Skip to main content

Flow Effects on Endothelial Cell Signal Transduction, Function, and Mediator Release

  • Chapter
Flow-Dependent Regulation of Vascular Function

Part of the book series: Clinical Physiology Series ((CLINPHY))

  • 334 Accesses

Abstract

The circulation in animals has evolved to reduce the diffusional distance between the nutrient supply and the cells constituting the organism. Depending on environmental changes and the activity performed by the animal, the metabolic demand by the different tissues can vary significantly. For a long time, it was generally accepted that there were two different control mechanisms for controlling blood flow within the circulation in animals: a systemic control by the central nervous system via the sympathetic neuronal network and by hormones from the adrenal gland, and a local control mediated by the metabolism of the organs. The role of flow as a potential factor for local regulation of vascular function has been recognized more recently. There is now considerable evidence that the size of blood vessels and vascular tone are dependent on the local level of wall shear stress in the vasculature, and that endothelial cells mediate the response of vessels to changes in flow conditions (74, 89, 98, 91, 125, 149, 150, 173, 183). In other words, endothelial cells, which are in direct contact with the flowing blood, act as flow sensors and generate signals to trigger the appropriate response by the vessels. Given the large amount of data showing that various agonists stimulate endothelial cells to secrete various vasoactive and mitogenic substances (for review, see [57]), it appears likely that flow-induced effects on vessel size and tone, which are generally effected by the underlying smooth muscle cells, may also be mediated by substances released by the endothelium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ando, J., T. Komatsuda, and A. Kamiya. Cytoplasmic calcium response to fluid shear stress in cultured vascular endothelial cells. In Vitro Cell. Dev. Biol. 24: 871–877, 1988.

    Article  PubMed  CAS  Google Scholar 

  2. Ando, J., H. Nomura, and A. Kamiya. The effect of fluid shear stress on the migration and proliferation of cultured endothelial cells. Microvasc. Res. 33: 62–70, 1987.

    Article  PubMed  CAS  Google Scholar 

  3. Ando, J., A. Ohtsuka, R. Korenaga, and A. Kamiya. Effect of extracellular Atp level on flow-induced Ca’ * response in cultured vascular endothelial cells. Biochem. Biophys. Res. Commun. 179: 1192–1199, 1991.

    Article  PubMed  CAS  Google Scholar 

  4. Berk, B. C., R. W. Alexander, T. A. Brock, M. A. Gimbrone, JR., and R. C. Webb. Vasoconstriction: A new activity for platelet-derived growth factor. Science 232: 87–90, 1986.

    Article  PubMed  CAS  Google Scholar 

  5. Berridge, M. J., and R. F. Irvine. Inositol phosphates and cell signaling. Nature 341: 197205, 1989.

    Google Scholar 

  6. Berthiaume, F., and J. A. Frangos. Effects of flow on anchorage-dependent mammalian cells—secreted products. In Physical Forces and the Mammalian Cell, J. A. Frangos, ed. New York: Academic Press, 1993, pp. 139–192.

    Chapter  Google Scholar 

  7. Berthiaume, F., and J. A. Frangos. Flow-induced prostacyclin production is mediated by a pertussis toxin-sensitive G protein. Febs Lett. 308: 277–279, 1992.

    Article  PubMed  CAS  Google Scholar 

  8. Berthiaume, F., and J. F. Frangos. Fluid flow increases membrane permeability to Merocyanine 540 in human endothelial cells. Biochim. Biophys. Acta. 1191: 209–218, 1994.

    Article  PubMed  CAS  Google Scholar 

  9. Betsholtz, C., A. Johnsson, C.-H. Heldin, B. Westermark, P. Lind, M. S. Urdea, R. Eddy, T. B. Shows, K. Philpott, A. L. Mellor, T. J. Knott, and J. Scott. cDna sequence and chromosomal localization of human platelet-derived growth factor A-chain and its expression in tumor cell lines. Nature 320: 695–699, 1986.

    Article  PubMed  CAS  Google Scholar 

  10. Bhagyalaksmi, A., F. Berthiaume, K. M. Reich, and J. A. Frangos. Fluid shear stress stimulates membrane phospholipid metabolism in cultured human endothelial cells. J. Vasc. Biol. 1992, 29: 443–449.

    Article  Google Scholar 

  11. Bhagyalaksmi, A., and J. A. Frangos. Mechanism of shear-induced prostacyclin production in endothelial cells. Biochem. Biophys. Res. Commun. 158: 31–37, 1989.

    Article  Google Scholar 

  12. Bodin, P., D. Bailey, and G. Burnstock. Increased flow-induced Atp release from isolated vascular endothelial cells but not smooth muscle cells. Br. J. Pharmacol. 103: 1203–1205, 1991.

    Article  PubMed  CAS  Google Scholar 

  13. Bodin, P., P. Milner, R. Winter, and G. Burnstock. Chronic hypoxia changes the ratio of endothelin to Atp release from rat aortic endothelial cells exposed to high flow. Proc. R. Soc. Lond. B 147: 131–135, 1992.

    Article  Google Scholar 

  14. Boje, K. M., and H. L. Fung. Endothelial nitric oxide generating enzyme(s) in the bovine aorta: subcellular localization and metabolic characterization. J. Pharmacol. Exp. Therap. 253: 20–26, 1990.

    CAS  Google Scholar 

  15. Boulanger, C., and T. F. Luscher. Release of endothelin from the porcine aorta. Inhibition by endothelium-derived nitric oxide. J. Clin. Invest. 85: 587–590, 1990.

    Article  PubMed  CAS  Google Scholar 

  16. Boulanger, C., V. B. Schini, S. Moncada, and P. M. Vanhoutte. Stimulation of cyclic Gmp production in cultured endothelial cells of the pig by bradykinin, adenosine diphosphate, calcium ionophore A23187 and nitric oxide. Br. J. Pharmacol. 101: 152–156, 1990.

    Article  PubMed  CAS  Google Scholar 

  17. Bowersox, J. C., and N. Sorgente. Differential effects of soluble and immobilized fibronectins on aortic endothelial cell proliferation and attachment. In Vitro Cell. Dev. Biol. 23: 759–764, 1987.

    Article  PubMed  CAS  Google Scholar 

  18. Brock, T. A., P. A. Dennis, K. K. Griendling, T. S. Diehl, and P. F. Davies. Gtp-yS loading of endothelial cells stimulates phospholipase C and uncouples Atp receptors. Am. J. Physiol. 255 (Cell Physiol 24 ): C667 — C673, 1988.

    Google Scholar 

  19. Buga, G. M., M. E. Gold, J. M. Fukuto, and L. J. Ignarro. Shear stress-induced release of nitric oxide from endothelial cells grown on beads. Hypertension 17: 187–193, 1991.

    Article  PubMed  CAS  Google Scholar 

  20. Bunting, S., R. J. Gryglewski, S. Moncada, and J. R. Vane. Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac arteries and inhibits platelet aggregation. Prostaglandins 12: 897913, 1976.

    Google Scholar 

  21. Busse R., and A. Mulsch. Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin. Febs Lett. 265: 133–136, 1990.

    Article  PubMed  CAS  Google Scholar 

  22. Cagliero, E., T. Roth, S. Roy, M. Maiello, and M. Lorenzi. Expression of genes related to the extracellular matrix in human endothelial cells. Differential modulation by elevated glucose concentrations, phorbol esters, and cAmp. J. Biol. Chem. 266: 1424414250, 1991.

    Google Scholar 

  23. Caro, C. G., and R. M. Nerem. Transport of“C-4-cholesterol between serum and wall in the perfused dog common carotid artery. Circ. Res. 32: 187–205, 1973.

    Article  PubMed  CAS  Google Scholar 

  24. Caro, C. G., J. M. Fitz-Gerald, and R. C. Schroter. Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc. Roy. Soc. Lond. B. 177: 109–159, 1971.

    Article  CAS  Google Scholar 

  25. Carter, T. D., T. J. Hallam, and J. D. Pearson. Protein kinase C activation alters the sensitivity of agonist-stimulated endothelial-cell prostacyclin production to intracellular Ca“. Biochem. J. 262: 431–437, 1989.

    PubMed  CAS  Google Scholar 

  26. Carter, T. D., J. S. Newton, R. Jacob, and J. D. Pearson. Homologous desensitization of Atp-mediated elevations in cytoplasmic calcium and prostacyclin release in human endothelial cells does not involve protein kinase C. Biochem. J. 272: 217–221, 1990.

    PubMed  CAS  Google Scholar 

  27. Chen, H. I., M. W. Chapleau, T. S. Mcdowell, and F. M. Abboud. Prostaglandins contribute to activation of baroreceptors in rabbits. Possible paracrine influence of endothelium. Circ. Res. 67: 1394–1404, 1990.

    Article  PubMed  CAS  Google Scholar 

  28. Cooke, J. P., E. Rossitch, JR., N. A. Andon, J. Loscalzo, and V. J. Dzau. Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator. J. Clin. Invest. 88: 1663–1671, 1991.

    Article  PubMed  CAS  Google Scholar 

  29. Cooke, J. P., J. Stamler, N. Andon, P. F. Davies, G. Mckinley, and J. Loscalzo. Flow stimulates endothelial cells to release a nitrovasodilator that is potentiated by a reduced thiol. Am. J. Physiol. 259 (Heart Circ. Physiol. 28 ): H804 — H812, 1990.

    Google Scholar 

  30. Cooke, J. P., J. Stamler, N. A. Andon, P. F. Davies, M. E. Mendelsohn, and T. Loscalzo. Flow-mediated endothelium-dependent effects on platelet and vascular reactivity. In Endothelium-Derived Relaxing Factors, G. M. Rubanyi and P. M. Vanhoutte, eds., Basel: Karger, 1990, pp. 244–253.

    Google Scholar 

  31. Davies, P. F., C. F. Dewey, JR., S. R. Bussolari, E. J. Gordon, and M. A. Gimbrone, JR. Influence of hemodynamic forces on vascular endothelial cell function. In vitro studies of shear stress and pinocytosis in bovine aortic cells. J. Clin. Invest. 73: 1121–1129, 1984.

    Google Scholar 

  32. DE Mey, J. G., and P. M. Vanhoutte. Role of the intima in cholinergic and purinergic relaxation of isolated canine femoral arteries. J. Physiol. London 316: 347–355, 1981.

    PubMed  Google Scholar 

  33. DE Nucci, G., R. J. Gryglewski, T. D. Warner, and J. R. Vane. Receptor-mediated release of endothelium-derived relaxing factor and prostacyclin from bovine aortic endothelial cells is coupled. Proc. Natl. Acad. Sci. U.S.A. 85: 2334–2338, 1988.

    Article  PubMed  Google Scholar 

  34. Demolle, D., and J. M. Boeynaems. Role of protein kinase C in the control of vascular prostacyclin: study of phorbol ester effects in bovine aortic endothelium and smooth muscle. Prostaglandins 35: 243–257, 1988.

    PubMed  CAS  Google Scholar 

  35. Dewey, C. F., JR. Effects of fluid flow on living vascular cells. J. Biomech. Eng. 106: 3135, 1984.

    Article  Google Scholar 

  36. Diamond, S. L., S. G. Eskin, and L. V. Mcintire. Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells. Science 243: 1483–1485, 1989.

    Article  PubMed  CAS  Google Scholar 

  37. Diamond, S. L., J. B. Sharefkin, C. Dieffenbach, K. Frasier-Scott, L. V. Mcintire, and S. G. Eskin. Tissue plasminogen activator messenger Rna levels increase in cultured human endothelial cells exposed to laminar shear stress. J. Cell. Physiol. 143: 364–371, 1990.

    Article  PubMed  CAS  Google Scholar 

  38. Dominiczak, A. F., J. Quilley, and D. F. Bohr. Contraction and relaxation of rat aorta in response to Atp. Am. J. Physiol. 261: H243 — H251, 1991.

    CAS  Google Scholar 

  39. Dull, R., and P. F. Davies. Flow modulation of agonist (Atp)-response (Ca’) coupling in vascular endothelial cells. Am. J. Physiol. 261: H149 — H154, 1991.

    CAS  Google Scholar 

  40. Eriksson, C. Streaming potentials and other water-dependent effects in mineralized tissues. Ann. N. Y. Acad. Sci. 283: 321–338, 1974.

    Article  Google Scholar 

  41. Feletou, M., and P. M. Vanhoutte. Endothelium-dependent hyperpolarization of canine coronary smooth muscle. Br. J. Pharmacol. 93: 515–524, 1988.

    Article  PubMed  CAS  Google Scholar 

  42. Flavahan, N. A., and P. M. Vanhoutte. G-proteins and endothelial responses. Blood Vessels 27: 218–229, 1990.

    PubMed  CAS  Google Scholar 

  43. Forstermann, U., J. S. Pollock, H. H. H. W. Schmidt, M. Heller, and F. Murad. Calmodulin-dependent endothelium-derived relaxing factor/nitric oxide synthase activity is present in the particulate and cytosolic fractions of bovine aortic endothelial cells. Proc. Natl. Acad. Sci. U. S. A. 88: 1788–1792, 1991.

    Article  PubMed  CAS  Google Scholar 

  44. Frangos, J. A., S. G. Eskin, L. V. Mcintire, and C. L. Ives. Flow effects on prostacyclin production in cultured human endothelial cells. Science 227: 1477–1479, 1985.

    Article  PubMed  CAS  Google Scholar 

  45. Frangos, J. A., L. V. Mcintire, and S. G. Eskin. Shear stress induced stimulation of mammalian cell metabolism. Biotechnol. Bioeng. 32: 1053–1060, 1988.

    Article  PubMed  CAS  Google Scholar 

  46. Franke, R. P., M. Grafe, and H. Schnittler. Induction of human vascular endothelial stress fibres by fluid shear stress. Nature 307: 648–649, 1984.

    Article  PubMed  CAS  Google Scholar 

  47. Friedman, M. H., O. J. Deters, C. B. Bargeron, G. M. Hutchins, and F. F. Mark. Shear-dependent thickening of the human arterial intima. Atherosclerosis 60: 161–171, 1986.

    Article  PubMed  CAS  Google Scholar 

  48. Fuji, S., C. L. Lucore, W. E. Hopkins, J. J. Billadello, and B. E. Sobel. Induction of synthesis of plasminogen activator inhibitor type-1 by tissue-type plasminogen activator in human hepatic and endothelial cells. Thromb. Haemostas. 64: 412–419, 1990.

    Google Scholar 

  49. Garcia, J. G. N., A. Siflinger-Birnboim, R. Bizios, P. J. Del Vecchio, J. W. Fenton, II, and A. B. Malik. Thrombin-induced increase in albumin permeability across the endothelium. J. Cell. Physiol. 128: 96–104, 1986.

    CAS  Google Scholar 

  50. Garg, U. C., and A. Hassid. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured vascular smooth muscles. J. Clin. Invest. 83: 1774–1777, 1989.

    Article  PubMed  CAS  Google Scholar 

  51. Grabowski, E. F., E. A. Jaffe, and B. B. Weksler. Prostacyclin production by cultured endothelial cell monolayers exposed to step increases in shear stress. J. Lab. Clin. Med. 103: 36–43, 1985.

    Google Scholar 

  52. Griffith, T. M., D. H. Edwards, R. L. I. Davies, T. J. Harrison, and K. T. Evans. Edrf coordinates the behaviour of vascular resistance vessels. Nature 329: 442–445, 1987.

    Article  PubMed  CAS  Google Scholar 

  53. Grimm, J., R. Keller, and P. G. DE Groot. Laminar flow induces cell polarity and leads to rearrangement of proteoglycan metabolism in endothelial cells. Thromb. Haemostas. 60: 437–441, 1988.

    CAS  Google Scholar 

  54. Gross, S. S., E. A. Jaffe, R. Levi, and R. G. Kilbourn. Cytokine-activated endothelial cells express an isotype of nitric oxide synthase which is tetrahydrobiopterin-dependent, calmodulin-independent and inhibited by arginine analogs with a rank-order of potency characteristic of activated macrophages. Biochem. Biophys. Res. Commun. 178: 823–829, 1991.

    Article  PubMed  CAS  Google Scholar 

  55. Gruetter, C. A., D. Y. Gruetter, J. E. Lyon, P. J. Kadowitz, and L. J. Ignarro. Relationship between cyclic guanosine monophosphate formation and relaxation of coronary arterial smooth muscle by glyceryl trinitrate, nitroprusside, nitrite, and nitrite oxide: effects of methylene blue and methemoglobin. J. Pharmacol. Exp. Ther. 219: 181–186, 1981.

    PubMed  CAS  Google Scholar 

  56. Grulich-Genn, J., and G. Muller-Berghaus. Regulation of endothelial tissue plasminogen activator and plasminogen activator inhibitor type 1 synthesis by diacylglycerol, phorbol ester, and thrombin. Blut 61: 38–44, 1990.

    Article  Google Scholar 

  57. Gryglewski, R. J., R. M. Botting, and J. R. Vane. Mediators produced by the endothelial cell. Hypertension 12: 530–548, 1988.

    Article  PubMed  CAS  Google Scholar 

  58. Gryglewski, R. J., and R. M. J. Palmer. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320: 454–456, 1986.

    Article  PubMed  CAS  Google Scholar 

  59. Gupte, A., and J. A. Frangos. Effects of flow on the synthesis and release of fibronectin by endothelial cells. In VItro Cell. Deu. Biol. 26: 57–60, 1990.

    Article  CAS  Google Scholar 

  60. Guyton, J. R., and C. J. Hartley. Flow restriction of one carotid artery in juvenile rats inhibits growth of arterial diameter. Am. J. Physiol. 248 (Heart Circ. Physiol. 17 ): H540 - H546, 1985.

    Google Scholar 

  61. Haddy, F. J., and J. C. Scott. Metabolically linked vasoactive chemicals in local regulation of blood flow. Physiol. Reu. 48: 688–707, 1968.

    CAS  Google Scholar 

  62. Hallam, T. J., J. D. Pearson, and L. A. Needham. Thrombin-stimulated elevation of human endothelial-cell cytoplasmic free calcium concentration causes prostacyclin production. Biochem. J. 251: 243–249, 1988.

    PubMed  CAS  Google Scholar 

  63. Hanss, H., and D. Collen. Secretion of tissue-type plasminogen activator and plasmogen activator inhibitor by cultured human endothelial cells: modulation by thrombin, endotoxin, and histamine. J. Lab. Clin. Med. 109: 97–104, 1987.

    PubMed  CAS  Google Scholar 

  64. Hirata, M., Y. Takai, Y. Fukuda, and F. Marumo. Endothelin is a potent mitogen for rat vascular smooth muscle cells. Atherosclerosis 265: 1268–1273, 1989.

    Google Scholar 

  65. HoLlis, T. M., and R. A. Ferrone. Effects of shearing stress on aortic histamine synthesis. Exp. Mol. Pathol. 20: 1–10, 1974.

    Article  Google Scholar 

  66. Hollis, T. M., and L. A. Rosen. Histidine decarboxylase activity of bovine aortic endothelium and intima-media. Proc. Soc. Exp. Biol. Med. 141: 978–981, 1972.

    PubMed  CAS  Google Scholar 

  67. Holtz, J., U. Forstermann, U. Pohl, M. Giesler, and E. Bassenge. Flow-dependent endothelium-mediated dilatation of epicardial coronary arteries in conscious dogs: effects of cyclooxygenase inhibition. J. Cardiouasc. Pharmacol. 6: 1161–1169, 1984.

    CAS  Google Scholar 

  68. Hong, S. L., and D. Deykin. Activation of phospholipases AZ and C in pig aortic endothelial cells synthesizing prostacyclin. J. Biol. Chem. 257: 7151–7154, 1982.

    PubMed  CAS  Google Scholar 

  69. Hong, S. L., N. J. Mclaughlin, C. Y. Tzeng, and G. Patton. Prostaglandin synthesis and deacylation of phospholipids in human endothelial cells: comparison of thrombin, histamine and ionophore A23187. Thromb. Res. 38: 1–10, 1985.

    Article  PubMed  CAS  Google Scholar 

  70. Horwitz, A., K. Duggan, C. Buck, M. C. Beckerle, and K. Burridge. Interaction of plasma membrane fibronectin receptor with talin-a transmembrane linkage. Nature 320: 531–533, 1986.

    Article  PubMed  CAS  Google Scholar 

  71. Hsieh, H.-J., N.-Q. LI, and J. A. Frangos. Shear stress increases endothelial platelet-derived growth factor mRna levels. Am. J. Physiol. 260: H642 - H646, 1991.

    PubMed  CAS  Google Scholar 

  72. Hsieh, H.-J., N.-Q. Li, and J. A. Frangos. Shear-induced platelet-derived growth factor gene expression in human endothelial cells is mediated by protein kinase C. J. Cell. Physiol. 150: 552–558, 1992.

    Article  PubMed  CAS  Google Scholar 

  73. Hsieh, H.-J., N.-Q. Li, and J. A. Frangos. Pulsatile and steady flow induces c-fos expression in human endothelial cells. J. Cell Physiol. 154: 143–151, 1993.

    Article  PubMed  CAS  Google Scholar 

  74. Hull, S. S., L. Kaiser, M. D. Jaffe, and H. V. Sparks. Endothelium-dependent flow-induced dilation of canine femoral and saphenous arteries. Blood Vessels 23: 183–198, 1986.

    PubMed  Google Scholar 

  75. Hynes, R. Molecular biology of fibronectin. Annu. Rev. Cell Biol. 1: 67–90, 1985.

    Article  PubMed  CAS  Google Scholar 

  76. Ignarro, L. J. Nitric oxide. A novel signal transduction mechanism for transcellular communication. Hypertension 16: 477–483, 1990.

    Article  PubMed  CAS  Google Scholar 

  77. Ingber, D., S. Karp, G. Plopper, L. Hansen, and D. Mooney. Mechanochemical transduction across extracellular matrix and through the cytoskeleton. In Physical Forces and the Mammalian Cell, J. A. Frangos, ed. New York: Academic Press, 1993, pp. 61–79.

    Chapter  Google Scholar 

  78. Inyang, A. L., and G. Tobelem. Tissue-plasminogen activator stimulates endothelial cell migration in wound assays. Biochem. Biophys. Res. Commun. 171: 1326–1332, 1990.

    Article  PubMed  CAS  Google Scholar 

  79. Irvine, R. F. How is the level of free arachidonic acid controlled in mammalian cells. Biochem. J. 204: 3–16, 1982.

    PubMed  CAS  Google Scholar 

  80. Jaffe, E. A., J. Grulich, B. B. Weksler, G. Hampel, and K. Watanabe. Correlation between thrombin-induced prostacyclin production and inositol trisphosphate and cytosolic free calcium levels in cultured human endothelial cells. J. Biol. Chem. 262: 8557–8565, 1987.

    PubMed  CAS  Google Scholar 

  81. Jirik, F. R., T. J. Podor, T. Hirano, T. Kishimoto, D. J. Loskutoff, D. A. Carson, and M. Lotz. Bacterial lipolysaccharide and inflammatory mediators augment IL-6 secretion by human endothelial cells. J. Immunol. 142: 144–147, 1989.

    PubMed  CAS  Google Scholar 

  82. Jo, H., J. M. Tarbell, T. M. HoLlis, and R. O. Dull. Endothelial albumin permeability is shear dependent, time dependent, and reversible. Am. J. Physiol. 260: H1992–H1996, 1991.

    PubMed  CAS  Google Scholar 

  83. Johnson, G. S., M. A. Turrentine, and P. W. Sculley. Factor Viii coagulant activity and von Willebrand factor in post-exercise plasma from standard-bred horses. Thromb. Res. 42: 419–423, 1986.

    Article  PubMed  CAS  Google Scholar 

  84. Kamiya, A., and T. Togawa. Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am. J. Physiol. 239 (Heart Circ. Physiol. 8 ): H14–H21, 1980.

    Google Scholar 

  85. Kaya, H., G. M. Patton, and S. L. Hong. Bradykinin-induced activation of phospholipase A2 is independent of the activation of polyphosphoinositide-hydrolyzing phospholipase C. J. Biol. Chem. 264: 4972–4977, 1989.

    PubMed  CAS  Google Scholar 

  86. Keller, R., B. Pratt, J. E. Silbert, H. Furthmayr, and J. A. Madri. Aortic endothelial protoheparan sulfates II: Modulation by extracellular matrix. Am. J. Pathol. 128: 299306, 1987.

    Google Scholar 

  87. Keller, R., J. E. Silbert, H. Furthmayr, and J. A. Madri. Aortic endothelial protoheparan sulflates I: Isolation and characterization of plasma membrane and extracellular species. Am. J. Pathol. 128: 286–298, 1987.

    PubMed  CAS  Google Scholar 

  88. Kent, R. S., S. L. Diedrich, and J. Whorton. Regulation of vascular prostaglandin synthesis by metabolites of arachidonic acid in perfused rabbit aorta. J. Clin. Invest. 72: 455465, 1983.

    Google Scholar 

  89. Koller, A., and G. Kaley. Endothelium regulates skeletal muscle microcirculation by a blood flow velocity-sensing mechanism. Am. J. Physiol. 258 (Heart Circ. Physiol. 27 ): H916–H920, 1990.

    Google Scholar 

  90. Koller, A., and G. Kaley. Prostaglandins mediate arteriolar dilation to increased blood flow velocity in skeletal muscle microcirculation. Circ. Res. 67: 529–534, 1990.

    Article  PubMed  CAS  Google Scholar 

  91. Koller, A., and G. Kaley. Endothelial regulation of wall shear stress and blood flow in skeletal muscle microcirculation. Am. J.Physiol. 260 (Heart Circ. Physiol. 29 ): H862–H868, 1991.

    Google Scholar 

  92. Komori, K., R. R. Lorenz, and P. M. Vanhoutte. Nitric oxide, ACh, and electrical and mechanical properties of canine arterial smooth muscle. Am. J. Physiol. 255 (Heart Circ. Physiol. 24 ): H207–H212, 1988.

    Google Scholar 

  93. Komuro, I., H. Kurihara, T. Sugiyama, M. Yoshizumi, F. Takaku, and Y. Yazaki. Endothelin stimulates c-fos and c-myc expression and proliferation of vascular smooth muscle cells. Febs Lett. 238: 249–252, 1988.

    Article  PubMed  CAS  Google Scholar 

  94. KootsTra, T., J. Van Den Berg, A. Tons, G. Platenburg, D. C. Rijken, and E. Van Den Berg. Butyrate stimulates tissue-type plasminogen activator synthesis in cultured human endothelial cells. Biochem. J. 247: 605–612, 1987.

    Google Scholar 

  95. Kuchan, M. J., and J. A. Frangos. Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am. J. Physiol. 266: C628–636, 1994.

    CAS  Google Scholar 

  96. Kuchan, M. J., and J. A. Frangos. Shear stress regulates endothelin-1 release via protein kinase C and cGmp in cultured endothelial cells. Am. J. Physiol. 264: H150–H156, 1993.

    PubMed  CAS  Google Scholar 

  97. Kuo, L., M. J. Davis, and W. M. Chilian. Endothelium-dependent, flow-induced dilation of isolated coronary arterioles. Am. J. Physiol. 260: H779–H784, 1990.

    Google Scholar 

  98. Langille, B. L., and F. O’Donnell. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 231: 405–407, 1986.

    Article  PubMed  CAS  Google Scholar 

  99. Lansman, J. B., T. J. Hallam, and T. J. Rink. Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? Nature 325: 811–813, 1987.

    Article  PubMed  CAS  Google Scholar 

  100. Larochelle, W. J., N. Giese, K. C. Robbins, and S. A. Aaronson. Variant Pdgf ligands and receptors—structure-function relationships. News Phys. Sci. 6: 56–60, 1991.

    CAS  Google Scholar 

  101. Lee, M.-E., K. D. Bloch, J. A. Clifford, and T. Quertermous. Functional analysis of the endothelin-1 gene promoter. Evidence for an endothelial cell-specific cis-acting sequence. J. Biol. Chem. 265: 10446–10450, 1990.

    PubMed  CAS  Google Scholar 

  102. Lee, M.-E., D. H. Temizer, J. A. Clifford, and T. Quertermous. Cloning of the Gatabinding protein that regulates endothelin-1 gene expression in endothelial cells. J. Biol. Chem. 266: 16188–16192, 1991.

    PubMed  CAS  Google Scholar 

  103. Levesque, M. J., R. M. Nerem, and E. A. Sprague. Vascular endothelial cell proliferation in culture and the influence of flow. Biomaterials 11: 702–707, 1990.

    Article  PubMed  CAS  Google Scholar 

  104. Levin, E. G., and L. Santell. Stimulation and desensitization of tissue plasminogen activator release from human endothelial cells. J. Biol. Chem. 263: 9360–9365, 1980.

    Google Scholar 

  105. Loskutoff, D. J., T. NY, M. Sawdey, and D. Lawrence. Fibrinolytic system of cultured endothelial cells: regulation by plasminogen activator inhibitor. J. Cell. Biochem. 32: 273–280, 1986.

    Article  PubMed  CAS  Google Scholar 

  106. Luckhoff, A., and R. Busse. Increased free calcium in endothelial cells under stimulation with adenine nucleotides. J. Cell. Physiol. 126: 414–420, 1986.

    Article  PubMed  CAS  Google Scholar 

  107. Luckhoff, A., and R. Busse. Calcium influx into endothelial cells and formation of endothelium-derived relaxing factor is controlled by the membrane potential. Pflugers Arch. 416: 305–311, 1990.

    Article  PubMed  CAS  Google Scholar 

  108. Luckhoff, A., and R. Busse. Activators of potasasium channels enhance calcium influx into endothelial cells as a consequence of potassium currents. Naunyn-Schmiedeberg’s Arch. Pharmacol. 342: 94–99, 1990.

    PubMed  CAS  Google Scholar 

  109. Luckhoff, A., A. MuLsch, and R. Busse. cAmp attenuates autacoid release from endothelial cells: Relation to internal calcium. Am. J. Physiol. 258 (Heart Circ. Physiol. 27 ): H960 - H966, 1990.

    Google Scholar 

  110. Lynch, J. J., T. J. Ferro, F. A. Blumenstock, A. M. Brockenauer, and A. B. Malik. Increased endothelial albumin permeability mediated by protein kinase C activation. J. Clin. Invest. 85: 1991–1998, 1990.

    Article  PubMed  CAS  Google Scholar 

  111. Martin, T. W. Formation of diacylglycerol by a phospholipase D-phosphatidate phosphatase pathway specific for phosphatidylcholine in endothelial cells. Biochim. Biophys. Acta. 962: 282–296, 1988.

    Article  PubMed  CAS  Google Scholar 

  112. Martin, T. W., D. R. Feldman, and K. C. Michaelis. Phosphatidylcholine hydrolysis stimulated by phorbol myristate acetate is mediated principally by phospholipase D in endothelial cells. Biochim. Biophys. Acta. 1053: 162–172, 1990.

    Article  PubMed  CAS  Google Scholar 

  113. Martin, T. W., and K. C. Michaelis. Bradykinin stimulates phosphodiesteratic cleavage of phosphatidylcholine in cultured endothelial cells. Biochem. Biophys. Res. Commun. 157: 1271–1279, 1988.

    Article  PubMed  CAS  Google Scholar 

  114. Martin, T. W., and K. C. Michaelis. P2-purinergic agonists stimulate phosphodiesteratic cleavage of phosphatidylcholine in endothelial cells. Evidence for activation of phospholipase D. J. Biol. Chem. 264: 8847–8856, 1989.

    PubMed  CAS  Google Scholar 

  115. Martin, T. W., and R. B. Wysolmerski. Cap ` -dependent and Ca“ -independent pathways for release of arachidonic acid from phosphatidylinositol in endothelial cells. J. Biol. Chem. 262: 13086–13092, 1987.

    PubMed  CAS  Google Scholar 

  116. Martin, T. W., R. B. Wysolmerski, and D. Lagunoff. Phosphatidylcholine metabolism in endothelial cells: Evidence for phospholipase A and a novel Cal’-independent phospholipase C. Biochim. Biophys. Acta. 917: 296–307, 1987.

    Article  PubMed  CAS  Google Scholar 

  117. Martin, T. W., and K. Michaelis. Ca“ -dependent synthesis of prostaglandin Iz and mobilization of arachidonic acid from phospholipids in cultured endothelial cells permeabilized with saponin. Biochim. Biophys. Acta. 1054: 159–168, 1990.

    Article  PubMed  CAS  Google Scholar 

  118. Martin, W., D. G. White, and A. H. Henderson. Endothelium-derived relaxing factor and atriopeptin II elevate cyclic Gmp levels in pig aortic endothelial cells. Br. J. Pharmacol. 93: 229–239, 1988.

    Article  PubMed  CAS  Google Scholar 

  119. Martin, W., G. M. Villani, D. Jothianandan, and R. F. Furchgott. Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J. Pharmacol. Exp. Ther. 233: 679–685, 1985.

    PubMed  CAS  Google Scholar 

  120. Massop, D. W., J. G. Wright, W. L. Smead, E. T. Sadoun, and J. F. Cornhill. Interleukin 6 secretion and gene expression by human aortic endothelial cells in response to laminar shear stress. Circulation 82: 206 (abstract), 1990.

    Google Scholar 

  121. Mawatari, M., K. Okamura, T. Matsuda, R. Hamanaka, H. Mizoguchi, K. Higashio, K. Kohno, and M. Kuwano. Tumor necrosis factor and epidermal growth factor modulate migration of human microvascular endothelial cells and production of tissue-type plasminogen activator and its inhibitor. Exp. Cell Res. 192: 574–580, 1991.

    Article  PubMed  CAS  Google Scholar 

  122. Mcdowell, T. S., T. S. Axtelle, M. W. Chapleau, and F. M. Abboud. Prostaglandins in carotid sinus enhance baroreflex in rabbits. Am. J. Physiol. 257 (Heart Circ. Physiol. 26 ): R445 - R450, 1989.

    Google Scholar 

  123. Mcintire, L. V., J. A. Frangos, S. G. Eskin, and E. R. Hall. Effect of hemodynamic shear on arachidonic acid metabolism of vascular endothelium. In Cerebral Ischemia and Hemorheology A. Hartmann and W. Kuschinsky, Eds. Berlin: Springer-Verlag, 1987; pp. 280289.

    Google Scholar 

  124. Medcalf, R. L., M. Ruegg, and W.-D. Schleuning. A Dna motif related to the cAmpresponsive element and an exon-located activator protein-2 binding site in the human tissue-type plasminogen activator gene promoter cooperate in basal expression and convey activation by phorbol ester and cAmp. J. Biol. Chem. 265: 14618–14626, 1990.

    PubMed  CAS  Google Scholar 

  125. Milkumyants, A. M., S. A. Balashov, and V. M. Khayutin. Endothelium dependent control of arterial diameter by blood viscosity. Cardiovasc. Res. 23: 741–747, 1989.

    Article  Google Scholar 

  126. Milner, P., P. Bodin, A. Loesch, and G. Burnstock. Rapid release of endothelin and Atp from aortic endothelial cells exposed to increased flow. Biochem. Biophys. Res. Commun. 170: 649–656, 1990.

    Article  PubMed  CAS  Google Scholar 

  127. Milner, P., K. A. Kirkpatrick, V. Ralevic, V. Toothill, J. Pearson, and J. G. Burnstock. Endothelial cells cultured from human umbilical vein release Atp, substance P and acetylcholine in response to increased flow. Proc. R. Soc. Lond. B. 241: 245–248, 1990.

    Article  CAS  Google Scholar 

  128. Mitchell, J. A., U. Forstermann, T. D. Warner, J. S. Pollock, H. H. H. W. Schmidt, M. Heller, and F. Murad. Endothelial cells have a particulate enzyme system responsible for Edrf formation: Measurement by vascular relaxation. Biochem. Biophys. Res. Commun. 176: 1417–1423, 1991.

    Article  PubMed  CAS  Google Scholar 

  129. Mo, M., S. G. Eskin, and W. P. Schilling. Flow-induced changes in Ca“ signaling of vascular endothelial cells: Effect of shear stress and Atp. Am. J. Physiol. 260 (Heart Circ. Physiol. 29 ): H1698 — H1707, 1991.

    Google Scholar 

  130. Moncada, S., R. Gryglewsky, S. Bunting, and J. R. Vane. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263: 663–665, 1976.

    Article  PubMed  CAS  Google Scholar 

  131. Moore, P. K., O. A. Alswayeh, N. W. S. Chong, R. A. Evans, and A. Gibson. L-ng-nitro arginine (L-noarg), a novel, L-arginine-reversible inhibitor of endothelium-dependent vasodilation in vitro. Br. J. Pharmacol. 99: 408–412, 1990.

    Article  PubMed  CAS  Google Scholar 

  132. Moscatelli, D., and D. B. Rifkin. Membrane and matrix localization of proteinases: A common theme in tumor cell invasion and angiogenesis. Biochim. Biophys. Acta 948: 6785, 1988.

    Google Scholar 

  133. Mulsch, A., E. Bassenge, and R. Busse. Nitric oxide synthesis in endothelial cytosol: evidence for a calcium-dependent and a calcium-independent mechanism. NaunynSchmiedebergs Arch. Pharmakol. 340: 767–770, 1989.

    CAS  Google Scholar 

  134. Mulsch, A., E. Bohme, and R. Busse. Stimulation of soluble guanylate cyclase by endothelium-derived relaxing factor from cultured endothelial cells. Eur. J. Pharmacol. 135: 247–250, 1987.

    Article  PubMed  CAS  Google Scholar 

  135. Newby, A. C., and A. H. Henderson. Stimulus-secretion coupling in vascular endothelial cells. Annu. Rev. Physiol. 52: 661–674, 1990.

    Article  PubMed  CAS  Google Scholar 

  136. NishizuKA, Y. The family of protein kinase C for signal transduction. Jama 262: 1826 1833, 1989.

    Google Scholar 

  137. Nollert, M. U., S. G. Eskin, and L. V. Mcintire. Shear stress increases inositol trisphosphate levels in human endothelial cells. Biochem. Biophys. Res. Commun. 170: 281–287, 1990.

    Article  PubMed  CAS  Google Scholar 

  138. Nollert, M. U., E. R. Hall, S. G. Eskin, and L. V. Mcintire. The effect of shear stress on the uptake and metabolism of arachidonic acid by human endothelial cells. Biochim. Biophys. Acta. 1005: 72–78, 1989.

    Article  PubMed  CAS  Google Scholar 

  139. Nollert, M. U., S. L. Diamond, and L. V. Mcintire. Hydrodynamic shear stress and mass transport modulation of endothelial cell metabolism. Biotechnol. Bioeng. 38: 588–602, 1991.

    Article  PubMed  CAS  Google Scholar 

  140. Nollert, M. U., and L. V. Mcintire. Convective mass transfer effects on the intracellular calcium response of endothelial cells. J. Biomech. Eng. 114: 321–326, 1992.

    Article  PubMed  CAS  Google Scholar 

  141. Olesen, S. P., D. E. Clapham and P. F. Davies. Haemodynamic shear stress activates a K’ current in vascular endothelial cells. Nature 331: 168–170, 1988.

    Article  PubMed  CAS  Google Scholar 

  142. Oliver, J. A. Adenylate cyclase and protein kinase C mediate opposite actions on endothelial junctions. J. Cell. Physiol. 145: 536–542, 1990.

    Article  PubMed  CAS  Google Scholar 

  143. Ono, O., J. Ando, A. Kamiya, Y. Kuboki, and H. Yasuda. Flow effects on cultured vascular endothelial and smooth muscle cell functions. Cell Struc. Func. 16: 365–374, 1991.

    Article  CAS  Google Scholar 

  144. Ovarfordt, P. G., L. M. Reilly, R. J. Lusby, D. J. Effeney, L. D. Ferrell, D. C. Price, J. Fuller, W. K. Ehrenfeld, R. J. Stoney, and J. Goldstone. Prostacyclin production in regions of arterial stenosis. Surgery 98: 484–491, 1985.

    Google Scholar 

  145. Palmer, R. M. J., D. S. Ashton, and S. Moncada. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333: 664–666, 1988.

    Article  PubMed  CAS  Google Scholar 

  146. Palmer, R. M. J., A. G. Ferrige, and S. Moncada. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524–526, 1987.

    Article  PubMed  CAS  Google Scholar 

  147. Peach, M. J., A. L. Loeb, H. A. Singer, and J. Saye. Endothelium-derived vascular relaxing factor. Hypertension 7 (Suppl. I): 1–94—I-100, 1985.

    Google Scholar 

  148. Pirotton, S., E. Raspe, D. Demolle, C. Erneux, and J.-M. Boeynaems. Involvement of inositol 1,4,5-trisphosphate and calcium in the action of adenine nucleotides on aortic endothelial cells. J. Biol. Chem. 262: 17461–17466, 1987.

    PubMed  CAS  Google Scholar 

  149. PoHL, U., K. Herlan, A. Huang, and E. Bassenge. Edrf-mediated shear-induced dilation opposes myogenic vasoconstriction in small rabbit arteries. Am. J. Physiol. 261 (Heart Circ. Physiol. 30 ): H2016 — H2023, 1991.

    Google Scholar 

  150. Pohl, U., J. Holtz, R. Busse, and E. Bassenge. Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension 8: 37–44, 1986.

    Article  PubMed  CAS  Google Scholar 

  151. Ralevic, V., P. Milner, O. Hudlicka, F. Kristek, and G. Burnstock. Substance P is released from the endothelium of normal and capsaicin-treated rat hind-limb vasculature, in vivo, by increased flow. Circ. Res. 66: 1178–1183, 1990.

    Article  PubMed  CAS  Google Scholar 

  152. Ralevic, V., P. Milner, K. A. Kirkpatrick, and G. Burnstock. Flow-induced release of adenosine 5’-triphosphate from endothelial cells of the rabbit mesenteric arterial bed. Experientia 48: 31–34, 1992.

    Article  PubMed  CAS  Google Scholar 

  153. Rees, D. D., R. M. J. Palmer, H. F. Hodson, and S. Moncada. A specific inhibitor of nitric oxide formation from L-arginine attenuates endothelium-dependent relaxation. Br. J. Pharmacol. 96: 418–424, 1989.

    Article  PubMed  CAS  Google Scholar 

  154. Reich, K. M., C. V. Gay, and J. A. Frangos. Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production. J. Cell. Physiol. 143: 100–104, 1990.

    Article  PubMed  CAS  Google Scholar 

  155. Reinders, J. H., P. G. DE Groot, J. Dawes, N. R. Hunter, H. A. A. Van Heugten, J. Zandbergen, M. D. Gonsalves, and J. A. Van Mourik. Comparison of secretion and subcellular localization of von Willebrand factor with that of thrombospondin and fibronectin in cultured human vascular endothelial cells. Biochim. Biophys. Acta 844: 306–313, 1985.

    CAS  Google Scholar 

  156. Resink, T. J., G. Y. Grigorian, A. K. Moldabaeva, S. M. Danilov, and F. R. Buhler. Histamine-induced phosphoinositide metabolism in cultured human umbilical vein endothelial cells. Associated with thromboxane and prostacyclin release. Biochem. Biophys. Res. Commun. 144: 438–446, 1987.

    Article  PubMed  CAS  Google Scholar 

  157. Rosen, L. A., T. M. HoLlis, and M. G. Sharma. Alterations in bovine endothelial histidine decarboxylase activity following exposure to shearing stresses. Exp. Mol. Pathol. 20: 329343, 1974.

    Google Scholar 

  158. Ross, R., E. W. Raines, and D. F. Bowen-Pope. The biology of platelet-derived growth factor. Cell 46: 155–169, 1986.

    Article  PubMed  CAS  Google Scholar 

  159. Rubanyi, G. M., J. C. Romero and P. M. Vanhoutte. Flow-induced release of endothelium-derived relaxing factor. Am. J. Physiol. 250: H1145 — H1149, 1986.

    PubMed  CAS  Google Scholar 

  160. Rubanyi, G. M., and P. M. Vanhoutte. Superoxide anions and hyperoxia inactive endothelium-derived relaxing factor. Am. J.Physiol. 250 (Heart Circ. Physiol. 19 ): H822 — H827, 1986.

    Google Scholar 

  161. Sakuma, I., D. J. Stuehr, S. S. Gross, C. Nathan, and R. Levi. Identification of arginine as a precursor of endothelium-derived relaxing factor. Proc. Natl. Acad. Sci. U. S. A. 85: 8664–8667, 1988.

    Article  PubMed  CAS  Google Scholar 

  162. Santell, L., and E. G. Levine. Cyclic Amp potentiates phorbol ester stimulation of tissue plasminogen activator release and inhibits secretion of plasminogen activator inhibitor-1 from human endothelial cells. J. Biol. Chem. 263: 16802–16808, 1988.

    PubMed  CAS  Google Scholar 

  163. Sauve, R., M. Chahine, J. Tremblay, and P. Hamet. Single-channel analysis of the electrical response of bovine aortic endothelial cells to bradykinin stimulation: Contribution of a Ca“ -dependent K’ channel. J. Hypertens. 8 (suppl. 7): S193 — S201, 1990.

    Google Scholar 

  164. Schilling, W. P., M. Mo, and S. G. Eskin. Effect of shear stress on cytosolic Ca“ of calf pulmonary artery endothelial cells. Exp. Cell Res. 198: 31–35, 1992.

    Article  PubMed  CAS  Google Scholar 

  165. Schleef, R. R., M. P. Bevilacqua, M. Sawdey, M. A. Gimbrone, JR., and D. J. Loskutoff. Cytokine activation of vascular endothelium. Effects of tissue-type plasminogen activator and type 1 plasminogen activator inhibitor. J. Biol. Chem. 263: 5797–5803, 1988.

    CAS  Google Scholar 

  166. Schmidt, K., B. Mayer, and W. R. Kukovetz. Effect of calcium on endothelium-derived relaxing factor formation and cGmp levels in endothelial cells. Eur. J. Pharmacol. 170: 157–166, 1989.

    Article  PubMed  CAS  Google Scholar 

  167. Schroder, H., C. Machunsky, H. Strobach, and K. Schror. Nitric oxide but not prostacyclin has an autocrine function in porcine aortic endothelial cells. In Adv. Prostaglandin Thromboxane Leukot. Res. 21: 671–674, 1990.

    Google Scholar 

  168. Segal, S. S. Communication among endothelial and smooth muscle cells coordinates blood flow control during exercise. News Phys. Sci. 7: 152–156, 1992.

    Google Scholar 

  169. Segal, S. S., and B. R. Duling. Propagation of vasodilation in resistance vessels of the hamster: Development and review of a working hypothesis. Circ. Res. 61: ( Suppl. II ): 2025, 1987.

    Google Scholar 

  170. Sharefkin, J. B., S. L. Diamond, S. G. Eskin, L. V. Mcintire, and C. W. Dieffenbach. Fluid flow decreases prepro-endothelin mRna levels and suppresses endothelin-1 release in cultured human endothelial cells. J. Vast. Surg. 14: 1–9, 1991.

    CAS  Google Scholar 

  171. Shasby, D. M., and S. S. Shasby. Effects of calcium on transendothelial albumin transfer and electrical resistance. J. Appl. Physiol. 60: 71–79, 1986.

    PubMed  CAS  Google Scholar 

  172. Shen, J., F. W. Luscinskas, A. Connolly, C. F. Dewey, JR., and M. A. Gimbrone, JR. Fluid shear stress modulates cytosolic free calcium in vascular endothelial cells. Am. J. Physiol. 262 (Heart Circ. Physiol. 31 ): C384 — C390, 1992.

    Google Scholar 

  173. Smiesko, V., J. Kozlx, and S. Dolezel. Role of endothelium in the control of arterial diameter by blood flow. Blood Vessels 22: 247–251, 1985.

    PubMed  CAS  Google Scholar 

  174. Smiesko, V., D. J. Lang, and P. C. Johnson. Dilator response of rat mesenteric arcading arterioles to increased blood flow velocity. Am. J. Physiol. 257 (Heart Circ. Physiol. 26 ): H1958 — H1965, 1989.

    Google Scholar 

  175. Smith, J. A., and D. Lang. Release of endothelium-derived relaxing factor from pig cultured aortic endothelial cells, as assessed by changes in endothelial cell cyclic Gmp content, is inhibited by a phorbol ester. Br. J. Pharmacol. 99: 565–571, 1990.

    Article  PubMed  CAS  Google Scholar 

  176. Sprague, E. A., B. L. Steinbach, R. M. Nerem, and C. J. Schwartz. Influence of a laminar steady-state fluid-imposed wall shear stress on the binding, internalization, and degradation of low-density lipoproteins by cultured arterial endothelium. Circulation 76: 648656, 1987.

    Google Scholar 

  177. Stamler, J., M. E. Mendelsohn, P. Amarante, D. Smick, N. Andon, P. F. Davies, J. P. Cooke, and J. Loscalzo. N-acetylcysteine potentiates platelet inhibition by endothelium-derived relaxing factor. Circ. Res. 65: 789–795, 1989.

    Article  PubMed  CAS  Google Scholar 

  178. Starksen, N. F., G. R. Harsh, V. C. Gibbs, and L. T. Williams. Regulated expression of platelet-derived growth factor A chain gene in microvascular endothelial cells. J. Biol. Chem. 262: 14381–14384, 1987.

    PubMed  CAS  Google Scholar 

  179. Stelzner, T. J., J. V. Weil, and R. F. O’Brien. Role of cyclic adenosine monophosphate in the induction of endothelial barrier properties. J. Cell. Physiol. 139: 157–166, 1989.

    Article  PubMed  CAS  Google Scholar 

  180. Swan, D. C., O. W. Mcbride, K. C. Robbins, D. A. Keithley, E. P. Reddy, and S. A. Aaronson. Chromosomal mapping of the simian sarcoma virus one gene analogue in human cells. Proc. Natl. Acad. Sci. U. S. A. 79: 4691–4695, 1982.

    Article  CAS  Google Scholar 

  181. Takagi, Y., M. Fusake, S. Takata, H. Yoshimi, O. Tokunaga, and T. Fujita. Autocrine effect of endothelin on Dna synthesis in human vascular endothelial cells. Biochem. Biophys. Res. Commun. 168: 537–543, 1990.

    Article  PubMed  CAS  Google Scholar 

  182. Takamura, H., H. Kasai, H. Arita, and M. Kito. Phospholipid molecular species in human umbilical artery and vein endothelial cells. J. Lipid Res. 31: 709–717, 1990.

    PubMed  CAS  Google Scholar 

  183. Tesfamarian, B., and R. A. Cohen. Inhibition of adrenergic vasoconstriction by endothelial shear stress. Circ. Res. 63: 720–725, 1988.

    Article  Google Scholar 

  184. Toothill, V. J., L. Needham, J. L. Gordon, and J. D. Pearson. Desensitization of agoniststimulated prostacyclin release in human umbilical vein endothelial cells. Eur. J. Pharmacol. 157: 189–196, 1988.

    CAS  Google Scholar 

  185. Gordon, E. L., J. D. Pearson, and L. L. Slakey. The hydrolysis of extracellular adenine nucleotides by cultured endothelial cells from pig aorta. J. Biol. Chem. 261: 1053–1060, 1986.

    Google Scholar 

  186. Unemori, E. N., K. S. Bouhana, and Z. Werb. Vectorial secretion of extracellular matrix proteins, matrix-degrading proteinases, and tissue inhibitor of metalloproteinases by endothelial cells. J. Biol. Chem. 265: 445–451, 1990.

    PubMed  CAS  Google Scholar 

  187. Vargas, F. F., M. H. Osorio, U. S. Ryan, and M. DE Jesus. Surface charge of endothelial cells estimated from electrophoretic mobility. Membrane Biochem. 8: 221–227, 1989.

    Article  CAS  Google Scholar 

  188. Whorton, A. R., C. E. Willis, R. S. Kent, and S. L. Young. The role of calcium in the regulation of prostacyclin synthesis by porcine aortic endothelial cells. Lipids 1984; 19: 17–24, 1984.

    Article  Google Scholar 

  189. Wilson, D. B., D. M. Dorfman, and S. H. Orkin. A nonerythroid Gata-binding protein is required for function of the human preproendothelin-1 promoter in endothelial cells. Mol. Cell. Biol. 10: 4854–4862, 1990.

    PubMed  CAS  Google Scholar 

  190. Wu, K. K., H. Hatzakis, S. S. Lo, D. C. Seong, S. K. Sanduja, and H.-H. Tai. Stimulation of de novo synthesis of prostaglandin G/H synthase in human endothelial cells by phorbol ester. J. Biol. Chem. 263: 19043–19047, 1988.

    PubMed  CAS  Google Scholar 

  191. Wysolmerski, R., and D. Lagunoff. The effect of ethchlorvynol on cultured endothelial cells. A model for the study of the mechanism of increased vascular permeability. Am. J. Pathol. 119: 505–512, 1985.

    PubMed  CAS  Google Scholar 

  192. Yamada, Y., T. Furumichi, H. Furui, T. Yokoi, T. Ito, K. Yamaguchi, M. Yokota, H. Hayashi, and H. Saito. Roles of calcium, cyclic nucleotides, and protein kinase C in regulation of endothelial permeability. Arteriosclerosis 10: 410–420, 1990.

    Article  PubMed  CAS  Google Scholar 

  193. Yamaguchi, M., D. Wei, K. Gould, C. W. Dieffenbach, D. F. Cruess, and J. B. Sharefkin. Effects of aspirin, dipyridamole, and dibutyryl cyclic adenosine monophosphate on platelet-derived growth factor A chain mRna levels in human saphenous vein endothelial cells and smooth muscle cells. Surgery 110: 377–384, 1991.

    PubMed  CAS  Google Scholar 

  194. Yanagisawa, M., A. Indue, Y. Takuwa, Y. Mitsui, M. Kobayashi, and T. Masaki. The human preproendothelin-1 gene: possible regulation by endothelial phosphoinositide turnover signaling. J. Cardiovasc. Pharmacol. 13 (Suppl. 5): S13 — S17, 1989.

    Article  PubMed  CAS  Google Scholar 

  195. Yanagisawa, M., H. Kurihara, S. Kimura, Y. Tomobe, M. Kobayashi, Y. Mitsui, Y. Yazaki, K. Goto, and T. Masaki. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411–415, 1988.

    Article  PubMed  CAS  Google Scholar 

  196. Yoshizumi, M., H. Kurihara, T. Sugiyama, F. Takaku, M. Yanagisawa, T. Masaki, and Y. Yazaki. Hemodynamic shear stress stimulates endothelin production by cultured endothelial cells. Biochem. Biophys. Res. Commun. 161: 859–864, 1989.

    Article  PubMed  CAS  Google Scholar 

  197. Zamir, M. Shear forces and blood vessel radii in the cardiovascular system. J. Gen. Physiol. 69: 449–461, 1977.

    Article  PubMed  CAS  Google Scholar 

  198. Zarins, C. K., M. A. Zatina, D. P. Giddens, D. N. Ku, and S. Glagov. Shear stress regulation of artery lumen diameter in experimental atherogenesis. J. Vasc. Surg. 5: 413–420, 1987.

    PubMed  CAS  Google Scholar 

  199. Zavoico, G. B., J. K. Hrbolich, M. A. Gimbrone, JR., and A. I. Schafer. Enhancement of thrombin-and ionomycin-stimulated prostacyclin and platelet-activating factor production in cultured endothelial cells by a tumor-promoting phorbol ester. J. Cell. Physiol. 143: 596–650, 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 American Physiological Society

About this chapter

Cite this chapter

Berthiaume, F., Frangos, J.A. (1995). Flow Effects on Endothelial Cell Signal Transduction, Function, and Mediator Release. In: Bevan, J.A., Kaley, G., Rubanyi, G.M. (eds) Flow-Dependent Regulation of Vascular Function. Clinical Physiology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7527-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7527-9_5

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7527-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics