Skip to main content

Coronary Microvascular Responses to Flow

  • Chapter
Flow-Dependent Regulation of Vascular Function

Part of the book series: Clinical Physiology Series ((CLINPHY))

  • 333 Accesses

Abstract

In the normal heart, coronary microvascular resistance is tightly controlled, so that coronary blood flow may change rapidly up to four to sixfold to match closely the changing metabolic demands imposed by myocardial work (38). The major mechanisms exerting such close control are generally considered to be metabolic dilatation and autoregulatory responses to intraluminal pressure changes, each modulated by neurohumoral influences. However, recent studies, mainly in isolated coronary microvessels, have revealed pronounced flow-dependent changes in coronary microvascular diameter. This response clearly may play a significant role in the normally integrated control of coronary blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amezcua, J. L., R. M. J. Palmer, B. M. DE Souza, and S. Moncada. Nitric oxide synthesised from L-arginine regulates vascular tone in the coronary circulation of the rabbit. Brit. J. Pharmac. 97: 1119–1124, 1989.

    Article  CAS  Google Scholar 

  2. Ashikawa, K., H. Kanatsuka, T. Suzuki, and T. Takishima. Phasic blood flow velocity pattern in epimyocardial microvessels in the beating canine left ventricle. Circ. Res. 59: 704711, 1986.

    Google Scholar 

  3. Benyo, Z., G. Kiss, C. Szabo, C. Csaki, and A. G. B. Kovach. Importance of basal nitric oxide synthesis in regulation of myocardial blood flow. Cardiovasc. Res. 25: 700–703, 1991.

    Article  PubMed  CAS  Google Scholar 

  4. Chilian, W. M., S. M. Layne, E. C. Klausner, C. L. Eastham, and M. L. Marcus. Redistribution of coronary microvascular resistance produced by dipyridamole. Am. J. Physiol. 256 (Heart Circ. Physiol. 25 ): H383 — H390, 1989.

    Google Scholar 

  5. Chilian, W. M., K. C. Dellsberger, S. M. Layne, C. L. Eastham, M A Armstrong, M. L. Marcus, and D. D. Heistad. Effects of atherosclerosis on the coronary microcirculation. Am. J. Physiol. 258 (Heart Circ. Physiol. 27 ): H529 — H539, 1990.

    Google Scholar 

  6. Chilian, W. M. Functional distribution of a, and a2-adrenergic receptors in the coronary microcirculation. Circulation 84: 2108–2122, 1991.

    Article  PubMed  CAS  Google Scholar 

  7. Chu, A., D. E. Chambers, C-C. Lin, W. D. Kuehl, and F. R. Cobb. Nitric oxide modulates epicardial coronary basal vasomotor tone in awake dogs. Am. J. Physiol. 258 (Heart Circ. Physiol. 27 ): H1250 - H1254, 1990.

    Google Scholar 

  8. Chu, A., D. E. Chambers, C-C. Lin, W. D. Kuehl, R. M. J. Palmer, S. Moncada, and F. R. Cobb. Effects of inhibition of nitric oxide formation on basal vasomotion and endothelium-dependent responses of the coronary arteries in awake dogs. J. Clin. Invest. 87: 1964 1968, 1991.

    Google Scholar 

  9. Cocks, T. M., and J. A. Angus. Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature 305: 627–629, 1983.

    Article  PubMed  CAS  Google Scholar 

  10. Cohen, R. A., K. M. Zitnay, C. C. Haudenschild, and L. D. Cunningham. Loss of selective endothelial cell vasoactive functions caused by hypercholesterolaemia in pig coronary arteries. Circ. Res. 63: 903–910, 1988.

    Article  PubMed  CAS  Google Scholar 

  11. Cox, D. A., J. A. Vita, C. B. Treasure, R. D. Fish, R. W. Alexander, P. Ganz, and A. P. Selwyn. Atherosclerosis impairs flow-mediated dilation of coronary arteries in humans. Circulation 80: 458–465, 1989.

    Article  PubMed  CAS  Google Scholar 

  12. Davis, M. J. Myogenic response gradient in an arteriolar network. In Resistance arteries: Structure and Function, M. J. Mulvaney, C. Aalkjaer, A. M. Heagerty, N. C. B. Nyborg, and S. Strandgaard, eds. Amsterdam: Elsevier, 1991, pp. 51–55.

    Google Scholar 

  13. Defily, D. V., and W. M. Chilian. Preconditioning protects coronary microvascular endothelial function. Circulation 84: II-1726 (Abstract). 1991.

    Google Scholar 

  14. Drexler, H., A. M. Zeiher, H. Wollschlager, T. Meinertz, H. Just, and T. Bonzel. Flow-dependent coronary artery dilatation in humans. Circulation 80: 466–474, 1989.

    Article  PubMed  CAS  Google Scholar 

  15. Freiman, P. C., G. G. Mitchell, D. D. Heistad, M. L. Armstrong, and D. G. Harrison. Atherosclerosis impairs endothelium-dependent vascular relaxation to acetylcholine and thrombin in primates. Circ. Res. 58: 783–789, 1986.

    Article  PubMed  CAS  Google Scholar 

  16. Gerova, M., J. Gero, E. Barta, S. Dolezel, V. Smiesko, and V. Levicky. Neurogenic and myogenic control of conduit coronary a.: a possible interference. Bas. Res. Cardiol. 76: 503507, 1981.

    Google Scholar 

  17. Griffith, T. M., and D. H. Edwards. Myogenic autoregulation of flow may be inversely related to endothelium-derived relaxing factor activity. Am. J. Physiol. 258 (Heart Circ. Physiol. 27 ): H1171 - H1180, 1990.

    Google Scholar 

  18. Hintze, T. H., and S. F. Vatner. Reactive dilation of large coronary arteries in conscious dogs. Circ. Res. 54: 50–57, 1984.

    Article  PubMed  CAS  Google Scholar 

  19. Holtz, J., U. Forstermann, U. Pohl, M. Giesler, and E. Bassenge. Flow-dependent endothelium-mediated dilation of epicardial coronary arteries in conscious dogs: effects of cyclooxygenase inhibition. J. Cardiovasc. Pharmacol. 6: 1161–1169, 1984.

    PubMed  CAS  Google Scholar 

  20. Huxley, V. H., F. E. Curry, and R. H. Adamson. Quantitative fluorescence microscopy on single capillaries: a-lactalbumin transport. Am. J. Physiol. 252 (Heart Circ. Physiol. 21 ): H188 - H197, 1987.

    Google Scholar 

  21. Jones, C. J. H., D. V. Defily, J. Patterson, and W. M. Chilian. Endothelium-dependent relaxation competes with al-and a2-adrenergic constriction in the canine epicardial coronary microcirculation. Circulation 87 (4): 1264–1274, 1993.

    Article  PubMed  CAS  Google Scholar 

  22. Jones, C. J. H., D. V. Deftly, J. Patterson, and W. M. Chilian. Endogenous nitric oxide modulates a2-adrenergic constriction in the canine coronary microcirculation. Faseb J. 6: A1803 (Abstract), 1992.

    Google Scholar 

  23. Kanatsuka, H., K. G. Lamping, C. L. Eastham, K. C. Dellsperger, and M. L. Marcus. Comparison of the effects of increased myocardial oxygen consumption and adenosine on the coronary microvascular resistance. Circ. Res. 65: 1296–1305, 1989.

    Article  PubMed  CAS  Google Scholar 

  24. Kelm, M., and J. Schrader. Control of coronary vascular tone by nitric oxide. Circ. Res. 66: 1561–1575, 1990.

    Article  PubMed  CAS  Google Scholar 

  25. Koller, A., and G. Kaley. Prostaglandins mediate arteriolar dilatation to increased blood flow velocity in skeletal muscle microcirculation. Circ. Res. 67: 529–534, 1990.

    Article  PubMed  CAS  Google Scholar 

  26. Kostic, M. M., and J. Schrader. Role of nitric oxide in reactive hyperaemia of the guinea pig heart. Circ. Res. 70: 208–212, 1992.

    Article  PubMed  CAS  Google Scholar 

  27. Kubo, S. H., T. S. Rector, A. J. Bank, R. E. Williams, and S. M. Heifetz. Endothelium-dependent vasodilatation is attentuated in patients with heart failure. Circ. 84: 1589 1596, 1991.

    Google Scholar 

  28. Kuo, L., M. J. Davis, and W. M. Chilian. Endothelium-dependent, flow-induced dilation of isolated coronary arterioles. Am. J. Physiol. 259 (Heart Circ. Physiol. 28 ): H1063 - H1070, 1990.

    Google Scholar 

  29. Kuo, L., W. M. Chilian, and M. J. Davis. Interaction of pressure-and flow-induced responses in porcine coronary resistance vessels. Am. J. Physiol. 258 (Heart Circ. Physiol. 27 ): H1706 - H1715, 1991.

    Google Scholar 

  30. Kuo, L., F. Arko, W. M. Chilian, and M. J. Davis. Nitrovasodilator-mediated flow-induced dilation in isolated porcine coronary venules. Faseb J. 6: A1752, 1992.

    Google Scholar 

  31. Kuo, L., M. J. Davis, M. S. Cannon, and W. M. Chilian. Pathophysiological consequences of atherosclerosis extend into the coronary microcirculation. Restoration of endothelium-dependent responses by L-arginine. Circ. Res. 70: 465–476, 1992.

    Article  PubMed  CAS  Google Scholar 

  32. Kuo, L., M. J. Davis, and W. M. Chilian. Response gradient for flow-induced dilation in the porcine coronary microvascular network. Faseb J. 6: A2078, 1992.

    Google Scholar 

  33. Kuo, L., M. J. Davis, and W. M. Chilian. Endothelial modulation of arteriolar tone. Nips 7: 5–9, 1992.

    Google Scholar 

  34. Lamontagne, D., U. PoHL, and R. Busse. NG-nitro-L-arginine antagonizes endothelium-dependent dilator responses by inhibiting endothelium-derived relaxing factor release in the isolated rabbit heart. Pflugers. Arch. 418: 266–270, 1991.

    Article  PubMed  CAS  Google Scholar 

  35. Lamontagne, D., U. Pohl, and R. Busse. Mechanical deformation of vessel wall and shear stress determine the basal release of endothelium-derived relaxing factor in the intact rabbit coronary vascular bed. Circ. Res. 70: 123–130, 1992.

    Article  PubMed  CAS  Google Scholar 

  36. Lamping, K. G., and W. P. Dole. Flow-mediated dilation attenuates constriction of large coronary arteries to serotonin. Am. J. Physiol. 255: (Heart Circ. Physiol. 24 ): H1317 - H1324, 1988.

    Google Scholar 

  37. Ludmer, P. L., A. P. Selwyn, T. L. Shook, R. R. Wayne, G. H. Mudge, R. W. Alexander, and P. Ganz. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N. Engl. J. Med. 315: 1046–1051, 1986.

    Article  PubMed  CAS  Google Scholar 

  38. Marcus, M. L., M. D. Winniford, and J. D. Rossen. Coronary reserve in the human coronary circulation. In Coronary Circulation. Basic Mechanism and Clinical Relevance, F. Kajiya, G. A. Klassen, J. A. E. Spaan, and J. I. E. Hoffman, eds. Tokyo: Springer-Verlag, 1990, p. 281.

    Chapter  Google Scholar 

  39. Ohyanagi, M., K. Nishigaki, and J. E. Faber. Interaction between microvascular a,- and az adrenoceptors and endothelium-derived relaxing factor. Circ. Res. 71: 188–200, 1992.

    Article  PubMed  CAS  Google Scholar 

  40. Palmer, R. M. J., D. S. Ashton, and S. Moncada. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333: 664–666, 1988.

    Article  PubMed  CAS  Google Scholar 

  41. Parent, R., R. Pare, and M. Lavallee. Contribution of nitric oxide to dilation of resistance coronary vessels in conscious dogs. Am. J. Physiol. 262: (Heart Circ. Physiol. 31 ): H10 - H16, 1992.

    Google Scholar 

  42. Quillen, J. E., F. W. Sellke, L. A. Brooks, and D. G. Harrison. Ischaemia-reperfusion impairs endothelium-dependent relaxation of coronary microvessels but does not affect large arteries. Circulation 82: 586–594, 1990.

    Article  PubMed  CAS  Google Scholar 

  43. Sellke, F. W., M. L. Armstrong, and D. G. Harrison. Endothelium-dependent vascular relaxation is abnormal in the coronary microcirculation of atherosclerotic primates. Circulation 81: 1586–1593, 1990.

    Article  PubMed  CAS  Google Scholar 

  44. Tesfamariam, B., and R. A. Cohen. Inhibition of adrenergic vasoconstriction by endothelial cell shear stress. Circ. Res. 63: 720–725, 1988.

    Article  PubMed  CAS  Google Scholar 

  45. Treasure, C. B., J. A. Vita, D. A. Cox, R. D. Fish, J. B. Gordon, G. H. Mudge, W. S. CoLucci, M. G. ST. John Sutton, A. P. Selwyn, R. W. Alexander, and P. Ganz. Endothelium-dependent dilation of the coronary microvasculature is impaired in dilated cardiomyopathy. Circulation 81: 772–779, 1990.

    Article  PubMed  CAS  Google Scholar 

  46. Woodman, O. L., and G. J. Dusting. N-nitro-L-arginine causes coronary vasoconstriction and inhibits endothelium-dependent vasodilation in anesthetized greyhounds. Brit. J. Pharmac. 103: 1407–1410, 1991.

    Article  CAS  Google Scholar 

  47. Yuan, Y., H. J. Granger, D. C. Zawieja, and W. M. Chilian. Flow modulates coronary venular permeability by a nitric oxide-related mechanism. Am. J. Physiol. 263 (Heart Circ. Physiol. 32 ): H641 - H646, 1992.

    Google Scholar 

  48. Zeiher, A. M., H. Drexler, H. Wollschlager, and H. Just. Endothelial dysfunction of the coronary microvasculature is associated with impaired coronary blood flow regulation in patients with early atherosclerosis. Circulation 84: 1984–1992, 1991.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 American Physiological Society

About this chapter

Cite this chapter

Jones, C.J.H., Kuo, L., Yuan, Y., Chilian, W.M., Davis, M.J. (1995). Coronary Microvascular Responses to Flow. In: Bevan, J.A., Kaley, G., Rubanyi, G.M. (eds) Flow-Dependent Regulation of Vascular Function. Clinical Physiology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7527-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7527-9_8

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7527-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics