Skip to main content

Flow-Induced Vasodilation of Large Arteries: From “Ascending Reflex” to EDRF

  • Chapter
Flow-Dependent Regulation of Vascular Function

Part of the book series: Clinical Physiology Series ((CLINPHY))

Abstract

The physical forces acting on the wall of blood vessels are shear stress and pressure. Shear stress acts in the same direction as flow, while pressure is exerted at right angles to the axis of flow. Both have an influence on vascular tone and also contribute to long-term structural and functional adaptation of the blood vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bevan, J. A., E. H. Joyce, and G. C. Wellman. Flow dependent dilation in a resistance artery still occurs after endothelium removal. Circ. Res. 63: 980–985, 1988.

    Article  PubMed  CAS  Google Scholar 

  2. Bortone, A. S., O. Hess, F. R. Eberli, H. Nonogi, A. P. Marolf, J. Grimm, and H. P. Krayenbuehl. Abnormal coronary vasomotion during exercise in patients with normal coronary arteries and reduced coronary flow reserve. Circulation 79: 516–527, 1989.

    Article  PubMed  CAS  Google Scholar 

  3. Caro, C. G., J. M. Fitzgerald, and R. C. Schroter. Atheroma and arterial wall shear: Observation, correlation and proposal of sheer dependent mass transfer mechanism for atherogenesis. Proc. R. Soc. Lond. 177: 109–159, 1971.

    Article  PubMed  CAS  Google Scholar 

  4. Davies, P. F., C. F. Dewey, JR., S. R. Bussolari, E. J. Gordon, and M. A. Gimbrone, JR.. Influence of hemodynamic forces on vascular endothelial function: In vitro studies of shear stress and pinocytosis in bovine aortic cells. J. Clin. Invest. 73: 1121–1129, 1984.

    Article  PubMed  CAS  Google Scholar 

  5. Deforrest, J. M., and T. M. Hollis. Shear stress and aortic histamine synthesis. Am. J. Physiol. 236 (Heart Circ. Physiol. 5 ): H701 — H705, 1978.

    Google Scholar 

  6. Dewey, C. F., M. A. Gimbrone, S. R. Bussolari, G. E. White, and P. F. Davies. Response of vascular endothelium to unsteady fluid shear stress in vitro. In G. Schettler, R. M. Nerem, H. Schmid-Schonbein, H. Morl, and C. Diehm, eds. Fluid dynamics as a localizing factor for atherosclerosis. Berlin, Heidelberg, New York, Tokyo: Springer, 1983, pp. 182–187.

    Chapter  Google Scholar 

  7. Diamond, S. L., S. G. Eskin, and L. V. Mcintire. Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells. Science 243: 1483–1485, 1989.

    Article  PubMed  CAS  Google Scholar 

  8. Fleisch, A.. Les reflexes nutritifs ascendants producteurs de dilation arterielle. Arch. Int. Physiol. 41: 141–161, 1935.

    Google Scholar 

  9. Frangos, J. A., S. F. Eskin, L. V. Mcintire, and C. L. Ives. Flow effects on prostacyclin production by cultured human endothelial cells. Science 227: 1477–1479, 1985.

    Article  PubMed  CAS  Google Scholar 

  10. Franke, R-P., M. Grafe, H. Schnittler, D. Seiffge, C. Mittermayer, and D. Drenckhahn. Induction of human vascular endothelial stress fibers by fluid shear stress. Nature 307: 648–649, 1984.

    Article  PubMed  CAS  Google Scholar 

  11. Gerova, M., J. Gero, E. Barta, S. Dolezel, V. Smiesko, and V. Levicky. Neurogenic and myogenic control of conduit coronary artery: a possible interference. Basic Res. Cardiol. 76: 503–507, 1980.

    Article  Google Scholar 

  12. Gerova, M., V. Smiesko, J. Gero, and E. Bartha. Dilation of conduit coronary artery induced by high blood flow. Physiol. Bohemoslov. 32: 55–63, 1983.

    PubMed  CAS  Google Scholar 

  13. Grabowski, E. F., E. A. Jaffe, and B. B. Weksler. Prostacyclin production by cultured endothelial cell monolayers exposed to step increases in shear stress. J. Lab. Clin. Med. 105: 36–43, 1985.

    PubMed  CAS  Google Scholar 

  14. Grabowski, E. F., G. F. Naus, and B. B. Weksler. Prostacyclin production in vitro by rabbit aortic endothelium: Correction for unstirred diffusional layers. Blood 66: 1047–1052, 1985.

    PubMed  CAS  Google Scholar 

  15. Hanet, C., E. Schroeder, X. Michel, J. Cosyns, R. Dion, R. Verhelst, and W. Wijns. Flow-induced vasomotor response to tachycardia of the human internal mammary artery and saphenous vein grafts late following bypass surgery. Circulation 84 (suppl. Iii): 268–274, 1991.

    Google Scholar 

  16. Hilton, S. M. A peripheral arterial conduction mechanism underlying dilation of the femoral artery and concerned in functional vasodilation in skeletal muscle. J. Physiol. 149: 93–111, 1959.

    PubMed  CAS  Google Scholar 

  17. Hintze, T. H., and S. F. Vatner. Reactive dilation of larger coronary arteries in conscious dogs. Circ. Res. 54: 50–57, 1984.

    Article  PubMed  CAS  Google Scholar 

  18. Holtz, J., R. Busse, and M. Giesler. Flow-dependent dilation of canine epicardial coronary arteries in vivo and in vitro: Mediated by the endothelium. Naunyn-Schmiedebergs Arch. Pharmacol. 322: R44, 1983.

    Google Scholar 

  19. Holtz, J., U. Forstermann, U. Pohl, M. Giesler, and E. Bassenge. Flow-dependent, endothelium mediated dilation of epicardial coronary arteries in conscious dogs: Effects of cyclooxygenase inhibition. J. Cardiovasc. Pharmacol. 6: 1161–1169, 1984.

    PubMed  CAS  Google Scholar 

  20. Holtz, J., M. Giesler, and E. Bassenge. Two dilatory mechanisms of anti-anginal drugs on epicardial coronary arteries in vivo: Indirect, flow-dependent, endothelium-mediated dilation and direct smooth muscle relaxation. Z. Kardiol. 72, Suppl. 3, 98–106, 1983.

    Google Scholar 

  21. Hull, S. S., L. Kaiser, M. D. Jaffe, and H. V. Sparks. Endothelium-dependent flow-induced dilation in canine femoral and saphenous arteries. Blood Vessels 23: 181–198, 1986.

    Google Scholar 

  22. Hutcheson, I. R., and T. M. Griffith. Release of endothelium-derived relaxing factor is modulated, both by the frequency and amplitude of pulsative flow. Am. J. Physiol. 261 (Heart Circ. Physiol. 30 ): H257 — H262, 1991.

    Google Scholar 

  23. Ingebrigtsen, R., and S. Leraand. Dilation of a medium-sized artery immediately after local changes of blood pressure and flow as measured by ultrasonic technique. Acta. Physiol. Scand. 79: 552–558, 1970.

    Article  PubMed  CAS  Google Scholar 

  24. Kaiser, L., S. S. Hull, and H. V. Sparks. Methylene blue and Etya block flow-dependent dilation in canine femoral artery. Am. J. Physiol. 250 (Heart Circ. Physiol. 19 ): H974 — H981, 1986.

    Google Scholar 

  25. Kalan, J. M., and W. C. Roberts. Comparison of morphologic changes and luminal sizes of saphenous vein and internal mammary artery after simultaneous implantation for coronary arterial bypass grafting. Am. J. Cardiol. 60: 193–196, 1987.

    Article  PubMed  CAS  Google Scholar 

  26. Kamiya, A., and T. Togawa. Adaptive regulation of wall sheer stress to flow change in the canine carotid artery. Am. J. Physiol. 239 (Heart Circ. Physiol. 8 ): H14 — H21, 1980.

    Google Scholar 

  27. Koller, A., and G. Kaley. Prostaglandins mediate arteriolar dilation to increased blood flow velocity in skeletal muscle microcirculation. Circ. Res. 67: 529–534, 1990.

    Article  PubMed  CAS  Google Scholar 

  28. Langille, B. L., and S. L. Adamson. Relationship between blood flow direction and endothelial cell orientation at arterial branch sites in rabbits and mice. Circ. Res. 48: 481–488, 1981.

    Article  PubMed  CAS  Google Scholar 

  29. Langille, B. L., and F. O’Donnel. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 231: 405–407, 1986.

    Article  PubMed  CAS  Google Scholar 

  30. Langille, G. I., M. P. Bendeck, and F. W. Keeley. Adaptations of carotid arteries of young and mature rabbits to reduced carotid blood flow. Am. J. Physiol. 256 (Heart Circ. Physiol. 25 ): H931 — H939, 1989.

    Google Scholar 

  31. Lie, M., O. M. Sejersted, and F. Kill. Local regulation of vascular cross section during changes in femoral arterial blood flow in dogs. Circ. Res. 27: 727–737, 1970.

    Article  PubMed  CAS  Google Scholar 

  32. Luscher, T. F., D. Diederich, R. Siebenmann, K. Lehmann, P. Stulz, L. Von Segesser, Z. Yang, M. Turina, E. Gradel, E. Weber, and F. R. Buhler. Difference between endothelium-dependent relaxation in arterial and in venous coronary bypass grafts. N. Engl. J. Med. 319: 462–467, 1988.

    Article  PubMed  CAS  Google Scholar 

  33. Mcintire, L. V, S. L. Diamond, J. D. Sharefkin, and S. G. Eskin. Regulation of gene expression in endothelial cells exposed shear stress: Implications for thrombosis atherosclerosis and intimal hyperplasia (abstract). First World Congress of Biomechanics, vol II, p. 314, 1990.

    Google Scholar 

  34. Montenegro, M. R., and D. A. Eggen. Topography of atherosclerosis in the coronary arteries. Lab. Invest. 18: 586–593, 1968.

    PubMed  CAS  Google Scholar 

  35. Nabel, E. G., A. P. Selwyn, and P. Ganz. Large coronary arteries in humans are responsive to changing blood flow: An endothelium-dependent mechanism that fails in patients with atherosclerosis. J. Am. Coll. Cardiol. 16: 349–356, 1990.

    Article  PubMed  CAS  Google Scholar 

  36. Nabel, E. G., A. P. Selwyn, and P. Ganz. Paradoxical narrowing of atherosclerotic coronary arteries induced by increases in heart rate. Circulation 81: 850–859, 1990.

    Article  PubMed  CAS  Google Scholar 

  37. Olesen, S.-P., D. E. Clapham, and P. F. Davies. Haemodynamic shear stress activates a K current in vascular endothelial cells. Nature 221: 168–170, 1988.

    Article  Google Scholar 

  38. PoHL, U., R. Busse, E. Kuon, and E. Bassenge. Pulsatile perfusion stimulates the release of endothelial autacoids. J. Appl. Cardiol. 1: 215–235, 1986.

    Google Scholar 

  39. Pohl, U., J. Holtz, R. Busse, and E. Bassenge. Dilation of large arteries in response to increased flow in vivo: an endothelium-dependent reaction. Circulation 70: 11–123, 1984.

    Google Scholar 

  40. PoHL, U., J. Holtz, R. Busse, and E. Bassenge. Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension 8: 37–44, 1986.

    Article  Google Scholar 

  41. Quadt, J. F. A., R. Voss, and F. Tenhoor. Prostacyclin production of the isolated pulsatingly perfused rat aorta. J. Pharmacol. Meth. 7: 263–270, 1982.

    Article  CAS  Google Scholar 

  42. Ralevic, V., P. Milner, O. Hudlicka, F. Kristek, and G. Burnstock. Substance P is released from the endothelium of normal and capsaicin-treated rat hind-limb vasculature, in vivo by increased flow. Circ. Res. 66: 1178–1183, 1990.

    Article  PubMed  CAS  Google Scholar 

  43. Rubanyi, G. M. Role of endothelium in flow-and pressure-induced vascular responses. In Resistance Arteries, W. Halpern, ed. New York: Perintology Press, pp. 25–33, 1988.

    Google Scholar 

  44. Rubanyi, G. M. Ionic mechanisms involved in the flow-and pressure-sensor function of the endothelium. Z. Kardiol. 80, Suppl. 7, 91–94, 1991.

    Google Scholar 

  45. Rubanyi, G. M., A. D. Freay, A. Johns, K. Kauser, and D. R. Harder. Mechanoreception by the endothelium: mediators and mechanisms of pressure-and flow-induced vascular response. Blood Vessels 27: 246–257, 1990.

    PubMed  CAS  Google Scholar 

  46. Rubanyi, G. M., A. D. Freay, A. Johns, and C. Van Breemen. Elevated transmural pressure inhibits the release of Edrf by mechanisms similar to high K and barium. In Resistance Arteries: Structure and Function, M. J. Mulvany, et al., eds. Amsterdam: Elsevier, pp. 226232, 1991.

    Google Scholar 

  47. Rubanyi, G. M., R. R. Lorenz, and P. M. Vanhoutte. Bioassay of endothelium-derived relaxing factor(s). Inactivation by catecholamines. Am. J. Physiol. 249 (Heart Circ. Physiol. 18 ): H95 — H101, 1985.

    Google Scholar 

  48. Rubanyi, G. M., C. J. Romero, and P. M. Vanhoutte. Flow-induced release of endothelium-derived relaxing factor. Am. J. Physiol. 250 (Heart Circ. Physiol. 19 ): H1145 — H1149, 1986.

    Google Scholar 

  49. Rubanyi, G. M., J. C. Romero, and P. M. Vanhoutte. Effects of steady and pulsatile flow on the production of prostacyclin and endothelium-derived relaxing factor in canine femoral arteries. Circulation 72: Iii - 265, 1985.

    Google Scholar 

  50. Schretzenmayr, A.. Uber kreislaufregulatorische Vorgange an den großen Arterien bei der Muskelarbeit. Pflugers Arch. Ges. Physiol. 232: 743–748, 1933.

    Article  Google Scholar 

  51. Smiesko, V., V. M. Khayutin, M. Gerova, J. Gero, and A. N. Rogoza. The sensitivity of the muscular type minor artery to the blood flow velocity (in Russian). Sechenov. Physiol. J. Ussr65: 291–298, 1979.

    Google Scholar 

  52. Smiesko, V., J. KoziK, and S. Dolezel. The control of arterial diameter by blood flow velocity is dependent upon intact endothelium. Physiol. Bohemoslov. 32: 558, 1983.

    Google Scholar 

  53. Smiesko, V., J. Kozik, and S. Dolezel. Role of endothelium in the control of arterial diameter by blood flow. Blood Vessels 22: 247–251, 1986.

    Google Scholar 

  54. Sparks, H. V., and S. S. Hull. Role of the endothelium in blood flow induced arterial vasodilation. Int. J. Microcirculation 3: 313, 1984.

    Google Scholar 

  55. Tesfamariam, B., and R. A. Cohen Inhibition of adrenergic vasoconstriction by endothelial cell shear stress. Circulation Res. 63: 720–725, 1988.

    Article  PubMed  CAS  Google Scholar 

  56. Van Grondelle, A., G. S. Worthen, D. Ellis, M. M. Mathias, R. C. Murphy, R. J. Striefl, H. J. T. Reeves, and N. F. Voelkes. Altering hydrodynamic variables influences Pgi2 production by isolated lungs and endothelial cells. J. Appl. Physiol. 57: 388–395, 1984.

    PubMed  Google Scholar 

  57. Vanhoutte, P. M., G. M. Rubanyi, V. M. Miller, and D. S. Houston. Modulation of vascular smooth muscle contraction by the endothelium. Ann. Reu. Physiol. 48: 307–320, 1986.

    Article  CAS  Google Scholar 

  58. Yoshizumi, M., H. Kurihara, T. Sugiyma, F. Takaku, M. Yanagisawa, T. Masaki, and Y. Yasaki. Hemodynamic shear stress stimulates endothelium production by cultured endothelial cells. Biochem. Biophys. Res. Commun. 161: 859–864, 1989.

    Article  PubMed  CAS  Google Scholar 

  59. Young, M. A., and S. F. Vatner. Blood flow and endothelium-mediated vasomotion in iliac arteries in conscious dogs. Circ. Res. 61 (suppl II): II-99—II-103, 1987.

    Google Scholar 

  60. Zarins, C. K., M. A. Zatina, D. P. Giddens, D. N. Ku, and S. Glagov. Sheer stress regulation of artery lumen diameter in experimental atherogenesis. J. Vasc. Surg. 5: 413–420, 1987.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 American Physiological Society

About this chapter

Cite this chapter

Rubanyi, G.M. (1995). Flow-Induced Vasodilation of Large Arteries: From “Ascending Reflex” to EDRF. In: Bevan, J.A., Kaley, G., Rubanyi, G.M. (eds) Flow-Dependent Regulation of Vascular Function. Clinical Physiology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7527-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7527-9_6

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7527-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics