Skip to main content

Endothelium-Derived Relaxing Factor and the Control of Flow in Conduit and Resistance Arteries

  • Chapter
Flow-Dependent Regulation of Vascular Function

Part of the book series: Clinical Physiology Series ((CLINPHY))

Abstract

The endothelial monolayer that lines the cardiovascular system plays a major role in the transduction of biological signals from the bloodstream to the smooth muscle of the vessel wall. Anatomically, it is uniquely well-sited to detect circulating humoral agents and mechanical forces resulting from the flow of blood, and in response synthesizes and releases potent vasodilator and vasoconstrictor mediators. This paper will focus on endothelium-derived relaxing factor, an important component of the interaction between blood flow and vasomotor tone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aisaka, K., S. S. Gross, O. W. Griffith, and R. Levi. L-Arginine availability determines the duration of acetylcholine-induced systemic vasodilation in vivo. Biochem. Biophys. Res. Comm. 163: 710–717, 1989.

    Article  CAS  Google Scholar 

  2. Ando, J., A. Ohtsuka, R. Korenaga, and A. Kamiya. Effect of extracellular Atp level on flow-induced Cam response in cultured vascular endothelial cells. Biochem. Biophys. Res. Comm. 179: 1192–1199, 1991.

    Article  PubMed  CAS  Google Scholar 

  3. Andronik-Lion, V., J. L. Boucher, M. Delaforge, Y. Henry, and D. Mansuv. Formation of nitric oxide by cytochrome P450-catalyzed oxidation of aromatic amidoximes. Biochem. Biophys. Res. Comm. 185: 452–458, 1992.

    Article  Google Scholar 

  4. Angus, J. A., J. E. Ward, J. J. Smolich, and G. A. Mcpherson. Reactivity of canine isolated epicardial collateral coronary arteries. Circ. Res. 69: 1340–1352, 1991.

    Article  PubMed  CAS  Google Scholar 

  5. Assender, J. W., K. M. Southgate, and A. C. Newby. Does nitric oxide inhibit smooth muscle proliferation? J. Cardovasc. Pharmacol. 17 (suppl. 3): S104 — S107, 1991.

    Article  CAS  Google Scholar 

  6. Bayliss, W. M.. On the local reactions of the arterial wall to changes of internal pressure. J. Physiol. (Loud.) 28: 220–231, 1902.

    CAS  Google Scholar 

  7. Beckman, J. S., T. W. Beckman, J. Chen, P. A. Marshall, and B. A. Freeman. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. U.S.A. 87: 1620–1624, 1990.

    Article  PubMed  CAS  Google Scholar 

  8. Beny, J.-L.. Endothelial and smooth muscle cells hyperpolarized by bradykinin are not dye coupled. Am. J. Physiol. 258 (Heart Circ. Physiol. 27 ): H863 — H841, 1990.

    Google Scholar 

  9. Bevan, J. A., and G. Siegel. Blood vessel wall matrix flow sensor: evidence and speculation. Blood Vessels 28: 552–556, 1991.

    PubMed  CAS  Google Scholar 

  10. Bevan, J. A., and E. H. Joyce. Flow-induced resistance artery tone: balance between constrictor and dilator mechanisms. Am. J. Physiol. 258 (Heart Circ. Physiol. 27 ): H663 — H668, 1990.

    Google Scholar 

  11. Bevan, J. A., E. H. Joyce, and G. C. Wellman. Flow-dependent dilation in a resistance artery still occurs after endothelium removal. Circ. Res. 63: 980–985, 1988.

    Article  PubMed  CAS  Google Scholar 

  12. Bhagyalakshmi, A., and J. A. Frangos. Mechanism of shear-induced prostacycline production in endothelial cells. Biochem. Biophys. Res. Comm. 158: 31–37, 1989.

    Article  PubMed  CAS  Google Scholar 

  13. Blayney, L. M., P. W. Gapper, and A. C. Newby. Inhibition of a receptor-operated calcium channel in pig aortic microsomes by cyclic Gmp-dependent protein kinase. Biochem. J. 273: 803–806, 1991.

    PubMed  CAS  Google Scholar 

  14. Bodin, P., D. Bailey, and G. Burnstock. Increased flow-induced Atp release from isolated vascular endothelial cells but not smooth muscle cells. Br. J. Pharmacol. 103: 1203–1205, 1991.

    Article  PubMed  CAS  Google Scholar 

  15. Bogle, R. G., S. B. Coade, S. Moncada, J. D. Pearson, and G. E. Mann. Bradykinin and Atp stimulate L-arginine uptake and nitric oxide release in vascular endothelial cells. Biochem. Biophys. Res. Comm. 180: 926–932, 1991.

    CAS  Google Scholar 

  16. Boje, K. M., and H.-O. Fung. Endothelial nitric oxide generating enzyme(s) in the bovine aorta: subcellular location and metabolic characterization. J. Pharm. Exp. Ther. 253: 2026, 1990.

    Google Scholar 

  17. Bolton, T. B., and L. H. Clapp. Endothelial-dependent relaxant actions of carbachol and substance P in arterial smooth muscle. Br. J. Pharmacol. 87: 713–723, 1986.

    Article  PubMed  CAS  Google Scholar 

  18. Boulanger, C., and T. F. Luscher. Release of endothelin from porcine aorta: inhibition by endothelium-derived nitric oxide. J. Clin. Invest. 85: 587–590, 1990.

    Article  PubMed  CAS  Google Scholar 

  19. Bray, K., and U. Quast. Differences in the K’-channels opened by cromakalim, acetylcholine and substance P in rat aorta and porcine coronary artery. Br. J. Pharmacol. 102: 585–594, 1991.

    Article  PubMed  CAS  Google Scholar 

  20. Brayden, J. E.. Hyperpolarization and relaxation of resistance arteries in response to adenosine diphosphate. Circ. Res. 69: 1415–1420, 1991.

    Article  PubMed  CAS  Google Scholar 

  21. Brayden, J. E.. Membrane hyperpolarization is a mechanism of endothelium-dependent cerebral vasodilation. Am. J. Physiol. 259 (Heart Circ. Physiol. 28 ): H668 — H673, 1990.

    Google Scholar 

  22. Bredt, D. S., P. M. Hwant, C. E. Glatt, C. Lowestein, R. R. Reed, and S. H. Snyder. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P450 reductase. Nature 351: 714–718, 1991.

    Article  PubMed  CAS  Google Scholar 

  23. Broten, T. P., J. K. Miyashiro, S. Moncada, and E. O. Feigl. Role of endothelium-derived relaxing factor in parasympathetic coronary vasodilation. Am. J. Physiol. 262 (Heart Circ. Physiol. 31 ): H1579 — H1584, 1992.

    Google Scholar 

  24. Brune, B., and E. G. Lapetina. Phosphorylation of nitric oxide synthase by protein kinase A. Biochem. Biophys. Res. Comm. 181: 921–926, 1991.

    Article  PubMed  CAS  Google Scholar 

  25. Busse, R., and D. Lamontagne. Endothelium-derived bradykinin is responsible for the increase in calcium produced by angiotensin-converting enzyme inhibitors in human endothelial cells. Naunyn-Schmeideberg’s Arch. Pharmacol. 344: 126–129, 1991.

    Article  CAS  Google Scholar 

  26. Busse, R., G. G. Trogisch, and E. Bassenge. The role of endothelium in the control of vascular tone. Bas. Res. Cardiol. 80: 475–490, 1985.

    Article  CAS  Google Scholar 

  27. Busse, R., H. Fichtner, A. Luckhoff, and M. Kohlhardt. Hyperpolarization and increased free calcium in acetylcholine-stimulated endothelial cells. Am. J. Physiol. 255 (Heart Circ. Physiol. 24 ): H965 — H969, 1988.

    Google Scholar 

  28. Bussolati, O., P. C. Laris, F. A. Nucci, V. D. DallAsta, R. Franchi-Gazzola, G. G. GuIdotti, and G. C. Gazzola. Influx of L-arginine is an indicator of membrane potential in human fibroblasts. Am. J. Physiol. 256 (Cell Physiol. 25 ): C930 — C935, 1989.

    Google Scholar 

  29. Chapleau, M. W., G. Hajduczok, and F. M. Abboud. Paracrine modulation of baroreceptor activity by vascular endothelium. News. Physiol. Sci. 6: 210–214, 1991.

    CAS  Google Scholar 

  30. Chen, G., and H. Suzuki. Calcium dependency of the endothelium-dependent hyperpolarization in smooth muscle cells of the rabbit carotid artery. J. Physiol. (Lond.) 421: 52 1534, 1989.

    Google Scholar 

  31. Chen, G., H. Suzuki, and A. H. Weston. Acetylcholine releases endothelium-derived hyperpolarizing factor and Edrf from rat blood vessels. Br. J. Pharmacol. 95: 1165–1174, 1988.

    Article  PubMed  CAS  Google Scholar 

  32. Chen, G., H. Hashitani, and H. Suzuki. Endotheium-dependent relaxation and hyperpolarization of canine coronary artery smooth muscle in relaxation to the electrogenic Na-K pump. Br. J. Pharmacol. 98: 950–956, 1989.

    Article  PubMed  CAS  Google Scholar 

  33. Chen, G., Y. Yamamoto, K. Miwa, and H. Suzuki. Hyperpolarization of arterial smooth muscle induced by endothelial humoral substances. Am. J. Physiol. 260 (Heart Circ. Physiol. 29 ): H1888 — H1892, 1991.

    Google Scholar 

  34. Chen, C., and D. W. Cheung. Characterization of acetylcholine-induced membrane hyperpolarization in endothelial cells. Circ. Res. 70: 257–263, 1992.

    Article  PubMed  CAS  Google Scholar 

  35. Christie, M. I., and M. J. Lewis. Vascular smooth muscle sensitivity to endothelium-derived relaxing factor is different in different arteries. Br. J. Pharmacol. 95: 630636, 1988.

    Google Scholar 

  36. Christie, M. I., T. M. Griffith, and M. J. Lewis. A comparison of basal and agoniststimulated release of endothelium-derived relaxing factor from different arteries. Br. J. Pharmacol. 98: 397–406, 1989.

    Article  PubMed  CAS  Google Scholar 

  37. Colden-Stanfield, M., W. P. Schilling, A. K. Ritchie, S. G. Eskin, L. T. Navaroo, and D. L. Kunze. Bradykinin-induced increases in cytosolic calcium and ionic currents in cultured bovine aortic endothelial cells. Circ. Res. 61: 632–640, 1987.

    Article  Google Scholar 

  38. Collins, P., T. M. Griffith, A. H. Henderson, and M. J. Lewis. Endothelium-derived relaxing factor alters calcium fluxes in rabbit aorta: a cyclic guanosine monophosphatemediated effect. J. Physiol. (Lond.) 381: 427–437, 1986.

    CAS  Google Scholar 

  39. Collins, P., S. P. Chappell, T. M. Griffith, M. J. Lewis, and A. H. Henderson. Differences in basal endothelium-derived relaxing factor activity in different artery types. J. Cardiovasc. Pharmacol. 8: 1158–1162, 1986.

    Article  PubMed  CAS  Google Scholar 

  40. Cooke, J. P., E. Rossitch, N. A. Andon, J. Loscalzo, and V. J. Dzau. Flow activates an endothelial potassium channel to release an endogenous vasodilator. J. Clin. Invest. 8: 1663–1671, 1991.

    Google Scholar 

  41. Dainty, L. A., J. C. Mcgrath, M. Spedding, and A. G. B. Templeton. The influence of the initial stretch and the agonist-induced tone on the effect of basal and stimulated release of Edrf. Br. J. Pharmacol. 100: 767–773, 1990.

    Article  PubMed  CAS  Google Scholar 

  42. Davies, P. F., C. F. Dewey, S. R. Bussolari, E. J. Gordon, and M. A. Gimbrone. Influence of hemodynamic forces on vascular endothelial function. J. Clin. Invest. 73: 1121–1129, 1984.

    Article  PubMed  CAS  Google Scholar 

  43. Davis, M. J., P. N. Ferrer, and R. W. Gore. Vascular anatomy and hydrostatic pressure profile in the hamster cheek pouch. Am. J. Physiol. 250 (Heart Circ. Physiol. 19 ): H291 — H303, 1986.

    Google Scholar 

  44. DE Mey, J. G., and P. M. Vanhoutte. Anoxia and endothelium-dependent reactivity of the canine femoral artery. J. Physiol. (Lond.) 335: 65–74, 1983.

    Google Scholar 

  45. DE Mey, J. G., and S. D. Gray. Endothelium-dependent reactivity in resistance vessels. Prog. Appl. Microcirc. 8: 181–187, 1985.

    Google Scholar 

  46. Du, Z.-Y., G. J. Dusting, and O. L. Woodman. Baroreceptor reflexes and vascular reactivity during inhibition of nitric oxide synthesis in conscious rabbits. Eur. J. Pharmacol. 214: 21–26, 1992.

    Article  PubMed  CAS  Google Scholar 

  47. Dull, R. O., and P. F. Davies. Flow modulation of agonist (Atp)-response (Ca2+) coupling in vascular endothelial cells. Am. J. Physiol. 261 (Heart Circ. Physiol. 30 ): H149 — H154, 1991.

    Google Scholar 

  48. Edwards, G., and A. H. Weston. Potassium channel openers and vascular smooth muscle relaxation. Pharmac. Ther. 48: 237–258, 1990.

    Article  CAS  Google Scholar 

  49. Evans, H. G., J. A. Smith, and M. J. Lewis. Release of endothelium-derived relaxing factor is inhibited by 8-bromo-cyclic guanosine monophosphate. J. Cardiovasc. Pharmacol. 12: 672–677, 1988.

    Article  PubMed  CAS  Google Scholar 

  50. Falcone, J. C., and H. G. Bohlen. Edrf from rat intestine and skeletal muscle venules causes dilation of arterioles. Am. J. Physiol. 258 (Heart Circ. Physiol. 27): H1515—H1523, 1990.

    Google Scholar 

  51. Falcone, J. C., M. J. Davies, and G. A. Meininger. Endothelial independence of myogenic response in isolated skeletal muscle arterioles. Am. J. Physiol. 260 (Heart Circ. Physiol. 29 ): H130 — H135, 1991.

    Google Scholar 

  52. Feletou, M., and P. M. Vanhoutte. Endothelium-dependent hyperpolarization of canine coronary smooth muscle. Br. J. Pharmacol. 93: 515–524, 1988.

    Article  PubMed  CAS  Google Scholar 

  53. Fiscus, R. R., R. M. Rapoport, and F. Murad. Endothelium-dependent and nirovasodilator-induced activation of cyclic Gmp-dependent protein kinase in rat aorta. J. Cycl. Nuc. Pro. Phosphor. Res. 9: 415–425, 1984.

    CAS  Google Scholar 

  54. Fish, D., G. Sperti, W. CoLucci, and D. Clapham. Phorbol ester increases the dihydropyridine-sensitive calcium conductance in a vascular smooth muscle cell line. Circ. Res. 62: 1049–1054, 1988.

    Article  PubMed  CAS  Google Scholar 

  55. Flitney, F. W., I. L. Megson, and A. R. Butler. Selective retention of iron-sulphur cluster nitrosyls in endothelial cells of rat isolated tail artery: association with protracted vasodilator responses. J. Physiol. (Lond.) 440: 99P, 1992.

    Google Scholar 

  56. Fgrstermann, U., J. K. Pollock, H. H. H. W. Schmidt, M. Heller, and F. Murad. Calmodulin-dependent endothelium-derived relaxing factor/nitric oxide synthase activity is present in the particulate and cytosolic fractions of bovine aortic endothelial cells. Proc. Natl. Acad. Sci. U.S.A. 88: 1788–1792, 1991.

    Article  Google Scholar 

  57. Fgrstermann, U., H. H. W. Schmidt, J. S. Pollock, H. Sheng, J. A. Michell, T. D. Warner, M. Nakane, and F. Murad. Isoforms of nitric oxide synthase. Biochem. Pharmacol. 42, 10: 1949–1857, 1991.

    Google Scholar 

  58. Frangos, J. A., S. G. Eskin, L. V. Mcintire, and C. L. Ives. Flow effects on prostacycline production by cultured human endothelial cells. Science 227: 1477–1479, 1985.

    Article  PubMed  CAS  Google Scholar 

  59. Fronek, K., and B. W. Zweifach. Microvascular pressure distribution in skeletal muscle and the effect of vasodilatation. Am. J. Physiol. 228: 791–796, 1975.

    PubMed  CAS  Google Scholar 

  60. Fukuda, S., M. Matsumoto, N. Nishimura, N. Fujiwara,K. Shimoji, H. Takeshita, and A. J.-F. Lee. Endothelial modulation of norepinephrine-induced constriction of rat aorta at normal and high CO2 tensions. Am. J. Physiol. 258: (Heart Circ. Physiol. 27 ): H1049 - H1054, 1990.

    Google Scholar 

  61. Furchgott, R. F.. Studies on relaxation of rabbit aorta by sodium nitrite: the basis for the proposal that the acid-activatable inhibitory factor from bovine retractor penis is inorganic nitrite and the endothelium-derived relaxing factor is nitric oxide. In Vasodilatation, P. M. Vanhoutte, ed. New York: Raven Press, pp. 401–414, 1988.

    Google Scholar 

  62. Furchgott, R. F., and J. V. Zawadzki. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373–376, 1980.

    Article  PubMed  CAS  Google Scholar 

  63. Ganitkevich, V., and G. Isenberg. Isolated guinea pig coronary smooth muscle cells: acetylcholine induces hyperpolarization due to sarcoplasmic reticulum calcium release activating potassium channels. Circ. Res. 67: 525–528, 1990.

    Article  PubMed  CAS  Google Scholar 

  64. Garcia-Roldan, J.-L., and J. A. Bevan. Flow-induced constriction and dilation of cerebral resistance arteries. Circ. Res. 66: 1445–1448, 1990.

    Article  Google Scholar 

  65. Gardiner, S. M., A. M. Compton, T. Bennett, R. M. J. Palmer, and S. Moncada. The effect of NG-monomethyl-L-arginine (L-Nmma) on the haemodynamic actions of endothelin-1 in conscious Long Evans rats. Br. J. Pharmacol. 98: 626P, 1989.

    Google Scholar 

  66. Gardiner, S. M., A. M. Compton, T. Bennett, R. M. J. Palmer, and S. Moncada. Regional haemodynamic effects of inhibiting endothelial cell production of nitric oxide with NG-monomethyl-L-arginine in conscious rats. In Nitric oxide from L-arginine, a bio-regulatory system, S. Moncada, and E. A. Higgs, eds. Excerpta Medica, Amsterdam, New York, Oxford, pp. 81–89, 1990.

    Google Scholar 

  67. Garland, C. J., and G. A. Mcpherson. Evidence that nitric oxide does not mediate the hyperpolarization and relaxation to acetylcholine in the rat. Br. J. Pharmacol. 105: 429435, 1992.

    Google Scholar 

  68. Gaw, A. J., J. Aberdeen, P. P. A. Humphrey, R. M. Wadsworth, and G. Burnstock. Relaxation of sheep cerebral arteries by vasoactive intestinal polypeptide and neurogenic stimulation: inhibition by L-NG-monomethyl arginine in endothelium-deneuded vessels. Br. J. Pharmacol. 102: 567–572, 1990.

    Article  Google Scholar 

  69. Gore, R. W.. Wall stress: a determinant of regional differences in response of frog micro-vessels to norepinephrine. Am. J. Physiol. 222: 82–91, 1972.

    PubMed  CAS  Google Scholar 

  70. Gore, R. W.. Pressures in cat mesenteric arterioles and capillaries during changes in systemic arterial blood pressure. Circ. Res. 34: 581–591, 1974.

    Article  PubMed  CAS  Google Scholar 

  71. Griffith, O. W., K. H. Park, R. Levi, and S. S. Gross. The role of plasma arginine in nitric oxide synthesis: studies with arginase treated rats. In: “The Biology of Nitric Oxide, Physiological and Clinical Aspects.” Eds: S. Moncada, M. A. Marletta, J. E. Hibbs, E. A. Higgs. Portland Press pp. 6–10, 1992.

    Google Scholar 

  72. Griffith, O. W., D. Circle, K. Aisaka, R. Levi, and S. S. Gross. Buthionine sulphoximemediated glutathione depletion does not attenuate nitric oxide synthesis by agonist-stimulated endothelial cells or cytokine-induced smooth muscle cells. In: “The Biology of Nitric Oxide, Enzymology, Biochemistry and Immunology.” Eds. S. Moncada, M. A. Marletta, J. B. Hibbs, E. A. Higgs. Portland Press, pp. 40–45, 1992.

    Google Scholar 

  73. Griffith, T. M., D. H. Edwards, M. J. Lewis, A. C. Newby, and A. H. Henderson. The nature of endothelieum-derived vascular relaxant factor. Nature 308: 645–647, 1984.

    Article  PubMed  CAS  Google Scholar 

  74. Griffith, T. M., A. H. Henderson, D. Hughes Edwards, and M. J. Lewis. Isolated per-fused rabbit coronary artery and aortic strip preparations: The role of endothelium-derived relaxant factor. J. Physiol. (Lond.) 351: 13–24, 1984.

    CAS  Google Scholar 

  75. Griffith, T. M., D. H. Edwards, M. J. Lewis, and A. H. Henderson. Evidence that cyclic guanosine monophosphate (cGmp) mediates endothelium-dependent relaxation. Eur. J. Pharmacol. 112: 195–202, 1985.

    Article  PubMed  CAS  Google Scholar 

  76. Griffith, T. M., D. H. Edwards, A. C. Newby, M. J. Lewis, and A. H. Henderson. Production of endothelium-derived relaxant factor is dependent on oxidative phosphorylation and extracellular calcium. Cardiovasc. Res. 20: 7–12, 1986.

    Article  PubMed  CAS  Google Scholar 

  77. Griffith, T. M., D. H. Edwards, and A. H. Henderson. Unstimulated production of endothelium derived relaxing factor is independent of mitochondrial Atp generation. Cardiouasc. Res. 21: 565–568, 1987.

    Article  CAS  Google Scholar 

  78. Griffith, T. M., D. H. Edwards, R. L. L. Davies, T. J. Harrison, and K. T. Evans. Edrf coordinates the behaviour of vascular resistance vessels. Nature 329: 442–445, 1987.

    Article  PubMed  CAS  Google Scholar 

  79. Griffith, T. M., D. H. Edwards, R. L. L. Davies, T. J. Harrison, and K. T. Evans. Endothelium-derived relaxing factor (Edrf) and resistance vessels in an intact vascular bed: a microangiographic study of the rabbit isolated ear. Br. J. Pharmacol. 93: 654–662, 1988.

    Article  PubMed  CAS  Google Scholar 

  80. Griffith, T. M., D. H. Edwards, R. L. L. Davies, and A. H. Henderson. The role of Edrf in flow distribution: a microangiographic study of the rabbit isolated ear. Micro vascular Res. 37: 162–177, 1989.

    Article  CAS  Google Scholar 

  81. Griffith, T. M., and D. H. Edwards. Myogenic autoregulation of flow may be inversely related to Edrf activity. Am. J. Physiol. 258 (Heart Circ. Physiol. 27 ): H1171 — H1180, 1990.

    Google Scholar 

  82. Griffith, T. M., and D. H. Edwards. Basal Edrf activity helps to keep the geometrical configuration of arterial bifurcations close to the Murray optimum. J. Theor. Biol. 146: 545–573, 1990.

    Article  PubMed  CAS  Google Scholar 

  83. Griffith, T. M., and D. H. Edwards. Contrasting roles of endothelium-derived relaxing factor (Edrf) and calcium in chaotic arterial vasomotion. In: “The Biology of Nitric Oxide, Physiological and Clinical Aspects.” Eds: S. Moncada, M. A. Marletta, J. B. Hibbs, E. A. Higgs. Portland Press pp. 157–161, 1992.

    Google Scholar 

  84. Griffith, T. M., I. Hutcheson, M. D. Randall, and D. H. Edwards. Role of flow in endothelium-mediated responses. In Resistance Arteries, Structure and Function, M. J. Mulvaney, C. Aalkjaer, A. M. Heagerty, N. C. B. Nyborg, and S. Strandgaard, eds. Amsterdam-New York-Oxford: Excerpta Medica, pp. 204–208, 1991.

    Google Scholar 

  85. Griffith, T. M., D. H. Edwards, and M. D. Randall. Blood flow and optimal vascular topography: role of the endothelium. Basic Res. Cardiol. 86 (S2): 89–96, 1991.

    PubMed  Google Scholar 

  86. Gross, R., H. Kirchheim, and K. Brandstetter. Basal vascular tone in the kidney: evaluation from the static pressure-flow relationship under normal autoregulation and at maximal dilatation in the dog. Circ. Res. 38: 525–531, 1976.

    Article  PubMed  CAS  Google Scholar 

  87. Gryglewski, R. J., R. M. J. Palmer, and S. Moncada. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320: 454–456, 1986.

    Article  PubMed  CAS  Google Scholar 

  88. Guyton, J. R., and C. J. Hartley. Flow restriction of one carotid artery in juvenile rats inhibits growth of arterial diameter. Am. J. Physiol. 248 (Heart Circ. Physiol. 17 ): H540 — H546, 1985.

    Google Scholar 

  89. Haberl, R, L., P. J. Decker, and K. M. Einhaupl. Angiotensin degradation products mediate endothelium-dependent dilation of rabbit brain arterioles. Circ. Res. 68: 1621–1627, 1991.

    CAS  Google Scholar 

  90. Harder, D. R.. Pressure-induced myogenic activation of cat cerebral arteries is dependent on intact endothelium. Circ. Res. 60: 102–107, 1987.

    Article  PubMed  CAS  Google Scholar 

  91. Harder, D. R., C. Sanchez-Ferrer, K. Kauser, W. J. Stekiel, and G. M. Rubanyl Pressure releases a transferable contractile factor in cat cerebral arteries. Circ. Res. 65: 193198, 1989.

    Google Scholar 

  92. Harris, P.. Evolution and the cardiac patient: origins of the blood pressure. Cardiovascular Res. 17: 373–378, 1983.

    Article  CAS  Google Scholar 

  93. Hayashi, Y., H. Tomoike, K. Nagasawa, A. Yamada, H. Nishijima, H. Adachi, and M. Nakamura. Functional and anatomical recovery of endothelium denudation of coronary artery. Am. J. Physiol. 254 (Heart Circ. Physiol. 23 ): H1081 — H1090, 1988.

    Google Scholar 

  94. Hecker, M., J. A. Mitchell, H. J. Harris, M. Katsura, C. Thiemermann, and J. R. Vane. Endothelial cells metabolize NG-monomethyl-L-arginine to L-citrulline and subsequently to L-arginine. Biochem. Biophys. Res. Comm. 167: 1037–1043, 1990.

    Article  PubMed  CAS  Google Scholar 

  95. Hill, M. A., J. C. Falcone, and G. A. Meininger. Evidence for protein kinase C involvement in arteriolar myogenic activity. Am. J. Physiol. 259: (Heart Circ. Physiol. 28): H1586—H1594, 1990.

    Google Scholar 

  96. Hill, M. A., M. J. Davis, and G. A. Meininger. Cyclooxygenase inhibition potentiates myogenic activity in skeletal muscle arterioles. Am. J. Physiol. 258 (Heart Circ. Physiol. 27 ): H127 — H133, 1990.

    Google Scholar 

  97. Hilton, S. M.. A peripheral arterial conducting mechanism underlying dilatation of the femoral artery and concerned in functional vasodilatation in skeletal muscle. J. Physiol. (Lond.) 149: 93–111, 1959.

    CAS  Google Scholar 

  98. Hinze, T. H., and S. F. Vatner. Reactive dilation of large coronary arteries in conscious dogs. Circ. Res. 54: 50–57, 1984.

    Article  Google Scholar 

  99. Hirata, M., K. P. Kohse, C.-H. Chang, T. Ikebe, and F. Murad. Mechanism of cyclic Gmp inhibition of inositol phosphate formation in rat aortic segments and cultured bovine aortic smooth muscle cells. J. Biol. Chem. 265: 1268–1273, 1990.

    PubMed  CAS  Google Scholar 

  100. Hishikawa, K., T. Nakaki, H. Suzuki, T. Saruta, and R. Kato. Pure transmural pressure inhibits nitric oxide from cultured human endothelial cells. J. Vasc. Res. 29: 36, 1992.

    Google Scholar 

  101. Holtz, J., M. Giesler, and E. Bassenge. Two dilatory mechanisms of antianginal drugs on epicardial coronary arteries in vivo: indirect flow-dependent endothelium-mediated dilation and direct smooth muscle relaxation. Z. Kardiol. 75 (Suppl. 3): 98–106, 1983.

    Google Scholar 

  102. Holtz, J., U. Forstermann, U. Pohl, M. Giesler, and E. Bassenge. Flow-dependent, endothelium-mediated dilation of epicardial coronary arteries in conscious dogs: effects of cycloxygenase inhibition. J. Cardiovasc. Pharmacol. 6: 1161–1169, 1984.

    PubMed  CAS  Google Scholar 

  103. Hsieh, H.-J., N.-Q. LI, and J. A. Frangos. Shear stress increases endothelial platelet-derived growth factor mRna levels. Am. J. Physiol. 260 (Heart Circ. Physiol. 29 ): H642 — H646, 1991.

    Google Scholar 

  104. Hull, S. S., L. Kaiser, M. D. Jaffe, and H. V. Sparks. Endothelium-dependent flow-induced dilation of canine femoral and saphenous arteries. Blood Vessels 23: 183–198, 1986.

    PubMed  Google Scholar 

  105. Hutcheson, I., and T. M. Griffith. Release of endothelium-derived relaxing factor is modulated both by frequency and amplitude of pulsatile flow. Am. J. Physiol. 261 (Heart Circ. Physiol. 30 ): H257 — H262, 1991.

    Google Scholar 

  106. Iadecola, C.. Does nitric oxide mediate the increases in cerebral blood flow elicited by hypercapnia? Proc. Natl. Acad. Sci. U.S.A. 89: 3913–3916, 1992.

    Article  PubMed  CAS  Google Scholar 

  107. Iba, T., and B. E. Sumpio. Morphological response of human endothelial cells subjected to cyclic strain in vitro. Microvasc. Res. 42: 245–254, 1991.

    Article  CAS  Google Scholar 

  108. Ignarro, L. J., R. E. Byrns, G. M. Buga, and K. S. WooD. Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ. Res. 61: 866–869, 1987.

    Article  PubMed  CAS  Google Scholar 

  109. Ignarro, L. J., P. A. Bush, G. M. Buga, K. S. WooD, J. M. Fukuto, and J. Rajfer. Nitric oxide and cyclic Gmp formation upon electrical field stimulation cause relaxation of corpus cavernosum smooth muscle. Biochem. Biophys. Res. Comm. 170: 843–850, 1990.

    CAS  Google Scholar 

  110. Intaglietta, M.. Vasomotor activity, time-dependent fluid exchange and tissue perfusion. Microuasc. Res. 21: 153–164, 1981.

    Article  CAS  Google Scholar 

  111. Ischiropoulos, H., L. Zhu, and J. S. Beckman. Macrophage-derived nitric oxide and superoxide react to form peroxynitrite. In: “The Biology of Nitric Oxide, Enzymology, Biochemistry and Immunology.” Eds. S. Moncada, M. A. Marletta, J. B. Hibbs, E. A. Higgs. Portland Press, pp. 208–209, 1992.

    Google Scholar 

  112. Jackson, W. F., A. MuLsch, and R. Busse. Rhythmic smooth muscle activity in hamster aortas is mediated by continuous release of NO from the endothelium. Am. J. Physiol. 260 (Heart Circ. Physiol. 29 ): H248 — H253, 1991.

    Google Scholar 

  113. Johns, R. A., J. M. Linden, and M. J. Peach. Endothelium-dependent relaxation and cyclic Gmp accumulation in rabbit pulmonary artery are selectively impaired by moderate hypoxia. Circ. Res. 65: 1508–1515, 1989.

    Article  PubMed  CAS  Google Scholar 

  114. Johnson, P. C.. Autoregulation of blood flow. Circ. Res. 59: 483–495, 1986.

    Article  PubMed  CAS  Google Scholar 

  115. Joulou-Schaeffer, G., G. A. Gray, I. Fleming, C. Schott, J. R. Parratt, and J.-C. Stoclet. Loss of vascular responsiveness induced by endotoxin involves the L-arginine pathway. Am. J. Physiol. 259 (Heart Circ. Physiol. 28 ): H1038 — H1043, 1990.

    Google Scholar 

  116. Kamiya, A., and T. Togawa. Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am. J. Physiol. 239 (Heart Circ. Physiol. 29 ): H14 — H21, 1980.

    Google Scholar 

  117. Katusic, Z. S., and P. M. Vanhoutte. Superoxide anion is an endothelium-derived contracting factor. Am. J. Physiol. 257: H33 — H37, 1989.

    PubMed  CAS  Google Scholar 

  118. Katusic, Z. S., J. T. Shepherd, and P. M. Vanhoutte. Vasopressin causes endothelium-dependent relaxations of the canine basilar artery. Circ. Res. 55: 575–579, 1986.

    Article  Google Scholar 

  119. Katusic, Z. S., J. T. Shepherd, and P. M. Vanhoutte. Endothelium-dependent contraction to stretch in canine basilar arteries. Am. J. Physiol. 252 (Heart Circ. Physiol. 21 ): H671 — H673, 1987.

    Google Scholar 

  120. Kelm, M., and J. Schrader. Control of coronary vascular tone by nitric oxide. Circ. Res. 66: 1561–1575, 1990.

    Article  PubMed  CAS  Google Scholar 

  121. Kelm, M., M. Feelisch, A. Deussen, B. E. Strauer, and J. Schrader. Release of endothelium derived nitric oxide in relation to pressure and flow. Cardiouasc. Res. 25: 831–836, 1991.

    Article  CAS  Google Scholar 

  122. Kelm, M., M. Feelish, R. Spahr, H.-M. Piper, E. Noack, and J. Schrader. Quantitative and kinetic characterisation of nitric oxide and Edrf released from cultured endothelial cells. Biochem. Biophys. Res. Comm. 154: 236–244, 1988.

    CAS  Google Scholar 

  123. Knowles, R. G., M. Palacios, R. M. J. Palmer, and S. Moncada. Nitric oxide in the brain. In S. Moncada, and E. A. Higgs, eds. “Nitric Oxide from L-arginine, a Bioregulatory System.” Amsterdam, New York, Oxford: Excerpta Medica, pp. 139–147, 1990.

    Google Scholar 

  124. Kohler, T. R., T. R. Kirkman, L. W. Kraiss, B. K. Zierler, and A. W. Clowes. Increased flow inhibits neointimal hyperplasia in endothelialized vascular grafts. Circ. Res. 69: 1557–1565, 1991.

    Article  PubMed  CAS  Google Scholar 

  125. Koller, A., and G. Kaley. Endothelium regulates skeletal muscle microcirculation by a blood velocity-sensing mechanism. Am. J. Physiol. 258 (Heart Circ. Physiol. 27 ): H916 — H920, 1990.

    Google Scholar 

  126. Koller, A., and G. Kaley. Role of endothelium in reactive dilation of skeletal muscle arterioles. Am. J. Physiol. 259 (Heart Circ. Physiol. 28 ): H1313 — H1316, 1990.

    Google Scholar 

  127. Koller, A., and G. Kaley. Prostaglandins mediate arteriolar dilation to increased blood flow velocity in skeletal muscle microcirculation. Circ. Res. 67: 529–534, 1991.

    Article  Google Scholar 

  128. Komori, K., and H. SuzuKI. Heterogeneous distribution of muscarinic receptors in the rabbit saphenous artery. Br. J. Pharmacol. 92: 657–664, 1987.

    Article  PubMed  CAS  Google Scholar 

  129. Komori, K., R. R. Lorenz, and P. M. Vanhoutte. Nitric oxide, ACh, and electrical and mechanical properties of canine arterial smooth muscle. Am. J. Physiol. 155 (Heart Circ. Physiol. 24 ): H207 — H212, 1988.

    Google Scholar 

  130. Kostic, M. M., and J. Schrader. Role of nitric oxide in reactive hyperaemia of the guinea pig heart. Circ. Res. 70: 208–212, 1992.

    Article  PubMed  CAS  Google Scholar 

  131. Kulik, T. J., J. N. Evans, and W. J. Gamble. Stretch-induced contraction in pulmonary arteries. Am. J. Physiol. 255 (Heart Circ. Physiol. 21 ): H1391 — H1398, 1988.

    Google Scholar 

  132. Kuo, L., M. J. Davis, and W. M. Chilian. Endothelium-dependent, flow-induced dilation of isolated coronary arterioles. Am. J. Physiol. 259 (Heart Circ. Physiol. 28 ): H1063 — H1070, 1990.

    Google Scholar 

  133. Kuo, L., W. M. Chilian, and M. J. Davis. Coronary arteriolar myogenic response is independent of endothelium. Circ. Res. 66: 860–866, 1990.

    Article  PubMed  CAS  Google Scholar 

  134. Kuttan, S. C., and M. K. Sim. Endothelium-dependent response of the rabbit aorta to femtomolar concentrations of angiotensin II. J. Cardiouasc. Pharmacol. 17: 929–934, 1991.

    Article  CAS  Google Scholar 

  135. Laher, I., C. Van Breemen, and J. A. Bevan. Stretch-dependent calcium uptake associated with myogenic tone in rabbit facial vein. Circ. Res. 63: 669–672, 1988.

    Article  PubMed  CAS  Google Scholar 

  136. Lamontagne, D., U. Pohl, and R. Busse. Mechanical deformation of vessel wall and shear stress determine the basal release of endothelium-derived relaxing factor in the intact rabbit coronary vascular bed. Circ. Res. 70: 123–130, 1992.

    Article  PubMed  CAS  Google Scholar 

  137. Lancaster, J. R., and J. B. Hibbs. Epr demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages. Proc. Natl. Acad. Sci. U.S.A. 87: 1223–1227, 1990.

    Article  PubMed  CAS  Google Scholar 

  138. Lang, D., and M. J. Lewis. Endothelium-derived relaxing factor inhibits the formation of inositol triphosphate by rabbit aorta. J. Physiol (Loud.) 411: 45–52, 1989.

    CAS  Google Scholar 

  139. Langille, L., and F. O’Donnell. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 231: 405–407, 1986.

    Article  PubMed  CAS  Google Scholar 

  140. Lansman, J. B., T. J. Hallam, and T. J. Rink. Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? Nature 325: 811–813, 1987.

    Article  PubMed  CAS  Google Scholar 

  141. Lie, M., O. M. Sejersted, and F. Kill. Local regulation of vascular cross section changes in femoral artery blood flow in dogs. Circ. Res. 27: 727–737, 1970.

    Article  PubMed  CAS  Google Scholar 

  142. Long, C. J., and T. W. Stone. The release of endothelium-derived relaxant factor is calcium dependent. Blood Vessels 22: 205–208, 1985.

    PubMed  CAS  Google Scholar 

  143. Luckhoff, A., and R. Busse. Increased free calcium in endothelial cells under stimulation with adenine nucleotides. J. Cell. Physiol. 126: 414–420, 1986.

    Article  PubMed  CAS  Google Scholar 

  144. Luckhoff, A., and R. Busse. Calcium influx into endothelial cells and formation of endothelium-derived relaxing factor is controlled by the membrane potential. Pflügers Arch. 416: 305–311, 1990a.

    Article  PubMed  CAS  Google Scholar 

  145. Luckhoff, A., and D. E. Clapham. Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Ca“ -permeable channel. Nature 355: 356–358, 1992.

    Article  PubMed  CAS  Google Scholar 

  146. Magliola, L., and A. W. Jones. Sodium nitroprusside alters Cat+ flux components and Ca’ -dependent fluxes of K+ and Cl-in rat aorta. J. Physiol. (Lond.) 421: 411–424, 1990.

    CAS  Google Scholar 

  147. Mandelbrot, B. B.. The fractal geometry of nature. New York: Freeman, pp. 158, 1982.

    Google Scholar 

  148. Manigarua, E. I., and R. D. Bevan. Altered endothelium-mediated relaxation after de-nervation of growing rabbit ear artery. Eur. J. Pharmacol. 122: 149–152, 1986.

    Article  Google Scholar 

  149. Marcus, M. L., W. M. Chilian, H. Kanatsuka, K. C. Dellsperger, C. L. Eastham, and K. G. Lamping. Understanding the coronary circulation through studies at the microvascular level. Circulation 82: 1–7, 1990.

    Article  PubMed  CAS  Google Scholar 

  150. Marletta, M. A., P. S. Yoon, R. Iyengar, C. D. Leaf, and J. S. Wishnok. Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry 27: 8706–8711, 1988.

    Article  PubMed  CAS  Google Scholar 

  151. Martin, G. R., M. L. Bolofo, and H. Giles. Inhibition of endothelium-dependent vasorelaxation by arginine analogues: a pharmacological analysis of agonist and tissue dependence. Br. J. Pharmacol. 105: 643–652, 1992.

    Article  PubMed  CAS  Google Scholar 

  152. Martin, W., G. M. Villani, D. Jothianandan, and R. F. Furchgott. Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by haemoglobin and by methylene blue in the rabbit aorta. J. Pharmacol. Exp. Ther. 232: 708–716, 1985.

    PubMed  CAS  Google Scholar 

  153. Mathie, R. T., R. Springall, L. D. K. Buttery, S. Moncada, and J. M. Pollak. Nitric oxide synthase activity in hepatic vascular endothelium. In: “The Biology of Nitric Oxide, Physiological and Cilnical Aspects.” Eds: S. Moncada, M. A. Marletta, J. B. Hibbs, E. A. Higgs. Portland Press, pp. 87–89, 1992.

    Google Scholar 

  154. Mayer, B., M. John, B. Heinzel, E. R. Werner, H. Wachter, G. Schultz, and E. Bohme. Brain nitric oxide synthase is a biopterin-and flavin-containing multi-functional oxidereductase. Febs Lett. 288: 187–191, 1991.

    Article  PubMed  CAS  Google Scholar 

  155. Mccarron, J. G., G. Osol, and W. Halpern. Myogenic responses are independent of the endothelium in rat pressurized posterior cerebral arteries. Blood Vessels 26: 315–319, 1989.

    PubMed  CAS  Google Scholar 

  156. Mcmahon, T. J., J. S. Wood, and P. J. Kadowitz. Pulmonary vasodilator response to vagal stimulation is blocked by NW-Nitro-L-arginine methyl ester in the cat. Circ. Res. 70: 364369, 1992.

    Google Scholar 

  157. Mcpherson, G. A., and J. A. Angus. Evidence that acetylcholine-mediated hyperpolarization of the rat small mesenteric artery does not involve the K channel opened by cromakalim. Br. J. Pharmacol. 103: 1184–1190, 1991.

    Article  PubMed  CAS  Google Scholar 

  158. Meininger, G. A., and J. E. Faber. Adrenergic facilitation of myogenic response in skeletal muscle arterioles. Am. J. Physiol. 260 (Heart Circ. Physiol. 29 ): H1424 — H1432, 1991.

    Google Scholar 

  159. Meininger, G. A., K. L. Fehr, and M. B. Yates. Anatomic and hemodynamic characteristics of the blood vessels feeding the cremaster skeletal muscle in rat. Microuasc. Res. 33: 81–97, 1987.

    Article  CAS  Google Scholar 

  160. Meininger, G. A., and J. P. Trzeciakowski. Combined effects of autoregulation and vasoconstriction on hindquarters vascular resistance. Am. J. Physiol. 258 (Heart Circ. Physiol. 27 ): H1032 — H1041, 1990.

    Google Scholar 

  161. Melkumyants, A. M., and S. A. Balashov. Effect of blood viscosity on arterial flow induced dilator response. Cardiovasc. Res. 24: 165–168, 1990.

    Article  PubMed  CAS  Google Scholar 

  162. Melkumyants, A. M., S. A. Balashov, and V. M. Khayutin. Endothelium dependent control of arterial diameter by blood viscosity. Cardiovasc. Res. 23: 741–747, 1989.

    Article  PubMed  CAS  Google Scholar 

  163. Melkumyants, A. M., S. A. Balashov, E. S. Vesekova, and V. M. Khayutin. Continuous control of the lumen of feline conduit arteries by blood flow rate. Cardiovasc. Res. 21: 863870, 1987.

    Google Scholar 

  164. Melkumyants, A. M., S. A. Balashov, A. N. Klimachev, S. P. Kartamyshev, and V.M. Khayutin. Nitric oxide does not mediate flow induced endothelium dependent arterial dilation in the cat. Cardiovasc. Res. 26: 256–260, 1992.

    Article  PubMed  CAS  Google Scholar 

  165. Miller, V. M., and P. M. Vanhoutte. Endothelium-dependent contractions to arachidonic acid are mediated by products of cyclooxygenase. Am. J. Physiol. 248 (Heart Circ. Physiol. 17 ): H432 — H437, 1985.

    Google Scholar 

  166. Miller, V. M., L. L. Aarhus, and P. M. Vanhoutte. Modulation of endothelium-dependent responses by chronic alterations in blood flow. Am. J. Physiol. 251 (Heart Circ. Physiol. 20 ): H520 — H527, 1986.

    Google Scholar 

  167. Miller, V. M., and P. M. Vanhoutte. Enhanced release of endothelium-derived factor(s) by chronic increases in blood flow. Am. J. Physiol. 255 (Heart Circ. Physiol. 24 ): H446 — H451, 1988.

    Google Scholar 

  168. Milner, P., P. Bodin, A. Loesch, and G. Burnstock. Rapid release of endothelin and Atp from isolated aortic endothelial cells exposed to increased flow. Biochem. Biophys. Res. Comm. 170: 649–656, 1990.

    Article  PubMed  CAS  Google Scholar 

  169. Mitchell, J. A., M. Hecker, E. E. Anggard, and J. R. Vane. Cultured endothelial cells maintain their L-arginine level despite the continuous release of Edrf. Eur. J. Pharmacol. 182: 573–576, 1990.

    Article  PubMed  CAS  Google Scholar 

  170. Mo, M., S. G. Eskin, and W. P. Schilling. Flow-induced changes in Cal’ signaling of vascular endothelial cells: effect of shear stress and Atp. Am. J. Physiol. 260 (Heart Circ. Physiol. 29 ): H1698 — H1707, 1991.

    Google Scholar 

  171. MoMbouli, J.-V., and P. M. Vanhoutte. Kinins and endothelium-dependent relaxations to converting enzyme inhibitors in perfused canine arteries. J. Cardiovasc. Pharmacol. 18: 926–927, 1991.

    Article  Google Scholar 

  172. Moncada, S., R. M. J. Palmer, and E. A. Higgs. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43: 109–142, 1991.

    PubMed  CAS  Google Scholar 

  173. Morgan, J. P., and K. G. Morgan. Alteration of cytoplasmic ionized calcium levels in smooth muscle by vasodilators in the ferret. J. Physiol. (Lond.) 357: 539–551, 1984.

    Google Scholar 

  174. Murray, C. D. The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. U.S.A. 12, 207–214, 1926.

    Google Scholar 

  175. Murray, C. D. The physiological principle of minimum work applied to the angle of branching of arteries. J. Gen. Physiol. 9: 835–841, 1926.

    Article  PubMed  CAS  Google Scholar 

  176. Myers, P. R., R. L. Minor, R. Guerra, J. N. Bates, and D. G. Harrison. Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocysteine than nitric oxide. Nature 345: 161–163, 1990.

    Article  PubMed  CAS  Google Scholar 

  177. Nakache, M., and H. E. Gaub. Hydrodynamic hyperpolarization of endothelial cells. Proc. Natl. Acad. Sci. U.S.A. 85: 1841–1843, 1988.

    Article  PubMed  CAS  Google Scholar 

  178. Nakane, M., J. Mitchell, U. Forstermann, and F. Murad. Phosphorylation by calcium calmodulin-dependent protein kinase II and protein kinase C modulates the activity of Nitric Oxide synthase. Biochem. Biophys. Res. Comm. 180: 1396–1402, 1991.

    Article  PubMed  CAS  Google Scholar 

  179. Nakayama, K., and Y. Tanaka. Specific signal transduction in the stretch-induced tone of vascular tissue. In Resistance arteries, Structure and Function, M. J. Mulvaney, C. Aalkjaer, A. M. Heagerty, N. C. B. Nyborg, and S. Strandgaard, eds. Amsterdam-NewYorkOxford: Excerpta Medica, pp. 86–90, 1991.

    Google Scholar 

  180. Nelson, M. T., J. B. Patlak, J. F. Worley, and N. B. Standen. Calcium channels, potassium channels and voltage dependence of arterial smooth muscle. Am. J. Physiol. 259 (Cell Physiol. 28 ): C3 — C18, 1990.

    Google Scholar 

  181. Newby, A. C., and A. H. Henderson. Stimulus-secretion coupling in vascular endothelial cells. Annu. Rev. Physiol. 52: 661–674, 1990.

    Article  PubMed  CAS  Google Scholar 

  182. Nilsson, H., and N. Sjoblom. Distension-dependent changes in noradrenaline sensitivity in small arteries from the rat. Acta. Physiol. Scand. 125: 429–435, 1985.

    Article  PubMed  CAS  Google Scholar 

  183. Nishikawa, M., P. Delanerolle, T. H. M. Lincoln, and R. S. Adelstein. Phosphorylation of mammalian myosin light chain kinases by the catalytic subunit of cyclic Amp-dependent protein kinase and by cyclic Gmp-dependent protein kinase. J. Biol. Chem. 259: 8429–8436, 1984.

    PubMed  CAS  Google Scholar 

  184. Nishimura, J., and C. Van Breemen. Direct regulation of smooth muscle contractile elements by second messengers. Biochem. Biophys. Res. Comm. 163: 929–935, 1989.

    Article  PubMed  CAS  Google Scholar 

  185. Nollert, M. U., S. G. Eskin, and L. V. Mcintire. Shear stress increases inositol trisphosphate levels in human endothelial cells. Biochem. Biophys. Res. Comm. 170: 281–287, 1990.

    Article  PubMed  CAS  Google Scholar 

  186. Ohhashi, T, and M. Takahashi. Acetylcholine-induced release of endothelium-derived relaxing factor from lymphatic endothelial cells. Am. J. Physiol. 260 (Heart Circ. Physiol. 29 ): H1172 — H1178, 1991.

    Google Scholar 

  187. Olesen, S.-P., D. E. Clapham, and P. F. Davies. Haemodynamic shear stress activates a K’ current in vascular endothelial cells. Nature 331: 168–170, 1988.

    Article  PubMed  CAS  Google Scholar 

  188. Olken, N. M., K. M. Rusche, M. K. Richards, and M. A. Marletta. Inactivation of macrophage nitric oxide synthase activity by N’-methyl-L-arginine. Biochem. Biophys. Res. Comm. 177: 828–833, 1991.

    Article  PubMed  CAS  Google Scholar 

  189. Owen, M. P., J. A. Bevan. Acetylcholine induced endothelial-dependent vasodilation increases as artery diameter decreases in the rabbit ear. Experentia 41: 1057–1058, 1985.

    Article  CAS  Google Scholar 

  190. Palmer, R. M. J., A. G. Ferrige, and S. Moncada. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524–526, 1987.

    Article  PubMed  CAS  Google Scholar 

  191. Palmer, R. M. J., D. S. Ashton, and S. Moncada. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333: 664–666, 1988.

    Article  PubMed  CAS  Google Scholar 

  192. Parkington, H. C., M. Tare, and H. A. Coleman. More than one agent is involved in the hyperpolarization induced by acetylcholine in coronary arteries of guinea pigs. Blood Vessels 27: 52, 1990 (Abstract).

    Google Scholar 

  193. Persson, M. G., L. E. Gustafsson, N. P. Wiklund, S. Moncada, and P. Hedqvist. Endogenous nitric oxide as a probable modulator of pulmonary circulation and hypoxic pressor response in vivo. Acta. Physiol. Scand. 140: 449–457, 1990.

    Article  PubMed  CAS  Google Scholar 

  194. Persson, M. G., P. Hedqvist, and L. E. Gusutafsson. Nerve-induced tachykinin-mediated vasodilatation in skeletal muscle is dependent on nitric oxide formation. Eur. J. Pharmacol. 205: 295–301, 1991.

    Article  PubMed  CAS  Google Scholar 

  195. Persson, M. G., N. P. Wiklund, and L. E. Gustafsson. Nitric oxide requirements for vasomotor nerve-induced vasodilatation and modulation of resting blood flow in muscle microcirculation. Acta Physiol. Scand. 141: 49–56, 1991.

    Article  PubMed  CAS  Google Scholar 

  196. Persson, P. B., J. E. Baumann, H. Ehmk, B. Nafz, U. Wittman, and H. R. Kirchheim. Phasic and 24-h blood pressure control by endothelium-derived relaxing factor in conscious dogs. Am. J. Physiol. 262 (Heart Circ. Physiol. 31 ): H1395 — H1400, 1992.

    Google Scholar 

  197. Pohl, U., and R. Busse. Reduced nutritional blood flow in autoperfused rabbit hindlimbs following inhibition of endothelial vasomotor function. In Resistance Arteries, W. Halpern, et al., eds: Ithaca, N.Y.: Perinatology Press, 10–16, 1988.

    Google Scholar 

  198. Pohl, U., and R. Busse. Hypoxia stimulates release of endothelium-derived relaxant factor. Am. J. Physiol. 256 (Heart Circ. Physiol. 25 ): H1595 — H1600, 1989.

    Google Scholar 

  199. PoHL, U., R. Busse, E. Kuon, and E. Bassenge. Pulsatile perfusion stimulates the release of endothelial autocoids. J. Appl. Cardiol. 1: 215–235, 1986.

    Google Scholar 

  200. Pohl, U., K. Herlan, A. Huang, and E. Bassenge. Edrf-mediated, shear-induced dilation opposes myogenic vasoconstriction in small rabbit arteries. Am. J. Physiol. 261 (Heart Circ. Physiol. 30 ): H2016 — H2023, 1991.

    Google Scholar 

  201. Popescu, L. M., C. Panoiu, M. Hinescu, and O. Nutu. The mechanism of cGmp-induced relaxation in vascular smooth muscle. Eur. J. Pharmacol. 107: 393–394, 1985.

    Article  PubMed  CAS  Google Scholar 

  202. Ralevic, V., P. Milner, O. Hudlicka, F. Kristek, and G. Burnstock. Substance P is released from the endothelium of normal and capsaicin-treated rat hind-limb vasculature, in vivo, by increased flow. Circ. Res. 66: 1178–1183, 1990.

    Article  PubMed  CAS  Google Scholar 

  203. Ralevic, V., J. Lincoln, and G. Burnstock. Release of vasoactive substance from endothelial cells. In Endothelial Regulation of Vascular Tone, U. S. Ryan, and G. M. Rubanyi, eds. New York: Marcel-Dekker, pp. 297–328, 1992.

    Google Scholar 

  204. Randall, M. D., and C. R. Hiley. Detergent and methylene blue affect endothelium-dependent vasorelaxation and pressure/flow relations in rat blood perfused mesenteric ar terial bed. Br. J. Pharmacol. 95: 1081–1088, 1988.

    Article  PubMed  CAS  Google Scholar 

  205. Randall, M. D., D. H. Edwards, and T. M. Griffith. Activities of endothelin-1 in the vascular network of the rabbit ear: a microangiographic study. Br. J. Pharmacol. 101: 781–788, 1990.

    Article  PubMed  CAS  Google Scholar 

  206. Randall, M. D., and T. M. Griffith. Differential effects of L-arginine on the inhibition of NG-nitro-L-arginine methyl ester of basal and agonist-stimulated Edrf activity. Br. J. Pharmacol. 104: 743–749, 1991.

    Article  PubMed  CAS  Google Scholar 

  207. Randall, M. D., and T. M. Griffith. Endothelium-derived relaxing factor plays a central role in collateral perfusion following arterial occlusion. Am. J. Physiol. 263 (Heart Circ.Physiol. 32 ): H752 — H760, 1992.

    Google Scholar 

  208. Randall, M. D., and T. M. Griffith. Effects of vasodilators on collateral perfusion following arterial occlusion. Br. J. Pharmacol. 106: 315–323, 1992.

    Article  PubMed  CAS  Google Scholar 

  209. Rapoport, R. M.. Cyclic guanosine monophosphate inhibition of contraction may be mediated through inhibition of phosphatidylinositol hydrolysis in rat aorta. Circ. Res. 58: 407–410, 1986.

    Article  PubMed  CAS  Google Scholar 

  210. Rapoport, R. M., M. B. DrazIN, and F. Murad. Endothelium-dependent relaxation in rat aorta may be mediated through cyclic Gmp-dependent protein phosphorylation. Nature 306: 174–176, 1983.

    Article  PubMed  CAS  Google Scholar 

  211. Rees, D. D., R. M. J. Palmer, H. F. Hodson, and A. Moncada. A specific inhibitor of nitric oxide formation from L-arginine attenutates endothelium-dependent relaxation. Br. J. Pharmacol. 96: 418–424, 1989.

    Article  PubMed  CAS  Google Scholar 

  212. Rees, D. D., S. Cellek, R. M. J. Palmer, and S. Moncada. Dexamethasone prevents the induction by endotoxin of a nitric oxide synthase and the associated effects on vascular tone: an insight into endotoxin shock. Biochem. Biophys. Res. Comm. 173: 541–547, 1990.

    Article  PubMed  CAS  Google Scholar 

  213. Rodman, D. M., T. Yamaguchi, K. Hasunuma, R. F. O’Brien, and I. F. McmuRty. Effects of hypoxia on endothelium-dependent relaxation of rat pulmonary artery. Am. J. Physiol. 258: L207 — L214, 1990.

    PubMed  CAS  Google Scholar 

  214. Rosenblum, W. I., H. Nishimura, and G. H. Nelson. L-Nmma in brain microcirculation of mice is inhibited by blockade by cyclooxygenase and by superoxide dismutase. Am. J. Physiol. 262 (Heart Circ. Physiol. 31 ): H1343 — H1349, 1992.

    Google Scholar 

  215. Rosenthal, S. L., and A. C. GuyroN. Hemodynamics of collateral vasodilation following femoral artery occlusion in anaesthetized dogs. Circ. Res. 23: 239–248, 1968.

    Article  PubMed  CAS  Google Scholar 

  216. Rubanyi, G. M.. Endothelium-dependent pressure-induced contraction of isolated canine carotid arteries. Am. J. Physiol. 255 (Heart Circ. Physiol. 24 ): H783 — H788, 1988.

    Google Scholar 

  217. Rubanyi, G. M. and P. M. Vanhoutte. Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium. J. Physiol. (Lond.) 364: 45–56, 1985.

    CAS  Google Scholar 

  218. Rubanyi, G. M., and P. M. Vanhoutte. Superoxide and hyperoxia inactivate endothelium-derived relaxing factor. Am. J. Physiol. 250 (Heart Circ. Physiol. 19 ): H822 — H827, 1986.

    Google Scholar 

  219. Rubanyi, G. M., R. R. Lorenz, and P. M. Vanhoutte. Bioassay of endothelium-derived relaxing factor(s): inactivation by catecholamines. Am. J. Physiol. 249 (Heart Circ. Physiol. 18 ): H95 — H101, 1985a.

    Google Scholar 

  220. Rubanyi, G. M., J. C. Romero, and P. M. Vanhoutte. Flow-induced release of endothelium-derived relaxing factor. Am. J. Physiol. 250 (Heart Circ. Physiol. 19 ): H1145 — H1149, 1986.

    Google Scholar 

  221. Rubanyi, G. M., A. D. Freay, A. Johns, and C. Van Breemen. Elevated transmural pressure inhibits the release of Edrf by mechanisms similar to high K’ and barriers. In Resistance Arteries, Structure and Function, M. J. Mulvaney, C. Aalkjaer, A. M. Heagerty, N. C. B. Nyborg, S. Strandgaards, eds. Amsterdam, New York, Oxford: Excerpta Medica, pp. 226–232, 1991.

    Google Scholar 

  222. Rusche, K. M., J. M. Hevel, and M. A. Marletta. Purification of the malic enzyme from murine macrophages: a source of Nadph for the NO synthase. In: “The Biology of Nitric Oxide, Enzymology, Biochemistry, and Immunology.” Eds: S. Moncada, M. A. Marletta, J. B. Hibbs, E. A. Higgs. Portland Press, pp. 45–47, 1992.

    Google Scholar 

  223. Sagach, V. F., and A. M. Kindybalyk. Functional hyperaemia of skeletal muscles: role of endothelium. J. Vasc. Res. 29: 192, 1992.

    Google Scholar 

  224. Saguma, I., H. Togashi, M. Yoshioka, H. Saito, M. Yanagida, M. Tamura, M. Kobayashi, H. Yasuda, S. S. Gross, and R. Levi. NG-methyl-L-arginine, an inhibitory of L-argininederived synthesis, stimulates renal sympathetic nerve activity in vivo. Circ. Res. 70: 607611, 1992.

    Google Scholar 

  225. Schini, B. V., and P. M. Vanhoutte. L-arginine evokes both endothelium-dependent and -independent relaxations in L-arginine depleted aortas of the rat. Circ. Res. 68: 209–216, 1991.

    Article  PubMed  CAS  Google Scholar 

  226. Schini, V. B., H. Hendrickson, D. M. Heublein, J. C. Burnett, and P. M. Vanhoutte. Thrombin enhances the release of endothelin from cultured porcinine aortic endothelial cells. Eur. J. Pharmacol. 165: 333–334, 1989.

    Article  PubMed  CAS  Google Scholar 

  227. Schmidt, H. H. H. W., M. M. Klein, F. Niroomand, and E. Bohme. Is arginine a physiological precursor of endothelium-derived nitric oxide? Eur. J. Pharmacol. 148: 293–295, 1988.

    Article  PubMed  CAS  Google Scholar 

  228. Schretzenmayr, A.. Cher kreislaufregulatorische Vorgänge an den grossen Arterien bei der Muskelarbeit. Plügers Arch. 232: 743–748, 1933.

    Article  Google Scholar 

  229. Segal, S. S., and B. R. Duling. Communication between feed arteries and microvessels in hamster striated muscle: segmental vascular responses are functionally coordinated. Circ. Res. 59: 283–290, 1986.

    Article  PubMed  CAS  Google Scholar 

  230. Sellke, F. W., J. E. Quillen, L. A. Brooks, and D. G. Harrison. Endothelial modulation of the coronary vasculature in vessels perfused via mature collaterals. Circ. Res. 81: 1938–1947, 1990.

    Article  CAS  Google Scholar 

  231. Singer, H. A., and M. J. Peach. Calcium-and endothelial-mediated vascular smooth muscle relaxation in rabbit aorta. Hypertension 4 (Suppl. II): 19–25, 1982.

    PubMed  CAS  Google Scholar 

  232. Sinoway, L. I., C. Hendrickson, W. R. Davidson, JR., S. Prophet, and R. Zelis. Characteristics of flow-mediated brachial artery vasodilation in human subjects. Circ. Res. 64: 32–42, 1989.

    Article  PubMed  CAS  Google Scholar 

  233. Skalak, T. C., G. W. Schmid-Schobein, and B. W. Zweifach. New morphological evidence for a mechanism of lymph formation in skeletal muscle. Microuasc. Res. 28: 95–112, 1983.

    Article  Google Scholar 

  234. Smiesko, V., J. KoziK, and S. Dolezel. Role of endothelium in the control of arterial diameter by blood flow. Blood Vessels 22: 247–251, 1985.

    PubMed  CAS  Google Scholar 

  235. Smiesko, V., D. J. Lang, and P. C. Johnson. Dilator response of rat mesenteric arcading arterioles to increased blood flow velocity. Am. J. Physiol. 257 (Heart Circ. Physiol. 26 ): H1958 — H1965, 1989.

    Google Scholar 

  236. Sparks, H. V. Effect of local metabolic factors on vascular smooth muscle. In Handbook of Physiology, Vol. 2, D. Bohr, ed. Maryland: Waverly Press, pp. 475–513, 1980.

    Google Scholar 

  237. Sprague, E. A., B. L. Steinbach, R. M. Nerem, and C. J. Schwartz. Influence of a laminar steady fluid imposed wall shear stress on the binding, internalisation and degradation of low-density lipoproteins by cultured arterial endothelium. Circulation 76: 648–656, 1987.

    Article  PubMed  CAS  Google Scholar 

  238. Stamler, J. S., D. I. Simon, J. A. Osborne, M. E. Mullins, O. Jaraki, T. Michel, D. J. Singel, and J. Loscalzo. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc. Natl. Acad. Sci. U.S.A. 89: 444 448, 1992.

    Google Scholar 

  239. Stuehr, D. J., N. S. Kwon, C. F. Nathan, O. W. Griffith, P. L. Feldman, and J. Wiseman. Nw-hydroxy-L-arginine is an intermediate in the biosynthesis of nitric oxide from L-arginine. J. Biol. Chem. 266: 6259–6263, 1991.

    PubMed  CAS  Google Scholar 

  240. Suematsu, E., M. Hirata, and H. Kuriyama. Effects of cAmp- and cGmp-dependent protein kinases, and calmodulin on Ca“ uptake by highly purified sarcolemmal vesicles of vascular smooth muscle. Biochem. Biophys. Acta. 773: 83–90, 1984.

    Article  PubMed  CAS  Google Scholar 

  241. Sumpio, B. E., and M. D. Widmann. Enhanced production of an endothelium-derived contracting factor by endothelial cells subjected to pulsatile stretch. Surgery 108: 277–282, 1990.

    PubMed  CAS  Google Scholar 

  242. Tare, M., H. C. Parkington, H. A. Coleman, T. O. Neild, and G. J. Dusting. Hyperpolarization and relaxation of arterial smooth muscle caused by nitric oxide derived from the endothelium. Nature 346: 69–71, 1990.

    Article  PubMed  CAS  Google Scholar 

  243. Tesfamariam, B., and R. A. Cohen. Inhibition of adrenergic vasoconstriction by endothelial cell shear stress. Circ. Res. 63: 720–725, 1988.

    Article  PubMed  CAS  Google Scholar 

  244. Tesfamariam, B., R. M. Weisbrod, and R. A. Cohen. Endothelium inhibits responses of rabbit carotid artery to adrenergic nerve stimulation. Am. J. Physiol. 253 (Heart Circ. Physiol. 22 ): H792 — H798, 1987.

    Google Scholar 

  245. Thornbury, K. D., S. M. Ward, H. H. Dalziel, A. Carl, D. P. Westfall, and K. M. Sander. Nitric oxide and nitrocysteine mimic nonadrenergic noncholinergic hyperpolarization in the canine proximal colon. Am. J. Physiol. 261 (Gastrointest. Liver Physiol. 30 ): G553 — G557, 1991.

    Google Scholar 

  246. Toda, N., and T. Okamura. Possible role of nitric oxide in transmitting information from vasodilator nerve to cerebroarterial muscle. Biochem. Biophys. Res. Comm. 170: 308–313, 1990.

    Article  PubMed  CAS  Google Scholar 

  247. Twort, C. H. C., and C. Van Breemen. Cyclic guanosine monophosphate-enhanced sequestration of Ca“ by sarcoplasmic reticulum in vascular smooth muscle. Circ. Res. 62: 961–964, 1988.

    Article  PubMed  CAS  Google Scholar 

  248. Vallance, P., J. Collier, and S. Moncada. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 997–1000, Oct. 28, 1989.

    Google Scholar 

  249. Vanin, A. F.. Endothelium-derived relaxing factor is a nitrosyl iron complex with thiol ligands. Febs Lett. 289: 1–3, 1991.

    Article  PubMed  CAS  Google Scholar 

  250. Vedernikov, Y. P., P. I. Mordvintcev, I. V. Malenkova, and A. F. Vanin. Similarity between the vasorelaxing activity of dinitrosyl iron cysteine complexes and endothelium-derived relaxing factor. Eur. J. Pharmacol. 211: 313–317, 1992.

    Article  PubMed  CAS  Google Scholar 

  251. Warren, J. B., N. H. Maltby, D. Maccormack, and P. J. Barnes. Pulmonary endothelium-derived relaxing factor is impaired in hypoxia. Clin. Sci. 77: 671–676, 1989.

    PubMed  CAS  Google Scholar 

  252. Weir, J. W., I. F. Gibson, and W. Martin. Effects of metabolic inhibitors on endothelium-dependent and endothelium-independent vasodilatation of rat and rabbit aorta. Br. J. Pharmacol. 102: 162–166, 1991.

    Article  PubMed  CAS  Google Scholar 

  253. White, D. G., and W. Martin. Differential control and calcium-dependence of production of endothelium-derived relaxing factor and prostacyclin by pig aortic endothelial cells. Br. J. Pharmacol. 87: 683–690, 1989.

    Article  Google Scholar 

  254. Woldenberg, M. J., and K. Horsfield. Relation of branching angles to optimality for four cost principles. J. Theor. Biol. 122: 187–204, 1986.

    Article  PubMed  CAS  Google Scholar 

  255. Xie, Q.-W., H. J. Cho, J. Calaycay, R. A. Mumford, K. M. Swiderek, T. D. Lee, A. Ding, T. Troso, and C. Nathan. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256: 225–228, 1992.

    Article  PubMed  CAS  Google Scholar 

  256. Yamishiro, S. M., D. W. Slaaf, R. S. Reneman, G. J. Tangelder, and J. B. Bassingthwaigte. Fractal analysis of vasomotion. In Mathemtical approaches to cardiac arrhythmias, J. Jalife, ed. Ann. N.Y. Acad. Sci. 59: 410–416, 1990.

    Google Scholar 

  257. Yanagisawa, M., H. Kurihara, S. Kimura, Y. Tomobe, M. Kobayashi, Y. Mitsui, Y. Yazaki, K. Goto, and T. Masaki. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411–415, 1988.

    Article  PubMed  CAS  Google Scholar 

  258. Yoshizumi, M., H. Kurihara, T. Sugiyama, F. Takaku, M. Yanagisawa, T. Masaki, and Y. Yazaki. Hemodynamic shear stress stimulates endothelin production by cultured endothelial cells. Biochem. Biophys. Res. Comm. 161: 859–864, 1989.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 American Physiological Society

About this chapter

Cite this chapter

Griffith, T.M. (1995). Endothelium-Derived Relaxing Factor and the Control of Flow in Conduit and Resistance Arteries. In: Bevan, J.A., Kaley, G., Rubanyi, G.M. (eds) Flow-Dependent Regulation of Vascular Function. Clinical Physiology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7527-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7527-9_9

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7527-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics