Skip to main content

Atherosclerosis and the Role of Wall Shear Stress

  • Chapter
Flow-Dependent Regulation of Vascular Function

Part of the book series: Clinical Physiology Series ((CLINPHY))

Abstract

Atherosclerosis is the chief cause of death in the United States and in much of the western world. It is a disease of the large- and medium-size arteries. It also is a disease which involves complex interactions between a wide variety of factors (41, 88–90, 101, 114–115). Included in this are: (1) the endogenous cells of the arterial wall, that is, endothelial and smooth muscle cells; (2) formed elements of blood, notably monocytes and platelets; (3) plasma proteins, including low density lipoproteins (LDL); (4) connective tissue elements of the arterial intima; (5) environmental and genetic factors; and (6) hemodynamic-related factors. In this chapter we will be exploring the last of these—the role of blood flow and in particular wall shear stress, the frictional force imposed by flowing blood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ando, J., H. Nomura, and A. Kamiya. The effects of fluid shear stress on the migration and proliferation of cultured endothelial cells. Microvasc. Res. 33: 62–70, 1987.

    PubMed  CAS  Google Scholar 

  2. Ando, J., T. Komatsuda, and A. Kamiya. Cytoplasmic calcium responses to fluid shear stress in cultured vascular endothelial cells. In Vitro Cell Dev. Biol. 24: 871–877, 1988.

    PubMed  CAS  Google Scholar 

  3. Asakura, T., and T. Karino. Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ. Res. 11: 63–73, 1972.

    Google Scholar 

  4. Bell, F. P., I. Adamson, and C. J. Schwartz. Aortic endothelial permeability to albumin: Focal and regional patterns of uptake and transmural distribution of 125I-albumin in the young pig. Exp. Mol. Pathol. 20: 57, 1974.

    PubMed  CAS  Google Scholar 

  5. Bell, F. P., Day, A. J., Gent, M., and C. J. Schwartz. Differing patterns of cholesterol accumulation and 3H-cholesterol influx in areas of the cholesterol-fed pig aorta identified by Evans Blue dye. Exp. Mol. Pathol. 22: 366, 1975.

    CAS  Google Scholar 

  6. Berk, B. C., P. R. Girard, M. Mitsumato, R. W. Alexander, and R. M. Nerem. Shear stress alters the genetic growth program of cultured endothelial cells. Proc. World Congress Biomechs. 11: 315 (Abstract), 1990.

    Google Scholar 

  7. Brown, A. M. A cellular logic for G protein coupled ion channel pathways. Faseb J. 5: 2175–2179, 1991.

    PubMed  CAS  Google Scholar 

  8. Buck, R. C. Behavior of vascular smooth muscle cells during repeated stretching of the substratum in vitro. Atherosclerosis 46: 217–223, 1983.

    CAS  Google Scholar 

  9. Campbell, G. R., and J. H. Campbell. Smooth muscle cell phenotypic changes in arterial wall homeostasis: Implications for the pathogenesis of atherosclerosis. Exp. Mol. Pathol. 42: 139–162, 1985.

    PubMed  CAS  Google Scholar 

  10. Campbell, G. R., J. H. Campbell, J. A. Manderson, S. Horrigan, and R. E. Rennick. Arterial smooth muscle: a multifunctional mesenchymal cell. Arch. Path. Lab. Med. 112: 977–986, 1988.

    PubMed  CAS  Google Scholar 

  11. Caplan, B. A., and C. J. Schwartz. Increased endothelial cell turnover in areas of in vivo Evans Blue uptake in the pig aorta. Atherosclerosis 17: 401, 1973.

    PubMed  CAS  Google Scholar 

  12. Caplan, B. A., R. G. Gerrity, and C. J. Schwartz. Endothelial cell morphology in focal areas of in vivo Evans Blue uptake in the young pig aorta. I. Quantitative Light Microscopic Findings. Exp. Mol. Pathol. 21: 102, 1974.

    PubMed  CAS  Google Scholar 

  13. Caro, C. G., J. M. Fitz-Gerald, and R. C. Schroter. Atheroma and Arterial wall shear. Observation, correlation and proposal of a shear-dependent mass transfer mechanism for atherogenesis. Proc. Roy. Soc., London, B 177: 109–159, 1971.

    CAS  Google Scholar 

  14. Caro, C. G., C. L. Dumoulin, J. M. R. Graham, K. H. Parker and S. P. SouzA. Secondary flow in the human common carotid artery imaged by MR angiography. ASME J. Biomech. Engr. 114: 147–149, 1992.

    CAS  Google Scholar 

  15. Cathcart, M. K., D. W. Morel, and G. M. Chisholm. Monocytes and neutrophils oxidize low density lipoprotein making it cytotoxic. J. Leukocyte Biol. 38: 341–350, 1985.

    PubMed  CAS  Google Scholar 

  16. Chuang, P., H. Cheng, S. Lin, K. Jan, and S. Chien. Macromolecular transport across arterial and venous endothelium in rats: Studies with Evans Blue-albumin and horseradish peroxidase. Arteriosclerosis 10: 188–197, 1990.

    PubMed  CAS  Google Scholar 

  17. Cornhill, J. F. (Private Communication).

    Google Scholar 

  18. Cornhill, J. F., and M. R. Roach. A quantitative study of the localization of atherosclerotic lesions in the rabbit aorta. Atherosclerosis 23: 489–501, 1976.

    PubMed  CAS  Google Scholar 

  19. Cushing, S. D., J. A. Berlinger, A. J. Valente, M. C. Territo, N. Mahamad, F. Parhami, R. Gerrity, C. J. Schwartz, and A. M. Fogelman. Minially modified low density lipoprotein induces monocyte chemotactic protein in human endothelial cells and smooth muscle cells. Proc. Natl. Acad. Sci. U.S.A. 87: 5134, 1990.

    PubMed  CAS  Google Scholar 

  20. D’Amore, P. A., A. Orlidge, and I. M. Herman. Growth control in the retinal microvasculature. In Progress in Retinal Research, N. Osborne and G. Chaden, eds. New York: Pergamon Press, Vol. 7, pp. 233–258, 1987.

    Google Scholar 

  21. Dartsch, P. C., and E. Betz. Response of cultured endothelial cells to mechanical stimulation. Basic Res. Cardiol. 84: 268–281, 1989.

    PubMed  CAS  Google Scholar 

  22. Dartsch, P. C., and H. Hammerle. Orientation response of arterial smooth muscle cells to mechanical stimulation. Eur. J. Cell Biol. 4: 339–346, 1986.

    Google Scholar 

  23. Dartsch, P. C., H. Hammerle, and E. Betz. Orientation of arterial smooth muscle cells growing on cyclically stretched substrates. Acta Annat. 125: 108–113, 1986.

    CAS  Google Scholar 

  24. Davies, P. F., C. F. Dewey, JR., S. R. Bussolari, E. F. Gordon, and M. A. Gimbrone, JR. Influence of hemodynamic forces on vascular endothelial function: in vitro studies of shear stress and pinocytosis in bovine aortic endothelial cells. J. Clin. Invest. 73: 1121–1129, 1984.

    PubMed  CAS  Google Scholar 

  25. Dewey, C. F., S. R. Bussolari, M. A. Gimbrone, JR., and P. F. Davies. The dynamic response of vascular endothelial cells to fluid shear stress. ASME J. Biomech. Engr. 103: 177–181, 1981.

    Google Scholar 

  26. Diamond, S. L., S. G. Eskin, and L. V. Mcintire. Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells. Science 243: 1483–1485, 1989.

    PubMed  CAS  Google Scholar 

  27. Diamond, S. L., J. B. Sharefkin, C. Dieffenbach, K. Frazier-Scott, L. V. Mcintire, and S. G. Eskin. Tissue plasminogen activator messenger Rna levels increase in cultured human endothelial cells exposed to laminar shear stress. J. Cell. Physiol. 143: 364–371, 1990.

    PubMed  CAS  Google Scholar 

  28. Dull, R. O., and P. F. Davies. Flow modulation of agonist (Atp)-response (Cam) coupling in vascular endothelial cells. Am. J. Physiol. 261 (Heart Circ. Physiol. 30 ): H149–H154, 1991.

    Google Scholar 

  29. Duncan, D. D., C. B. Bargeron, S. E. Borchardt, O. J. Deters, S. A. Gearhart, F. F. Mark, and M. H. Friedman. The effect of compliance on wall shear in casts of a human aortic bifurication. ASME J. Biomech. Engr. 112: 183–188, 1990.

    CAS  Google Scholar 

  30. Dutta, A., D. M. Wang, and J. M. Tarbell. Numerical analysis of flow in an elastic artery model. ASME J. Biomech. Engr. 114: 26–33, 1992.

    CAS  Google Scholar 

  31. Eskin, S. G., C. L. Ives, L. V. Mcintire, and L. T. Navarro. Response of cultured endothelial cells to steady flow. Microvasc. Res. 28: 87–94, 1984.

    PubMed  CAS  Google Scholar 

  32. Feigl, E. O. Edrf—a protective factor? Nature 331: 490–491, 1988.

    PubMed  CAS  Google Scholar 

  33. Flaherty, J. R., J. R. Pierce, V. J. Ferrans, D. J. Patel, W. K. Tucker, and D. L. Fry. Endothelial nuclear patterns in the canine arterial tree with particular reference to hemodynamic events. Circ. Res. 30: 23, 1972.

    PubMed  CAS  Google Scholar 

  34. Frangos, J. A., L. V. Mcintire, S. G. Eskin, and C. L. Ives. Flow effects on prostacyclin production by cultured human endothelial cells. Science 227: 1477–1479, 1985.

    PubMed  CAS  Google Scholar 

  35. Friedman, M. H., V. O’Brien, and L. W. Ehrlich. Calculations of pulsatile flow through a branch. Implications for the hemodynamics of atherogenesis. Circ. Res. 36: 277–285, 1975.

    PubMed  CAS  Google Scholar 

  36. Friedman, M. H., O. J. Deters, F. F. Mark, C. B. Bargeron, and G. M. Hutchins. Arterial geometry affects hemodynamics: a potential risk factor for atherosclerosis. Atherosclerosis 46: 225–231, 1983.

    PubMed  CAS  Google Scholar 

  37. Friedman, M. H., O. J. Peters, C. B. Bargeron, G. M. Hutchins, and F. F. Mark. Shear-dependent thickening of the human arterial intima. Atherosclerosis 60: 161–171, 1986.

    PubMed  CAS  Google Scholar 

  38. Geiger, R. V., B. C. Berk, R. W. Alexander, and R. M. Nerem. Flow-induced calcium transients on single endothelial cells: spatial and temporal analysis. Am. J. Physiol. (Cell Physiol.) 262: C1411 - C1417, 1992.

    CAS  Google Scholar 

  39. Gerrity, R. G., J. A. Goss, and L. Soby. Control of monocyte recruitment by chemotactic factor(s) in lesion-prone areas of swine aorta. Arteriosclerosis 5: 55–66, 1985.

    PubMed  CAS  Google Scholar 

  40. Girard, P. R., and R. M. Nerem. Role of protein kinase C in the transduction of shear stress to alterations in endothelial cell morphology. J. Cell Biochem. 14E: 21 (Abstract), 1990.

    Google Scholar 

  41. Glagov, S., C. K. Zarins, D. P. Giddens, and H. R. Davis, JR. Atherosclerosis: what is the nature of the plaque? In Vascular Diseases: Current Research and Clinical Applications, D. E. Strandness, Jr., P. Didishein, A. W. Glowes, and J. T. Watson, eds. Orlando: Grune and Stratton, pp. 15–33, 1987.

    Google Scholar 

  42. Goldstein, J. L., and M. S. Brown. The low-density lipoprotein pathway and its relation to atherosclerosis. Annual Rev. Biochem. 46: 897–930, 1977.

    CAS  Google Scholar 

  43. Gorfien, S. F., S. K. Winston, L. E. Thibault, and E. J. Macarak. Effects of biaxial deformation on pulmonary artery endothelial cells. J. Cell Physiol. 139: 492–500, 1989.

    PubMed  CAS  Google Scholar 

  44. Grabowski, E. F., E. A. Jaffe, and B. B. Weksler. Prostacyclin production by culture human endothelial cells exposed to step increases in shear stress. J. Lab. Clin. Med. 105: 36–43, 1985.

    PubMed  CAS  Google Scholar 

  45. Grande, J. P., S. Glagov, S. R. Bates, A. L. Horwitz, and M. B. Matthews. Effect of normolipemic and hyperlipemic serum on biosynthetic response to cyclic stretching of aortic smooth muscle cells. Arteriosclerosis 9: 446–452, 1989.

    PubMed  CAS  Google Scholar 

  46. Grottum, P., A. Svindland, and L. Walloe. Localization of atherosclerotic lesions in the bifurcation of the left main coronary artery. Atherosclerosis 47: 55–62, 1983.

    PubMed  CAS  Google Scholar 

  47. Hajjar, D. P., J. F. Domenick, J. B. Amberson, and J. M. Hefton. Interaction of arterial cells. 1. Endothelial cells alter cholesterol metabolism in co-cultured smooth muscle cells. J. Lipid Res. 26: 1212–1223, 1985.

    CAS  Google Scholar 

  48. Holenstein, R., P. Niederer, and M. Anliker. A viscoelastic model for use in predicting arterial pulse waves. ASME J. Biomech. Engr. 102: 318–325, 1980.

    CAS  Google Scholar 

  49. Karino, T., and M. Motomiya. Flow visualization in isolated transparent natural blood vessels. Biorheology 20: 119–127, 1983.

    PubMed  CAS  Google Scholar 

  50. Kim, D. W., A. I. Gotlieb, and B. L. Langille. In vivo modulation of endothelial F-actin microfilaments by experimental alterations in shear stress. Arteriosclerosis 9: 439–445, 1989.

    PubMed  CAS  Google Scholar 

  51. Klanchar, M., J. M. Tarbell, and D. M. Wang. In vitro study of the influence of radial wall motion on wall shear stress in an elastic tube model of the aorta. Circ. Res. 66: 1624, 1990.

    PubMed  CAS  Google Scholar 

  52. Kollros, P. R., S. R. Bates, M. B. Matthews, A. L. Horwitz, and S. Glagov. Cyclic Amp inhibits increased collagen production by cyclically stretched smooth muscle cells. Lab. Invest. 56: 410–417, 1987.

    PubMed  CAS  Google Scholar 

  53. Ku, D. N., and D. P. Giddens. Laser dooppler anemometer measurements of pulsatile flow in a model carotid bifurcation. J. Biomechanics 20: 407–421, 1987.

    CAS  Google Scholar 

  54. Ku, D. N., and D. Liepsch. The effects of non-Newtonian viscosity and wall elasticity on flow at a 90° bifurcation. Biorheol. 23: 359–370, 1986.

    CAS  Google Scholar 

  55. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Arteriosclerosis 5: 293–302, 1985.

    PubMed  CAS  Google Scholar 

  56. Kubes, P., M. Suzuki, and D. N. Granger. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc. Natl. Acad. Sci. U.S.A. 88: 4651–4655, 1991.

    PubMed  CAS  Google Scholar 

  57. KuLik, T. J., R. A. Bialecki, W. S. ColuccI, A. Rothman, and E. T. Glennon. Underwood RH. Stretch increases inositol triphosphate and inositol tetrakiphosphate in cultured pulmonary vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 180 (2): 982–987, 1991.

    Google Scholar 

  58. Laher, I., C. Van Breeman, and J. A. Bevan. Stretch-dependent calcium uptake associated with myogenic tone in rabbit facial vein. Circ. Res. 63: 669–772, 1988.

    PubMed  CAS  Google Scholar 

  59. Laher, I., P. Vorkapic, A. L. DowD, and J. A. Bevan. Protein Kinase C potentiates stretch-induced cerebral artery tone by increasing intracellular sensitivity to Ca“. Biochem. Biophys. Res. Common. 165: 312–318, 1989.

    CAS  Google Scholar 

  60. Lansman, J. B., T. J. Hallam, and T. J. Rink. Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? Nature 325: 811–813, 1987.

    PubMed  CAS  Google Scholar 

  61. Leung, D., S. Glagov, and M. Mathews. Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science 191: 475–477, 1976.

    CAS  Google Scholar 

  62. Leung, D. Y. M., S. Glagov, and M. B. Mathews. A new in vitro system for studying cell response to mechanical stimulation: Different effects of cyclic stretching and agitation on smooth muscle cell biosynthesis. Exp. Cell Res. 109: 285–298, 1977.

    PubMed  CAS  Google Scholar 

  63. Levesque, M. J., and R. M. Nerem. The elongation and orientation of cultured endothelial cells in response to shear stress. ASME J. Biomech. Engr. 106: 341–347, 1985.

    Google Scholar 

  64. Levesque, M. J., and R. M. Nerem. The studyof rheological effects on vascular endothelial cells in culture. Biorheology 26: 345–357, 1989.

    PubMed  CAS  Google Scholar 

  65. Levesque, M. J., D. Liepsch, S. Moravec, and R. M. Nerem. Correlation of endothelial cell shape and wall shear stress in a stenosed dog aorta. Arteriosclerosis 6: 220–229, 1986.

    PubMed  CAS  Google Scholar 

  66. Levesque, M. J., E. A. Sprague, and R. M. Nerem. Vascular endothelial cell proliferation in culture and the influence of flow. Biomaterials 11: 702–707, 1990.

    PubMed  CAS  Google Scholar 

  67. Libby, P., and G. K. Hansson. Involvement of the immune system in human atherogenesis: current knowledge and unanswered questions. Lab. Invest. 64: 5–15, 1991.

    PubMed  CAS  Google Scholar 

  68. Majesky, M. W., and S. M. Schwartz. Smooth muscle diversity in arterial wound repair. Toxic. Path. 18: 554–559, 1990.

    CAS  Google Scholar 

  69. Mitsumata, M., R. M. Nerem, R. W. Alexander, and B. C. Berk. Shear stress inhibits endothelial cell proliferation by growth arrest in the Go/G, phase of the cell cycle. FASEB J. 5(4): A527 (Abstract), 1991.

    Google Scholar 

  70. Mitsumata, M., R. M. Nerem, R. W. Alexander, and B. C. Berk. Inverse relationship in mRna expression between c-sis and Gapdh in endothelial cells subjected to shear stress. Abstract Book of Workshop on Mechanical Stress Effects on Vascular Cells. Atlanta, Ga: April 20–21, 1991.

    Google Scholar 

  71. Montenegro, M. R., and D. A. Eggen. Topography of atherosclerosis in the coronary arteries. Lab. Invest. 18: 586–593, 1968.

    PubMed  CAS  Google Scholar 

  72. Mo, M., S. G. Eskin, and W. P. Schilling. Flow-induced changes in Ca“ signaling of vascular endothelial cells: effect of shear stress and Atp. Am. J. Physiol. 260 (Heart Circ. Physiol. 29 ): H1698 - H1707, 1991.

    Google Scholar 

  73. MooRE, J. E., JR., D. N. Ku, C. K. Zarins, and S. Glagov. Pulsatile flow visualization in the abdominal aorta under differing physiologic conditions: Implications for increased susceptibility to atherosclerosis. ASME J. Biomech. Engr. 114: 391–397, 1992.

    Google Scholar 

  74. Navab, M., S. S. Imes, S. Hama, G. P. Hough, L. A. Ross, R. W. Bork, A. J. Valente, J. A. Berliner, D. C. Drinkwater, H. Laks, and A. M. Fogelman. Monocyte transmigration induced by modification of low density lipoprotein in co-cultures of human aortic wall cells is due to induction of monocyte chemotatic protein 1 synthesis and is abolished by high density lipoprotein. J. Clin. Invest. 88: 2039–2046, 1991.

    PubMed  CAS  Google Scholar 

  75. Nerem, R. M. Arterial fluid dynamics and interactions with the vessel wall. In Structure and Function of the Circulation, C. J. Schwartz, N. T. Werthessen, and S. Wolf, eds. New York: Plenum Publishing Corp., Vol. 11, 719–835, 1981.

    Google Scholar 

  76. Nerem, R. M., and P. R. Girard. Hemodynamic influences on vascular endothelial biology. Toxic. Path. 18: 572–582, 1990.

    CAS  Google Scholar 

  77. Nerem, R. M., and M. J. Levesque. The case for fluid dynamics as a localizing factor in atherogenesis. In Fluid Dynamics as a Localizing Factor for Atherosclerosis, G. Schettler, R. M. Nerem, H. Schmid-Schronbein, H. Mori, and C. Diehm, eds. Heidelberg, Frg: Springer-Verlag, pp. 26–37, 1983.

    Google Scholar 

  78. Nerem, R. M., and W. A. Seed. An in vivo study of aortic flow disturbances. Cardiovasc. Res. 6 (1): 1–14, 1972.

    PubMed  CAS  Google Scholar 

  79. Nerem, R. M., M. J. Levesque, and J. F. Cornhill. Vascular endothelial morphology as an indicator of blood flow. ASME J. Biomech. Engr. 103: 172–176, 1981.

    CAS  Google Scholar 

  80. Nerem, R. M., J. A. Rumberger, D. R. Gross, R. L. Hamlin, and R. L. Geiger. Hot film anemometer velocity measurements of arterial flow in horses. Circ. Res. 34: 193–204, 1974.

    PubMed  CAS  Google Scholar 

  81. Nerem, R. M., J. A. Rumberger, D. R. Gross, W. W. Muir, and G. L. Geiger. Hot-film artery velocity measurements in horses. Cardiovasc. Res. 10: 301–313, 1976.

    PubMed  CAS  Google Scholar 

  82. Mimi, H. Role of stress concentration in arterial walls in atherosclerosis. Biorheology 16: 223–230, 1979.

    Google Scholar 

  83. Nollert, M. V., and L. V. Mcintire. Convective mass transfer effects on the intracellular calcium resonse of endothelial cells. ASME J. Biomech. Engr. 114: 321–326, 1992.

    CAS  Google Scholar 

  84. Nollert M. U., S. G. Eskin, and L. V. Mcintire. Shear stress increases inositol trisphosphate levels in human endothelial cells. Biochem. Biophys. Res. Commun. 170: 281–287, 1990.

    PubMed  CAS  Google Scholar 

  85. Olesen, S. P., D. E. Clapham, and P. F. Davies. Hemodynamic shear stress activates a K* current in vascular endothelial cells. Nature 331: 168–170, 1987.

    Google Scholar 

  86. Perktold, K., R. M. Nerem, and R. O. Peter. A numerical calculation of flow in a curved tube model of the left main coronary artery. J. Biomechanics. 24: 175–189, 1991.

    CAS  Google Scholar 

  87. Prasad, A. R. S., R. M. Nerem, C. J. Schwartz, and E. A. Sprague. Stimulation Of phosphoinositide hydrolysis in bovine aortic endothelial cells exposed to elevated shear stress. J. Cell. Biol. 109: 331a (Abstract), 1989.

    Google Scholar 

  88. Ross, R. Atherosclerosis: a problem of biology of arterial wall cells and their interaction with blood components. Atherosclerosis 1: 293–311, 1981.

    CAS  Google Scholar 

  89. Ross, R. Mechanisms of atherosclerosis-a review. Adv. Nephrol. 19: 79, 1990.

    CAS  Google Scholar 

  90. Ross, R., and J. Glomset. The pathogenesis of atherosclerosis. New England J. Med. 295: 369–377, 420–425, 1976.

    Google Scholar 

  91. Ross, R., and S. Klebanoff. The smooth muscle cell. I. In vivo synthesis of connective tissue proteins. J. Cell Biol. 50: 159–171, 1971.

    PubMed  CAS  Google Scholar 

  92. Rabinovitz, R. S., M. J. Levesque, and R. M. Nerem. Effects of branching angle in the left main coronary bifurication. Circulation 76 (Supplement): IV - 387, 1987.

    Google Scholar 

  93. Rozek, M. M., A. J. Valente, A. J. Cayatte, E. A. Sprague, and C. J. Schwartz. The influence of smooth muscle cell-derived monocyte chemotactic protein (Mcp-I) on monocyte adherence to cultured vascular endothelial cells. Circulation 82: 363 (Abstract), 1990.

    Google Scholar 

  94. Rubanyi, G. M., J. C. Romero, and P. M. Vanhoutte. Flow-induced release of endothelium-derived relaxing factor. Am. J. Physiol. 250 (Heart Circ. Physiol. 19 ): H1145 - H1149, 1986.

    Google Scholar 

  95. Sakata, N., K. Kawamura, and S. Takebayashi. Effects of collagen matrix on proliferation and differentiation of vascular smooth muscle cells in vitro. Exp. Mol. Path. 52: 179–191, 1990.

    CAS  Google Scholar 

  96. Sato, M., M. J. Levesque, and R. M. Nerem. Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress. Arteriosclerosis 7: 276–286, 1987.

    PubMed  CAS  Google Scholar 

  97. Sato, M., D. P. Theret, L. T. Wheeler, N. Ohshima, and R. M. Nerem. Application of the micropipette technique to the measurement of cultured borcine aortic endothelial cell viscoelastic properties. ASME J. Biomech. Eng. 112: 263–268, 1990.

    CAS  Google Scholar 

  98. Schwartz, C. J., and J. R. A. Mitchell. Observations on localizations of arterial plaques. Circ. Res. 11: 63–73, 1972.

    Google Scholar 

  99. Schwartz, C. J., E. A. Sprague, S. R. Fowler, and J. L. Kelley. Cellular participation in atherogenesis: Selected facets of endothelium, smooth muscle, and peripheral blood monocyte. In Fluid Dynamics as a Localizing Factor for Atherosclerosis, G. Schettler, R. M. Nerem, H. Schmid-Schonbein, H. Mori, and D. Diehm, eds. Heidelberg Frg: Springer-Verlag, pp. 200–207, 1983.

    Google Scholar 

  100. Schwartz, C. J., A. J. Valente, E. A. Sprague, J. L. Kelley, C. A. Suenram, D. T. Graves, M. M. Rozek, E. H. Edwards, and R. Delgade. Monocyte-macrophage participation in atherogenesis: inflammatory components of pathogenesis. Semin. Thromb. Hemost. 12: 79–86, 1986.

    PubMed  CAS  Google Scholar 

  101. Schwartz, C. J., A. J. Valente, E. A. Sprague, J. L. Kelley, and R. M. Nerem. The pathogenesis of atherosclerosis: an overview. Clinical Cardiology 14: 1–1–16, 1991.

    Google Scholar 

  102. Schwartz, S. M., G. R. Campbell, and J. H. Campbell. Replication of smooth muscle cells in vascular disease. Circ. Res. 58: 427–444, 1986.

    PubMed  CAS  Google Scholar 

  103. Schwenke, D. C., and T. E. Carew. Initiation of atherosclerotic lesions in cholesterol-fed rabbits: II. selective retention of Ldl vs. selective increases in Ldl permeability in susceptible sites of arteries. Arteriosclerosis 9: 908–918, 1989.

    PubMed  CAS  Google Scholar 

  104. Seidel, C. L., and L. A. Schildmeyer. Vascular smooth muscle adaptation to increased load. Annual Rev. Physiol. 49: 489–499, 1987.

    PubMed  CAS  Google Scholar 

  105. Shen, J., and C. F. Dewey, JR. Fluid shear stress modulates cytosolic free calcium in vascular endothelial cells. Am. J. Physiol. 262 (Cell Physiol. 31 ): C384 - C390, 1992.

    Google Scholar 

  106. Shirinsky, V. P., A. S. Antonov, K. G. Birukov, A. V. Sobolevsky, Y. A. Romanov, N. V. Kabaeva, G. N. Anonova, and V. N. Smirnov. Mechano-chemical control of human endothelium orientation and size. J. Cell Biol. 109: 331–339, 1989.

    PubMed  CAS  Google Scholar 

  107. Silkworth, J. B., and W. E. Stehbens. The shape of endothelial cells in en face preparations of rabbit blood vessels. Angiology 26: 474–487, 1975.

    Google Scholar 

  108. Simon, M. I., M. P. Strathmann, and N. Gautam. Diversity of G proteins in signal transduction. Science 252: 802–808, 1991.

    PubMed  CAS  Google Scholar 

  109. Sottiurai, V. S., P. Kollros, S. Glagov, C. K. Zarins, and M. B. Mathews. Morphologic alteration of cultured arterial smooth muscle cells by cyclic stretching. J. Surg. Res. 35: 490–497, 1983.

    PubMed  CAS  Google Scholar 

  110. Sparks, H. V., and L. Kaiser. Endothelial cells: not just a cellophane wrapper. Arch. Intern. Med. 147: 169–573, 1987.

    Google Scholar 

  111. Sprague, E. A., M. J. Levesque, M. M. Rozek, C. J. Schwartz, and R. M. Nerem. Shear stress related decreases in cell proliferation and platelet and monocyte adherence to bovine aortic endothelial cells seeded on solid and porous polyester substrates. ASME Adv. in Bioeng. 17: 357–360, 1990.

    Google Scholar 

  112. Sprague, E. A., B. L. Steinbach, R. M. Nerem, and C. J. Schwartz. Influence of a laminar steady-stage fluid-imposed wall shear stress on the binding, internalization, and degradation of low density lipoproteins by cultured arterial endothelium. Circulation 76: 648–656, 1987.

    PubMed  CAS  Google Scholar 

  113. Stary, H. C., D. H. Blankenhorn, A. B. Chandler, S. Glagov, W. Insull, JR., M. Richardson, M. E. Rosenfeld, S. A. Schaffer, C. J. Schwartz, W. D. Wagner, and R. W. Wissler. A definition of the intima of human arteries and its atherosclerosis-prone regions. Arteriosclerosis and Thrombosis 12 (1): 120–134, 1992.

    CAS  Google Scholar 

  114. Steinberg, D. Lipoproteins and atherosclerosis: a look back and a look ahead. Arteriosclerosis 3: 283–301, 1983.

    PubMed  CAS  Google Scholar 

  115. Steinberg, D., S. Pathasarathy, T. E. Carew, J. C. KHoo, and J. L. Witzum. Beyond cholesterol: modifications of low-density lipoprotein that increase its atherogenicity. New England J. Med. 320: 915–924, 1989.

    CAS  Google Scholar 

  116. Sumpio, B. E., A. J. Banes, L. G. Levin, and G. Johnson, JR. Mechanical stress stimulates aortic endothelial cells to proliferate. J. Vasc. Surg. 6: 252–256, 1987.

    PubMed  CAS  Google Scholar 

  117. Sumpio, B. E., and A. J. Banes. Prostacyclin synthetic activity in cultured aortic endothelial cells undergoing cyclic stretch. Surgery 104: 383–389, 1988.

    PubMed  CAS  Google Scholar 

  118. Sumpio, B. E., and A. J. Banes. Response of porcine aortic smooth muscle cells to cyclic tensional deformation in culture. J. Surg. Res. 44: 696–701, 1988.

    PubMed  CAS  Google Scholar 

  119. Sumpio, B. E., A. J. Banes, L. G. Levin, and G. Johnson, JR. Alternations in aortic endothelial cell morphology and cytoskeleton protein synthesis during cyclic tensional deformation. J. Vasc. Surg. 7: 130–138, 1988.

    PubMed  CAS  Google Scholar 

  120. Sumpio, B. E., A. J. Banes, W. G. Link, and G. Johnson. Enhanced collagen production by smooth muscle cells during repetitive mechanical stretching. Arch. Surg. 123: 1233–1236, 1988.

    PubMed  CAS  Google Scholar 

  121. Tang, T. D., D. P. Giddens, S. A. Jones, C. K. Zarins, and S. Glagov. Estimation of coronary artery wall shear stress and its implications for atherogenesis. In Digest of Papers, 10th Southern Biomedical Engineering Conference, held in Atlanta, Ga., Oct. 18–21, 1991, pp. 151–154, 1991.

    Google Scholar 

  122. Taylor, W. R., D. G. Harrison, R. M. Nerem, T. E. Peterson, and R. W. Alexander. Characterization of the release of endothelium-derived nitrogen oxides by shear stress. Faseb J. (Abstract) 56 (6): A1727, 1991.

    Google Scholar 

  123. Theret, D. P., M. J. Levesque, M. Sato, R. M. Nerem, and L. T. Wheeler. The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements. ASME J. Biomech. Eng. 110: 190–199, 1988.

    CAS  Google Scholar 

  124. Thubrikar, M. J., J. W. Baker, and P. N. Stanton. Inhibition of atherosclerosis associated with reduction of arterial intramural stress in rabbits. Arteriosclerosis 8: 410–420, 1988.

    PubMed  CAS  Google Scholar 

  125. Valente, A. J., S. R. Fowler, E. A. Sprague, J. L. Kelley, C. A. Suenram, and C. J. Schwartz. Initial characterization of a peripheral blood mononuclear cell chemoattractant derived from cultured arterial smooth muscle cells. Am. J. Pathol. 117: 409–417, 1984.

    CAS  Google Scholar 

  126. Valente, A. J., D. T. Graves, C. E. Vialle-Valentin, R. Delgado, and C. J. Schwartz. Purification of a monocyte chemotactic factor secreted by non-human primate vascular cells in culture. Biochemistry 27: 4162–4168, 1988.

    PubMed  CAS  Google Scholar 

  127. Velican, D., and C. Velican. Accelerated atherosclerosis in subjects with some minor deviations from the common type distribution of human coronary arteries. Atherosclerosis 40: 309–313, 1981.

    PubMed  CAS  Google Scholar 

  128. Watson, P. A. Function follows form: generation of intracellular signals by cell deformation. FASEB J. 5: 2013–2019, 1991.

    PubMed  CAS  Google Scholar 

  129. Wechezak, A. R., R. F. Viggers, and L. R. Sauvage. Fibronectin and F-actin redistribution in cultured endothelial cells exposed to shear stress. Lab. Invest. 53: 639–647, 1985.

    PubMed  CAS  Google Scholar 

  130. White, G. E., and K. Fujiwara. Expression of intracellular distribution of stress fibers in aortic endothelium. J. Cell Biol. 103: 63–70, 1986.

    PubMed  CAS  Google Scholar 

  131. Wissler, R. W., ET AL. Relationships of atherosclerosis in young men to serum lipoprotein cholesterol concentrations and smoking. J. Amer. Med. Assoc. 264: 3018–3024, 1990.

    Google Scholar 

  132. Yoshida, Y., M. Okano, S. Wang, M. Kobayashi, and M. Shimisu. Endothelial functions modulated by hemorheological forces. In Atherosclerosis IX, Proceedings of the 9th International Symposium on Atherosclerosis. RandL Creative Communications, Ltd., Tel Aviv, Israel, 571–575, 1992.

    Google Scholar 

  133. Yuan, F., S. Chien and S. Weinbaum. A new view of convective-diffusive transport processes in the arterial intima. ASME J. Biomech. Engr. 113: 314–329, 1991.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 American Physiological Society

About this chapter

Cite this chapter

Nerem, R.M. (1995). Atherosclerosis and the Role of Wall Shear Stress. In: Bevan, J.A., Kaley, G., Rubanyi, G.M. (eds) Flow-Dependent Regulation of Vascular Function. Clinical Physiology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7527-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7527-9_14

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7527-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics