Skip to main content

Part of the book series: Clinical Physiology Series ((CLINPHY))

  • 334 Accesses

Abstract

The vascular endothelium exists in a mechanically active environment that includes both fluid shear stress generated by flowing blood and stretching forces generated by transmural pressures. The magnitude and direction of these forces vary with time and location in the vasculature. In addition to the wide variety of physical forces to which the endothelium must sustain, changing local velocity profiles can alter the delivery and removal rate of species to and from the endothelial surface by fluid convection. The continual presence of physical forces generated by steady or time-dependent flows can regulate endothelial cell gene expression with likely subsequent effects on vessel wall biology. This chapter explores physiological and pathological instances where regulation of endothelial gene expression and protein secretion by hemodynamic forces may control vessel function. Recent work by several laboratories has shown that endothelial cell protein secretion is altered by hemodynamic forces and that these changes likely occur at the genetic level. A summary of research investigating endothelial cell gene expression in the presence of fluid shear stress is shown in Table 4.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ando, J., T. Komatsuda, and A. Kamiya. Cytoplasmic Calcium Response to Fluid Shear Stress in Cultured Vascular Endothelial Cells. In Vitro Cell & Dey. Biol. 24: 871–877, 1988.

    Article  CAS  Google Scholar 

  2. Booyse, F. M., R. Bruce, S. H. Gianturco, and W. A. Bradley. Normal But Not Hyperglyceridemic Very Low-Density Lipoprotein Induces Rapid Release of Tissue Plasminogen Ac-tivator From Cultured Human Umbilical Vein Endothelial Cells. Sem. Thromb. Hemost. 14: 175–182, 1988.

    Article  CAS  Google Scholar 

  3. Boulanger, C., and T. F. Luscher. Release of Endothelin from the Porcine Aorta: Inhibition by Endothelium-derived Nitric Oxide. J. Clin. Invest. 85: 587–590, 1990.

    Article  PubMed  CAS  Google Scholar 

  4. Brown, K. D., and C. J. Littlewood. Endothelin Stimulates Dna Synthesis in Swiss 3T3 Cells: Synergy with Polypeptide Growth Factors. Biochem. J. 263: 977–980, 1989.

    PubMed  CAS  Google Scholar 

  5. Carosi, J. A., S. G. Eskin, and L. V. Mcintire. Cyclical Strain Effects on Production of Vasoactive Materials in Cultured Endothelial Cells. J. Cell. Physiol. 151: 29–36, 1992.

    Article  PubMed  CAS  Google Scholar 

  6. Chiu, R., W. J. Boyle, J. Meek, T. Smeal, T. Hunter, and M. Karin. The c-Fos Protein Interacts with c-Jun/AP-1 to Stimulate Transcription of AP-1 Responsive Genes. Cell 54: 541–552, 1988.

    Article  PubMed  CAS  Google Scholar 

  7. Chid, R., M. Imagawa, R. J. Imbra, J. R. Bockoven, and M. Karin. Multiple Cis-and Trans-Acting Elements Mediate the Transcriptional Response to Phorbol Esters. Nature 329: 648–651, 1987.

    Article  Google Scholar 

  8. Clowes, A. W., M. M. Clowes, J. Fingerle, and M. A. Reidy. Kinetics of Cellular Proliferation After Arterial Injury: Role of Acute Distension in the Induction of Smooth Muscle Proliferation. Lab Invest. 60: 360–364, 1989.

    PubMed  CAS  Google Scholar 

  9. Clozel, M., and W. Fischli. Human Cultured Endothelial Cells Do Secrete Endothelin-1. J. Cardiovasc. Pharmacol. 13: 5229–231, 1989.

    Article  Google Scholar 

  10. Collen, D., and I. Juhan-Vague. Fibrinolysis and Atherosclerosis. Sem. Thromb. Hemost. 14: 180–184, 1988.

    Article  CAS  Google Scholar 

  11. Dahlen, G. H., ET AL. Association of Levels of Lipoprotein Lp(a), Plasma Lipids, and Other Lipoproteins with Coronary Artery Disease Documented by Angiography. Circ. 74: 758765, 1986.

    Google Scholar 

  12. Davies, P. F., C. F. Dewey, JR., S. R. Bussolari, E. J. Gordan, and M. A. Gimbrone, JR. Influence of Hemodynamic Forces on Vascular Endothelial Function. J. Clin. Invest. 73: 1121–1129, 1984.

    CAS  Google Scholar 

  13. Dewey,JR., C. F., S. R. Bussolari, M. A. Gimbrone, JR., and P. F. Davies. The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress. J. Biomech. Eng. 103: 177185, 1981.

    Google Scholar 

  14. Diamond, S. L., J. B. Sharefkin, C. W. Dieffenbach, K. F. Frasier Scott, L. V. Mcintire, and S. G. Eskin. Tissue Plasminogen Activator Messenger Rna Levels Increase in Cultured Human Endothelial Cells Exposed to Laminar Shear Stress. J. Cell. Physiol. 143: 364–371, 1990.

    Google Scholar 

  15. Diamond, S. L., S. G. Eskin, and L. V. Mcintire. Fluid Flow Stimulates Tissue Plasminogen Activator Secretion by Cultured Human Endothelial Cells. Science 243: 1483–1485, 1989.

    Article  PubMed  CAS  Google Scholar 

  16. Dobrin, P., F. Littooy, and E. Endean. Mechanical Factors Predisposing to Intimal Hyperplasia and Medial Thickening in Autogenous Vein Grafts. Surgery 105: 393–400, 1989.

    Google Scholar 

  17. Dobrin, P., F. Littooy, J. Golan, B. Blakeman, and J. Fareed. Mechanical and Histologic Changes in Canine Vein Grafts. J. Surg. Res. 44: 259–265, 1988.

    Google Scholar 

  18. Dull, R. O., and P. F. Davies. Flow Modulation of Agonist (Atp)-response (Ca2+) Coupling in Vascular Endothelial Cells. Am. J. Physiol. 261 (Heart Circ. Physiol. 30 ): H149 — H154, 1991.

    Google Scholar 

  19. Emeis, J. J., and T. Kooistra. Interleukin 1 and Lipopolysaccaride Induce an Inhibitor of Tissue-type Plasminogen Activator In Vivo and in Cultured Endothelial Cells. J. Exp. Med. 163: 1260–1266, 1986.

    Article  PubMed  CAS  Google Scholar 

  20. Eskin, S. G., C. L. Ives, L. V. Mcintire, and L. T. Navarro. Response of Cultured Endothelial Cells to Steady Flow. Microvasc. Res. 28: 87–94, 1984.

    Article  PubMed  CAS  Google Scholar 

  21. Fleischaker, R. J., and A. J. Sinskey. Oxygen Demand and Supply in Cell Culture. Europ. J. Appl. Microbiol. Biotech. 12: 193–197, 1981.

    Article  Google Scholar 

  22. Frangos, J. A., S. G. Eskin, L. V. Mcintire, and C. L. Ives. Flow Effects on Prostacyclin Production by Culture Human Endothelial Cells. Science 227: 1477–1479, 1985.

    Article  PubMed  CAS  Google Scholar 

  23. Frangos, J. A., L. V. Mcintire, and S. G. Eskin. Shear Stress Induced Stimulation of Mammalian Cell Metabolism. Biotech. Bioeng. 32: 1053–1060, 1988.

    Article  CAS  Google Scholar 

  24. Franke, R. P., M. Grafe, H. Schnittler, D. Seiffge, C. Mittermayer, and D. Drenckhahn. Induction of Human Vascular Endothelial Stress Fibres by Fluid Shear Stress. Nature 307: 648–650, 1984.

    Article  PubMed  CAS  Google Scholar 

  25. Friedman, M. H., G. M. Hutchins, and C. B. Bargeron. Correlation Between Intimal Thickness and Fluid Shear in Human Arteries. Atherosclerosis 39: 425–436, 1981.

    Article  PubMed  CAS  Google Scholar 

  26. Geiger, R. V., B. C. Berk, R. W. Alexander, and R. M. Nerem. Flow-Induced Calcium Transients in Single Endothelial Cells: Spatial and Temporal Analysis. Am. J. Physiol. 262 Cell Physiol 31 ): C1411–1417, 1992.

    Google Scholar 

  27. Glagov, S., C. Zarins, D. P. Giddens, and D. N. Ku. Hemodynamics and Atherosclerosis. Arch. Pathol. Lab. Med. 112: 1018–1031, 1988.

    PubMed  CAS  Google Scholar 

  28. Goldsmith, H. L., and V. T. Turrito. Rheological Aspects of Thrombosis and Heaemostasis: Basic Principles and Applications. Thromb. Haem. 55: 415–435, 1986.

    CAS  Google Scholar 

  29. Grabowski, E. F., E. A. Jaffe, and B. B. Weksler. Prostacyclin Production by Cultured Endothelial Cell Monolayers Exposed to Step Increases in Shear Stress. J. Lab. Clin. Med. 105: 36–43, 1985.

    PubMed  CAS  Google Scholar 

  30. Grottum, P., A. Svindland, and L. Wallo. Localization of Atherosclerotic Lesions in the Bifurcation of the Main Left Coronary Artery. Atherosclerosis 47: 55–62, 1983.

    Article  PubMed  CAS  Google Scholar 

  31. Grulich-Henn, J., C. Schubring, and G. Muller-Berghaus. Role of Protein Kinase C in the Regulation of Tissue-Type Plasminogen Activator Production by Human Umbilical Vein Endothelial Cells. 5th Intl. Symposium on the Biology of the Vascular Endothelial Cell (Toronto, Ont.), Abst. P-II-5, July 1988.

    Google Scholar 

  32. Gupte, A., and J. A. Frangos. Effects of Flow on the Synthesis and Release of Fibronectin by Endothelial Cells. In Vitro Cell. Deu. Biol. 26: 57–60, 1990.

    Article  CAS  Google Scholar 

  33. Hajjar, K. A., D. GavisH, J. L. Breslow, and R. L. Nachman. Lipoprotein(a) Modulation of Endothelial Cell Surface Fibrinolysis and its Potential Role in Atherosclerosis. Nature 339: 303–305, 1989.

    CAS  Google Scholar 

  34. Hanss, M., and D. Collen. Secretion of Tissue-type Plasminogen Activator and Plasminogen Activator Inhibitor by Cultured Human Endothelial Cells: Modulation by Thrombin, Endotoxin, and Histamine. J. Lab. Clin. Med. 109: 97–104, 1987.

    PubMed  CAS  Google Scholar 

  35. Hirata, Y, Y. Takagi, Y. Fukuda, and F. Marumo. Endothelin Is a Potent Mitogen for Rat Vascular Smooth Muscle Cells. Atherosclerosis 78: 225–228, 1989.

    CAS  Google Scholar 

  36. Holtz, J., U. Forstermann, U. Pohl, M. Giesler, and E. Bassenge. Flow-Dependent, Endothelium-Mediated Dilation of Epicardial Coronary Arteries in Conscious Dogs: Effects of Cylooxygenase Inhibition. J. Cardiouasc. Pharm. 6: 1161–1169, 1984.

    CAS  Google Scholar 

  37. Hsieh, H. J., N. Q. Li, and J. A. Frangos. Shear Stress Increases Endothelial Platelet-Derived Growth Factor mRna Levels. Am. J. Physiol. 260 (Heart Circ. Physiol. 29 ): H642646, 1991.

    Google Scholar 

  38. Hsieh, H. J., N. Q. Li, and J. A. Frangos. Shear-Induced Platelet-Derived Growth Factor Gene Expression in Human Endothelial Cells is Mediated by Protein Kinase C. J. Cell. Physiol. 150: 552–558, 1992.

    Article  PubMed  CAS  Google Scholar 

  39. Hsieh, H. J., N. Q. LI, and J. A. Frangos. Pulsatile and Steady Flow Induces c-fos Expression in Human Endothelial Cells. J. Cell. Physiol. 154: 143–151, 1993.

    Article  PubMed  CAS  Google Scholar 

  40. Inoue, A., M. Yanagisawa, Y. Takuwa, Y. Mitsui, M. Kobayashi, and T. Masaki. The Human Preproendothelin-1 Gene. J. Biol. Chem. 264: 14954–14959, 1989.

    PubMed  CAS  Google Scholar 

  41. IvEs, C. L., S. G. Eskin, and L. V. Mcintire. Mechanical Effects on Endothelial Cell Morphology. In Vitro Cell. Deu. Biol. 22: 500–507, 1986.

    Article  CAS  Google Scholar 

  42. Kobayashi, T., and K. J. Laidler. Theory of the Kinetics of Reactions Catalyzed by Enzymes Attached to the Interior Surfaces of Tubes. Biotech. Bioeng. 16: 99–118, 1974.

    Article  Google Scholar 

  43. Kohler, T. R., T. R. Kirkman, L. W. Kraiss, B. K. Zierler, and A. W. Clowes. Increased Blood Flow Inhibits Neointimal Hyperplasia in Endothelialized Vascular Grafts. Circ. Res. 69: 1557–65, 1991.

    Article  PubMed  CAS  Google Scholar 

  44. Komuro, I., H. Kurihara, T. Sugiyama, F. Takaku, and Y. Yazaki. Endothelin Stimulates c-fos and c-myc Expression and Proliferation of Vascular Smooth Muscle Cells Febs Lett. 238: 249–252, 1988.

    Article  PubMed  CAS  Google Scholar 

  45. Komuro, I., T. Kaida, Y. Shibazaki, M. Kurabayashi, Y. Katoh, E. Hoh, F. Takaku, and Y. Yazak. Stretching Cardiac Myocytes Stimulates Protooncogene Expression. J. Biol. Chem. 265: 3595–3961, 1990.

    PubMed  CAS  Google Scholar 

  46. Kooistra, T., J. Van Den Berg, A. Tons, G. Platenburg, D. C. Rijken, and E. Van Den Berg. Butyrate Stimulates Tissue-type Plasminogen-Activator Synthesis in Cultured Human Endothelial Cells. Biochem. J. 247: 605–612, 1987.

    PubMed  CAS  Google Scholar 

  47. Kouzarides, T., and E. Ziff. Leucine Zippers of Fos, Jun, and Gcn4 Dictate Dimerization Specificity and Thereby Control Dna Binding. Nature 340: 568–571, 1989.

    Google Scholar 

  48. Ku, D. N., and D. P. Giddens. Pulsatile flow in a Model Carotid Bifurcation. Arteriosclerosis 3: 31–39, 1983.

    Article  PubMed  CAS  Google Scholar 

  49. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation: Positive Correlation Between Plaque Location and Low and Oscillating Shear Stress. Arteriosclerosis 5: 293–302, 1985.

    Article  PubMed  CAS  Google Scholar 

  50. Kuchan, M. J., and J. A. Frangos. Shear Stress Reglates Endothelin-1 Release via Protein Kinase C and cGmp in Cultured Endothelial Cells. Am. J. Physiol. 264 (Heart Circ. Physiol. 33 ): H150 — H156, 1993.

    Google Scholar 

  51. Labarbera, M. Principles of Design of Fluid Transport Systems in Zoology. Science 249: 992–1000, 1990.

    Article  PubMed  CAS  Google Scholar 

  52. Langille, B. L., and F. O’Donnell. Reductions in Arterial Diameter Produced by Chronic Decreases in Blood Flow Are Endothelium-Depedent. Science 231: 405–407, 1986.

    Article  PubMed  CAS  Google Scholar 

  53. Lansman, J. B., T. J. Hallam, and T. J. Rink. Single Stretch-Activated Ion Channels in Vascular Endothelial Cells as Mechanotransducers? Nature 325: 811–813, 1987.

    Article  PubMed  CAS  Google Scholar 

  54. Levesque, M. J., and R. M. Nerem. The Elongation and Orientation of Cultured Endothelial Cells in Response to Shear Stress. J. Biomech. Eng. 107: 341–347, 1985.

    Article  PubMed  CAS  Google Scholar 

  55. Levin, E. G., and L. Santell. Cyclic Amp Potentiates Phorbol Ester Stimulation of Tissue Plasminogen Activator Release and Inhibits Secretion of Plasminogen Activator Inhibitor-1 from Human Endothelial Cells. J. Biol. Chem. 263: 16802, 1988.

    PubMed  Google Scholar 

  56. Levin, E. G., and L. Santell. Stimulation and Desensitization of Tissue Plasminogen Activator Release from Human Endothelial Cells. J. Biol. Chem. 263: 9360–9365, 1988.

    PubMed  CAS  Google Scholar 

  57. Marsden, P. A., and B. M. Brenner. Transcriptional Regulation of the Endothelin-1 Gene by Tnf-a. Am. J. Physiol. 262: C854–861, 1992.

    CAS  Google Scholar 

  58. Marsden, P. A., D. M. Dorfman, T. Collins, B. M. Brenner, S. H. Orkin, and B. J. Ballermann. Regulated Expression of Endothelin 1 in Glomerular Capillary Endothelial Cells Am. J. Physiol. 261 (Renal Fluid Electrolyte Physiol. 30 ): F117–125, 1991.

    Google Scholar 

  59. Massop, D. M. The Influence of Wall Shear Stress on Endothelial Cell Secretion of Interleukins. 23rd Ann. Lofland Conference (San Antonio, 1990 ).

    Google Scholar 

  60. Miles, L. A., ET AL. A Potential Basis for the Thrombotic Risks Associated with Lipoprotein(a). Nature 339: 301–303, 1989.

    Article  PubMed  CAS  Google Scholar 

  61. Miller, V. M., and J. C. Burnett, JR. Modulation of NO and Endothelin by Chronic Increases in Blood Flow in Canine Femoral Arteries. Am. J. Physiol. 263 (Heart Circ. Physiol. 32 ): H103–108, 1992.

    Google Scholar 

  62. Mo, M., S. G. Eskin, and W. P. Schilling. Flow-Induced Changes in Calcium Signaling of Vascular Endothelial Cells: Effect of Shear Stress and Atp. Am. J. Physiol. 260 (Heart Circ. Physiol.): H1698–1707, 1991.

    PubMed  CAS  Google Scholar 

  63. Moake, J. L., N. A. Turner, N. A. Stathopoulos, L. Nolasco, and J. D. Hellums. Shear-Induced Platelet Aggregation Can be Mediated by vWF Released from Platelets, as well as by Exogenous Large or Unusually Large vWF Multimers, Requires Adenosine Diphosphate, and is Resistant to Aspirin. Blood 71: 1366–1374, 1988.

    PubMed  CAS  Google Scholar 

  64. Morinaga, K., H. Eguchi, T. Miyazaki, K. Okadome, and K. Sugimachi. Development and Regression of Intimal Thickening of Arterially Transplanted Autologous Vein Graft in Dogs. J. Vase. Surg. 5: 719–730, 1987.

    CAS  Google Scholar 

  65. Nerem, R. M., M. J. Levesque, and J. F. Cornhill. Vascular Endothelial Morphology as an Indicator of the Pattern of Blood Flow. J. Biomech. Eng. 103: 172–176, 1981.

    Article  PubMed  CAS  Google Scholar 

  66. Nollert, M. U., S. G. Eskin, and L. V. Mcintire. Shear Stress Increases Inositol Trisphosphate Levels in Human Endothelial Cells. Biochem. Biophys. Res. Comm. 170: 281–287, 1990.

    Article  PubMed  CAS  Google Scholar 

  67. Nollert, M. U., E. R. Hall, S. G. Eskin, and L. V. Mcintire. The Effect of Shear Stress on the Uptake and Metabolism of Arachidonic Acid by Human Endothelial Cells. Biochim. Biophys. Acta. 1005: 72–78, 1989.

    Article  PubMed  CAS  Google Scholar 

  68. Nollert, M. U., S. L. Diamond, and L. V. Mcintire. Hydrodynamic Shear Stress and Mass Transport Modulation of Endothelial Cell Metabolism. Biotech. Bioengr. 38: 588–602, 1991.

    Article  CAS  Google Scholar 

  69. Olesen, S. P., D. E. Clapham, and P. F. Davies. Haemodynamic Shear Stress Activates a K` Current in Vascular Endothelial Cells. Nature 331: 168–170, 1988.

    Article  PubMed  CAS  Google Scholar 

  70. Pohl, U., J. Holtz, R. Busse, and E. Bassenge. Crucial Role of Endothelium in the Vasodilator Response to Increased Flow In Vivo. Hypertension 8: 37–44, 1986.

    Article  PubMed  CAS  Google Scholar 

  71. Ranjan, V., and S. Diamond. Fluid Shear Stress Induces Synthesis and Nuclear Localization of c-fos in Cultured Human Endothelial Cells. Biochem. Biophys. Res. Comm. 196: 7984, 1993.

    Article  Google Scholar 

  72. Reich, K. M., C. V. Gay, and J. A. Frangos. Fluid Shear Stress as a Mediator of Osteoblast Cyclic Adenosine Monophosphate Production. J. Cell. Physiol. 143: 100–104, 1990.

    Article  PubMed  CAS  Google Scholar 

  73. Resnick, N., T. Collins, W. Atkinson, D. T. Bonthron, C. F. Dewey, and M. A. Gimbrone. Platelet-derived Growth Factor B Chain Promoter Contains a Cis-acting Fluid Shear Stress-responsive Element. Proc. Natl. Acad. Sci. Usa 90: 4591–4595, 1993.

    Article  PubMed  CAS  Google Scholar 

  74. Ross, R., and J. A. Glomset. The Pathogenesis of Atherosclerosis. New Engl. J. Med$1295: pt. 1, 369–377; pt. 2, 420–425, 1976.

    Google Scholar 

  75. Rubanyi, G. M., J. C. Romero, and P. M. Vanhoutte. Flow-Induced Release of Endothelieum-Derived Relaxing Factor. Am. J. Physiol. 250 (Heart Circ. Physiol. 19 ): H1145 - H1149, 1986.

    Google Scholar 

  76. Sakata, N., and S. Takebayashi. Localization of Atherosclerotic Lesions in the Curving Sites of Human Internal Carotid Arteries. Biorheology 25: 567–578, 1988.

    PubMed  CAS  Google Scholar 

  77. Sakata, N., T. Joshita, and G. Ooneda. Topographical Study on Arteriosclerotic Lesions at the Bifurcations of Human Cerebral Arteries. Heart and Vessels, 1: 70–73, 1985.

    Article  PubMed  CAS  Google Scholar 

  78. Sakata, Y., S. Curriden, D. Lawrence, J. H. Griffin, and D. J. Loskutoff. Activated Protein C Stimulates the Fibrinolytic Activity of Cultured Endothelial Cells and Decreases Antiactivator Activity. Proc. Natl. Acad. Sci. Usa 82: 1121–1125, 1985.

    Article  PubMed  CAS  Google Scholar 

  79. Saksela, O., D. Moscatelli, and D. B. Rifkin. The Opposing Effect of Basic Fibroblast Growth Factor and Transforming Growth Factor Beta on the Regulation of Plasminogen Activator Activity in Capillary Endothelial Cells. J. Cell Biol. 105: 957–963, 1987.

    Article  PubMed  CAS  Google Scholar 

  80. Sato, Y., and D. B. Rifkin. Inhibition of Endothelial Cell Movement by Pericytes and Smooth Muscle Cells: Activation of a Latent Transforming Growth Factor-ß1-like Molecule by Plasmin in Co-culture. J. Cell. Biol. 109: 309–315, 1989.

    Article  PubMed  CAS  Google Scholar 

  81. Sawdey, M. S., and D. J. Loskutoff. Regulation of Murine Type 1 Plasminogen Activator Inhibitor Gene Expression In Vivo. Tissue Specificity and Induction by Lipopolysaccharide, Tumor Necrosis Factor-a, and Transforming Growth Factor-ß. J. Clin. Invest. 88: 1346 1353, 1991.

    Google Scholar 

  82. Sawdey, M., T. J. Podor, and D. J. Loskutoff. Regulation of Type 1 Plasminogen Activator Inhibitor Gene Expression in Cultured Bovine Aortic Endothelial Cells. J. Biol. Chem. 264: 10396–10401, 1989.

    PubMed  CAS  Google Scholar 

  83. Schleef, R. R., and C. R. Birdwell. Biochemical Changes in Endothelial Cell Monolayers Induced by Fibrin Deposition In Vitro. Arteriosclerosis 3: 14–20, 1984.

    Google Scholar 

  84. Schleef, R. R., M. P. Bevilacqua, M. Sawdey, M. A. Gimbrone, JR., and D. J. Loskutoff. Cytokine Activation of Vascular Endothelium: Effects on Tissue-type Plasminogen Activator and Type 1 Plasminogen Activator Inhibitor. J. Biol. Chem. 263: 5797–5803, 1988.

    CAS  Google Scholar 

  85. Schwarcz, T. H., P. B. Dobrin, R. Mrkvicka, L. Skowron, and M. B. Cole. Early Myointimal Hyperplasia After Balloon Catheter Embolectomy: Effect of Shear Forces and Multiple Withdrawals. J. Vasc. Surgery 7: 495–499, 1988.

    CAS  Google Scholar 

  86. Sharefkin, J. B., S. L. Diamond, S. G. Eskin, C. W. Dieffenbach, and L. V. Mcintire. Fluid Flow Decreases Endothelin mRna Levels and Suppresses Endothelin Peptide Release in Cultured Human Endothelium Cells. J. Vasc. Surg. 14: 1–9, 1991.

    Article  PubMed  CAS  Google Scholar 

  87. Shen, J., F. W. Luscinskas, A. Connolly, C. F. Dewey, JR., and M. A. Gimbrone, JR. Fluid shear stress modulates cytosolic free calcium in vascular endothelial cells. Am. J. Physiol. 262 (Cell Physiol 31 ): C384–390, 1992.

    Google Scholar 

  88. Singh, T. M., M. H. Kadowaki, S. Glagov, and C. K. Zarins. Role of Fibrinopeptide B in Early Atherosclerotic Lesion Formation. Amer. J. Surg. 160: 156–163, 1990.

    Article  PubMed  CAS  Google Scholar 

  89. White, G. E., M. A. Gimbrone, JR., and K. Fujiwara. Factors Influencing the Expression of Stress Fibers in Vascular Endothelial Cells In Situ. J. Cell Biol. 97: 416–424, 1983.

    Article  PubMed  CAS  Google Scholar 

  90. Yanagisawa, M., A. Inoue, Y. Takuwa, Y. Mitsui, M. Kobayashi, and T. Masaki. The Human Preproendothelin-1 Gene: Possible Regulation By Endothelial Phosphoinositide Turnover Signaling. J. Cardiovasc. Pharmacol. 13: S13–17, 1989.

    Article  PubMed  CAS  Google Scholar 

  91. Yanagisawa, M., H. Kurihara, S. Kimura, Y. Tomobe, M. Kobayashi, Y. Mitsui, Y. Yazaki, K. Goto, and T. Masaki. A Novel Potent Vasoconstrictor Peptide Produced by Vascular Endothelial Cells. Nature 332: 411–415, 1988.

    Article  PubMed  CAS  Google Scholar 

  92. Yoshizumi, M., ET AL. Interleukin 1 Increases the Production of Endothelin-1 by Cultured Endothelial Cells. Biochem. Biophys. Res. Comm. 166: 324–329, 1990.

    Article  PubMed  CAS  Google Scholar 

  93. Yoshizumi, M., H. Kurihara, T. Sugiyama, F. Takaku, M. Yanagisawa, T. Masaki, and Y. Yazaki. Hemodynamic Shear Stress Stimulates Endothelin Production by Cultured Endothelial Cells. Biochem. Biophys. Res. Comm. 161: 859–864, 1989.

    Article  PubMed  CAS  Google Scholar 

  94. YU, J. C. M., and A. I. Gotlieb. Disruption of Endothelial Actin Microfilaments by Protein Kinase C Inhibitors. Microvasc. Res. 43: 100–111, 1992.

    Article  PubMed  CAS  Google Scholar 

  95. Zarins, C. K., D.P. Giddens, B. K. Bharavaj, V. S. Sottiurai, R. F. Mabon, and S. Glagov. Carotid Bifurcation Atherosclerosis: Quantitative Correlation of Plaque Localization with Flow Velocity Profiles and Wall Shear Stress. Circ. Res. 53: 502–512, 1983.

    Article  PubMed  CAS  Google Scholar 

  96. Zarins, C. K., M. A. Zatina, D. P. Giddens, D. N. Ku, and S. Glagov. Shear Stress Regulation of Artery Lumen Diameter in Experimental Atherogenesis. J. Vasc. Surg. 5: 413420, 1987.

    Google Scholar 

  97. Zwolak, R. M., M. C. Adams, and A. W. Clowes. Kinetics of Vein Graft Hyperplasia: Association with Tangential Stress. J. Vase. Surg. 5: 126–136, 1987.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1995 American Physiological Society

About this chapter

Cite this chapter

Diamond, S.L., Mcintire, L.V. (1995). Gene Regulation in Endothelial Cells. In: Bevan, J.A., Kaley, G., Rubanyi, G.M. (eds) Flow-Dependent Regulation of Vascular Function. Clinical Physiology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7527-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7527-9_4

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7527-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics