting enzyme in fetal rat lungs. Am. J. Physiol. 236: R57–R60, 1979.

    PubMed  CAS  Google Scholar 

  229. Weiser, M.C.M., J.K. Belknap, S.S. Grieshaber, M.G. Kinsella, and R.A. Majack. Developmental regulation of perlecan gene expression in aortic smooth muscle cells. Matrix Biol. 15: 331–340.

    Google Scholar 

  230. Weiser, M.C.M., N.A. Grieshaber, P.W. Schwartz, and R.A. Majack. Perlecan regulates Oct-1 gene expression in vascular smooth muscle cells. Mol. Biol. Cell 8: 999–1011, 1997.

    PubMed  CAS  Google Scholar 

  231. Wendt, C.H., V.A. Polunovsky, M.S. Peterson, P.B. Bitterman, and D.H. Ingbar. Alveolar epithelial cells regulate the induction of endothelial cell apoptosis. Am. J. Physiol. 267: C893–C900, 1994.

    PubMed  CAS  Google Scholar 

  232. Winlove, C.P., J.E. Bishop, R.C. Chambers, and G.J. Laurent. The structure and function of extracellular matrix in the pulmonary vasculature. In: Pulmonary Vascular Remodeling, Vol. 2, edited by J.E. Bishop, J.T. Reeves, and G.J. Laurent. London: Portland, 1995, pp. 21–46.

    Google Scholar 

  233. Wong, J., J.R. Fineman, and M.A. Heymann. The role of endothelin and endothelin receptor subtypes in regulation of fetal pulmonary vascular tone. Pediatr. Res. 35: 664–670, 1994.

    Article  PubMed  CAS  Google Scholar 

  234. Yamaguchi, T., D.M. Rodman, R.F. O’Brien, and I.F. McMurtry. Modulation of pulmonary artery contraction by endotheium-derived relaxing factor. Eur. J. Pharmacol. 161: 259–262, 1989.

    Article  PubMed  CAS  Google Scholar 

  235. Yamaguchi, T.P., D.J. Dumont, R.A. Conlon, M.L. Breitman, and J. Rossant. Flk-1, an flt-related receptor tyrosine kinase, is an early marker for endothelial cell precursors. Development 118: 489–498, 1993.

    PubMed  CAS  Google Scholar 

  236. Yamamoto, M., K. Shimokata, and H. Nagura. An immunohistochemical study on phenotypic heterogeneity of human pulmonary vascular endothelial cells. Virchows Arch. A Anat. Histopathol. 412: 479–486, 1988.

    Article  CAS  Google Scholar 

  237. Yanagisawa, M., H. Kurihara, S. Kimura, Y. Tomobe, M. Kobayashi, Y. Mitsui, Y. Yasaki, K. Goto, and T. Masaki. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411–415, 1988.

    Article  PubMed  CAS  Google Scholar 

  238. Young, P.E., S. Baumhueter, and L.A. Lasky. The sialomucin CD34 is expressed on hematopoietic cells and blood vessels during murine development. Blood 85: 96–105, 1995.

    PubMed  CAS  Google Scholar 

  239. Zanellato, A.M., A.C. Borrione, L. Giuriato, M. Tonello, G. Scannapieco, P. Pauletto, and S. Sartore. Myosin isoforms and cell heterogeneity in vascular smooth muscle, I: developing and adult bovine aorta. Dev. Biol. 141: 431–446, 1990.

    Article  PubMed  CAS  Google Scholar 

  240. Zanetti, R.F.A., M. Sironi, N. Polentarutti, L. Lanfrancone, E. Dejana, and F. Colotta. Inhibition of anchorage-dependent cell spreading triggers apoptosis in cultured human endothelial cells. J. Cell Biol. 127: 537 546, 1994.

    Google Scholar 

  241. Zellers, T.M. and P.M. Vanhoutte. Endothelium-dependent relaxations of piglet pulmonary arteries augment with maturation. Pediatr. Res. 30: 176–180, 1991.

    Article  PubMed  CAS  Google Scholar 

  242. Zhao, Y.D., D.R. Springall, Q. Hamid, M.H. Yacoub, M. Levene, and J.M. Polak. Localization and characterization of endothelin-1 binding sites in the transplanted human lung. J. Cardiovasc. Pharmacol. 26 (Suppl. 3): S336–S340, 1995.

    PubMed  CAS  Google Scholar 

  243. Zhou, J., T. Mochizuki, H. Smeets, C. Antignac, P. Laurila, A. dePaepe, K. Tryggvason, and S.T. Reeders. Deletion of the paired alpha 5(IV) and alpha 6(IV) collagen genes in inherited smooth muscle tumors. Science 261: 1167–1169, 1993.

    Article  PubMed  CAS  Google Scholar 

  244. Ziegler, J.W., D.D. Ivy, J.P. Kinsella, and S.H. Abman. The role of nitric oxide, endothelin, and prostaglandins in the transition of the pulmonary circulation. Clin. Perinatol. 22: 387–403, 1995.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 American Physiological Society

About this chapter

Cite this chapter

Morrell, N.W., Weiser, M.C.M., Stenmark, K.R. (1999). Development of the Pulmonary Vasculature. In: Gaultier, C., Bourbon, J.R., Post, M. (eds) Lung Development. Clinical Physiology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7537-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7537-8_6

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7537-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics