Regulation of Platelet Function by Flow-Induced Release of Endothelial Autacoids

  • Rudi Busse
  • Ingrid Fleming
Part of the Clinical Physiology Series book series (CLINPHY)


Under normal conditions, the vascular endothelium significantly contributes to the control of cardiovascular homeostasis by maintaining platelets in an inactive resting state. In response to vessel wall damage, platelets undergo a shape change, adhesion, aggregation, and degranulation to release a number of biologically active substances, culminating in the formation of a thrombus (49). In addition, substances released from activated platelets affect the contractile function of vascular smooth muscle cells and can modulate their growth as well as that of endothelial cells. During the last 2 decades it has become apparent that endothelial cells respond to platelet-derived factors by producing a number of autacoids that modulate not only endothelial function, but also that of platelets and vascular smooth muscle cells. Of these autacoids, prostacyclin (PGI2) and nitric oxide (NO) appear to play an active role in the prevention of thrombus formation during flow through the normal circulatory system (67). Indeed the physical force of the shear stress exerted on endothelial cells by the flowing blood has been shown to be an effective stimulus for production and release of these autacoids (12). This same force, acting on platelets, can lead to their activation under certain hemodynamic conditions, such as arterial stenosis or excessively high flow rates (81, 103, 107, 116). Thus, it is obvious that changes in the functional state of either platelets or endothelial cells will have dramatic consequences on cardiovascular homeostasis. In this review we will focus on the effects of endothelium-derived PGI2 and NO on platelets, the synergism between these two autacoids, and the impact of decreased endothelial autacoid production on platelet function. A number of recent reviews contain more detailed information on signal transduction pathways in platelets and endothelial cells (41, 68, 92, 101).


Nitric Oxide Endothelial Cell Platelet Activation Platelet Function Myosin Light Chain Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, D. J., J. Barakeh, R. Laskey, and C. Van Bremen. Ion channels and regulation of intracellular calcium in vascular endothelial cells. Faseb. J. 3: 2389–2400, 1989.PubMedGoogle Scholar
  2. 2.
    Albelda, S. M., W. A. Muller, C. A. Buck, and P. J. Newman. Molecular and cellular properties of Pecam-1 (endoCam/CD31): a novel vascular cell-cell adhesion molecule. J. Cell Biol. 114: 1059–1068, 1991.PubMedCrossRefGoogle Scholar
  3. 3.
    Alhenc-Gelas, F., S. J. Tsai, K. S. Callahan, W. B. Campbell, and A. R. Johnson. Stimulation of prostaglandin formation by vasoactive mediators in cultured human endothelial cells. Prostaglandins 24: 723–742, 1982.Google Scholar
  4. 4.
    Ashmore, R. C., R. F. Obrien, T. J. Stelzner, I. M. Dauber, L. D. Horwitz, I. F. Mcmurty, and K. M. Vanbenthuysen. Aggregating platelets increase intracellular calcium in endothelial cells through release of adenine nucleotides. Biochem. Biophys. Res. Commun. 166: 909–915, 1990.PubMedCrossRefGoogle Scholar
  5. 5.
    Berthiaume, F., and J. A. Frangos. Flow-induced prostacyclin production is mediated by a pertussis toxin-sensitive G protein. Febs Lett. 308: 277–279, 1992.PubMedCrossRefGoogle Scholar
  6. 6.
    Bhagyalakshmi, A., and J. A. Frangos. Mechanism of shear-induced prostacyclin production in endothelial cells. Biochem. Biophys. Res. Commun. 158: 31–37, 1989.PubMedCrossRefGoogle Scholar
  7. 7.
    Bredt, D. S., P. M. Hwang, C. E. Glatt, C. Lowenstein, R. R. Reed, and S. H. Snyder. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351: 714–718, 1991.PubMedCrossRefGoogle Scholar
  8. 8.
    Busse, R., A. Luckhoff, and E. Bassenge. Endothelium-derived relaxant factor inhibits platelet activation. Nauyn-Schmiedebergs Arch. Pharmacol. 336: 566–571, 1987.Google Scholar
  9. 9.
    Busse, R., A. Luckhoff, U. Pohl, and E. Bassenge. Edrf-induced inhibition of platelet aggregation: synergy between Pgi, and Edrf. Funktionsanalyse Biologischer Systeme 19: 69–77, 1989.Google Scholar
  10. 10.
    Busse, R., and D. Lamontagne. Endothelium-derived bradykinin is responsible for the increase in calcium produced by angiotensin-converting enzyme inhibitors in human endothelial cells. Nauyn-Schmiedebergs Arch. Pharmacol. 344: 126–129, 1991.Google Scholar
  11. 11.
    Busse, R., A. Luckhoff, and A. Mulsch. Cellular mechanisms controlling Edrf/NO formation in endothelial cells. In Endothelial Mechanisms of Vasomotor Control, H. Drexler, A. M. Zeiher, E. Bassenge, and H. Just, eds. Darmstadt: Steinkopff Verlag, 1991, pp. 7–16.CrossRefGoogle Scholar
  12. 12.
    Busse, R., and U. PoHL. Fluid shear-stress-dependent stimulation of endothelial autacoid release: mechanisms and significance for the control of vascular tone. In Physical Forces and the Mammalian Cell. J. A. Frangos and C. L. Ives, eds. Orlando: Academic Press, 1992, pp. 223–238.Google Scholar
  13. 13.
    Busse, R. A. Mulsch, I. Fleming„ and M. Hecker. Mechanisms of nitric oxide release from the vascular endothelium. Circulation. 87 [Suppl. V]: 18–25, 1993.Google Scholar
  14. 14.
    Burr, E., J. Geiger, T. Jarchau, S. M. Lohmann, and U. Walter. The cGmp-dependent protein kinase-gene, protein, and function. Neurochem. Res. 18: 27–42, 1993.CrossRefGoogle Scholar
  15. 15.
    Carosi, J. A., S. G. Eskin, and L. V. Mcintire. Cyclical strain effects on production of vasoactive materials in cultured endothelial cells. J. Cell. Physiol. 151: 29–36, 1992.PubMedCrossRefGoogle Scholar
  16. 16.
    Carter, T. D., T. J. Hallam, and J. D. Pearson. Protein kinase-C activation alters the sensitivity of agonist-stimulated endothelial-cell prostacyclin production to intracellular Ca“. Biochem. J. 262: 431–437, 1989.PubMedGoogle Scholar
  17. 17.
    Chang, J., J. H. Musser, and H. Mcgregor. Phospholipase A2: function and pharmacological regulation. Biochem. Pharmacol. 36: 2429–2436, 1987.Google Scholar
  18. 18.
    Cohen, R. A., J. T. Shepherd, and P. M. Vanhoutte. Inhibitory role of the endothelium in the response of isolated coronary arteries to platelets. Science 221: 273–274, 1983.PubMedCrossRefGoogle Scholar
  19. 19.
    Coldenstanfield, M., W. P. Schilling, L. D. Possani, and D. L. Kunze. Bradykinininduced potassium current in cultured bovine aortic endothelial cells. J. Membr. Biol. 116: 227–238, 1990.CrossRefGoogle Scholar
  20. 20.
    Creager, M. A., J. P. Cooke, M. E. Mendelsohn, S. J. Gallagher, S. M. Coleman, J. Loscalzo, and V. H. Dzau. Impaired vasodilation of forearm resistance vessels in hypercholesterolemic humans. J. Clin. Invest. 86: 228–234, 1990.PubMedCrossRefGoogle Scholar
  21. 21.
    Dull, R. O., and P., F. Davies. Flow modulation of agonist (Atp)-response (Ca2+) coupling in vascular endothelial cells. Am. J. Physiol. 261 (Heart Circ. Physiol. H149 - H154, 1991.Google Scholar
  22. 22.
    Eigenthaler, M., C. Nolte, M. Halbrugge, and U. Walter. Concentration and regulation of cyclic nucleotides, cyclic-nucleotide-dependent protein kinases and one of their major substrates in human platelets-estimating the rate of cAmp-regulated and cGmp-regulated protein phosphorylation in intact cells. Eur. J. Biochem. 205: 47 1481, 1992.Google Scholar
  23. 23.
    Ferri, C., C. Deangelis, M. A. Delporto, R. Leonetti-Luparini,C. Giarizzo, A. Santucci, and F. Balsano. Blood platelets and angiotensin II: angiotensin II release after the platelet aggregation. J. Hypertens. 6 (Suppl. 1): S69 - S71, 1988.Google Scholar
  24. 24.
    Freay, A., A. Johns, D. J. Adams, U. S. Ryan, and C. Vanbreemen. Bradykinin and inositol 1,4,5-trisphosphate-stimulated calcium release from intracellular stores in cultured bovine endothelial cells. Pflügers Arch. 414: 377–384, 1989.PubMedCrossRefGoogle Scholar
  25. 25.
    Geiger, V., B. C. Berk, R. W. Alexander, and R. M. Nerem. Flow-induced calcium transients in single endothelial cells: spatial and temporal analysis. Am. J. Physiol. 262 (Cell Physiol. 31): C1411 - C1417, 1992.PubMedGoogle Scholar
  26. 26.
    Goligorsky, M. S.. Mechanical stimulation induces Ca2 + i transients and membrane depolarization in cultured endothelial cells. Effects on Ca2 + i in coperfused smooth muscle cells. Febs Letters 240: 59–64, 1988.PubMedCrossRefGoogle Scholar
  27. 27.
    Golino, P., F. Piscione, J. T. Willerson, M. Cappellibigazzi, A. Focaccio, B. Villari, C. Indolfi, E. Russolillo, M. Condorelli, and M. Chiarello. Divergent effects of serotonin on coronary-artery dimensions and blood flow in patients with coronary atherosclerosis and control patients. N. Engl. J. Med. 324: 641–648, 1991.PubMedCrossRefGoogle Scholar
  28. 28.
    Golino, P., M. Cappelli-Bigazzi, G. Ambrosio, M. Ragni, E. Russolillo, M. Condorelli, and M. Chiariello. Endothelium-derived relaxing factor modulates platelet aggregation in an in vivo model of recurrent platelet activation. Circ. Res. 71: 1447–1456, 1992.Google Scholar
  29. 29.
    Grater, W. F., K. Schmidt, and W. R. Kukovetz. Bradykinin-induced Ca2 + -influx into cultured aortic endothelial cells is not regulated by inositol 1,4,5-trisphosphate or inositol 1,3,4,5-tetrakisphosphate. Second Messengers Phosphoproteins 13: 187–197, 1991.Google Scholar
  30. 30.
    Green, L., E. Seroppian, and R. J. Handin. Platelet activation during exercise-induced myocardial ischemia. N. Engl. J. Med. 302: 193–198, 1980.PubMedCrossRefGoogle Scholar
  31. 31.
    Grignani, G., F. Soffiantino, M. Zucchella, L. Pacchiarini, F. Tacconi, E. Bonomi, A. Pastoris, A. Sbaffi, P. Fratino, and L. Tavazzi. Platelet activation by emotional stress in patients with coronary artery disease. Circulation 83: 128–136, 1991.Google Scholar
  32. 32.
    Henry, Y., C. Ducrocq, J. C. Drapier, D. Servent, C. Pellat, and A. Guissani. Nitric oxide, a biological effector—electron paramagnetic resonance detection of nitrosyl-ironprotein complexes in whole cells. Eur. Biophys. J. 20: 1–15, 1991.PubMedCrossRefGoogle Scholar
  33. 33.
    Herbaczynskacedro, K., K. Lembowicz, and B. Pytel. NG-monomethyl-L-arginine increases platelet deposition on damaged endothelium in vivo—A scanning electron microscopic study. Thromb. Res. 64: 1–9, 1991.CrossRefGoogle Scholar
  34. 34.
    Hibbs JR., J. B., R. R. Taintor, Z. Vavrin, D. L. Granger, J. C. Drapier, I. J. Amber, and J. R. Lancaster, JR. Synthesis of nitric oxide from a terminal guanidino nitrogen atom of L-arginine: a molecular mechanism regulating cellular proliferation that targets intracellular iron. In S. Moncada and E. A. Higgs, eds. Nitric oxide from L-arginine: a bioregulatory system, Amsterdam: Elsevier Science publishers B. V. 1990, pp. 189–223.Google Scholar
  35. 35.
    Houston, D. S., and P. M. Vanhoutte. Platelets and endothelium-dependent responses. In P. M. Vanhoutte, ed. The Endothelium: Relaxing and Contracting Factors, Clifton, N.J.: Humana Press, 1988, pp. 425–449.CrossRefGoogle Scholar
  36. 36.
    Hutcheson, I. R., and T. M. Griffith. Release of endothelium-derived relaxing factor is modulated both by frequency and amplitude of pulsatile flow. Am. J. Physiol. 261 (Heart Circ. Physiol. 30 ): 11257–11262, 1991.Google Scholar
  37. 37.
    Jaffe, E. A.. Endothelial cells. In J. I. Gallin, I. M. Goldstein, and R. Snyderman, eds. Inflammation: Basic Principles and Clinical Correlates. New York: Raven Press, 1988, pp. 559–576.Google Scholar
  38. 38.
    Janicek, M. J., A. D. Vandenabbeele, N. K. Hollenberg, A. I. Kassis, B. L. Holman, and S. S. Tumeh. Platelet activation and aggregation after endothelial injury—assessment with indium-111-labeled platelets and angiography. Invest. Radiol. 25: 988–993, 1990.PubMedCrossRefGoogle Scholar
  39. 39.
    Janssens, S. P., A. Shimouchi, T. Quertermous, D. B. Bloch, and K. D. Bloch. Cloning and expression of a cDna encoding human endothelium-derived relaxing factor/nitric oxide synthase. J. Biol. Chem. 267: 14519–14522, 1992.PubMedGoogle Scholar
  40. 40.
    Joyce, N. C., P. Decamilli, S. M. Lohmann, and U. Walter. cGmp-dependent protein kinase is present in high concentrations in contractile cells of the kidney vasculature. J. Cycl. Nucleotide Protein Phosphorylation Res. 11: 191–198, 1986.Google Scholar
  41. 41.
    Kroll, M. H., and A. I. Schafer. Biochemical mechanisms of platelet activation. Blood 74: 1181–1195, 1989.PubMedGoogle Scholar
  42. 42.
    Kum), S. H., T. S. Rector, A. J. Bank, R. E. Williams, and S. M. Heifetz. Endothelium-dependent vasodilation is attenuated in patients with heart failure. Circulation 84: 1589 1596, 1991.Google Scholar
  43. 43.
    Kumpuris, A. G., R. J. Luchi, C. C. Waddell, and R. R. Miller. Production of circulating platelet aggregates by exercise in coronary patients. Circulation 61: 62–65, 1980.PubMedCrossRefGoogle Scholar
  44. 44.
    Lamas, S., P. A. Marsden, G. K. LI, P. Tempst, and T. Michel. Endothelial nitric oxide synthase: Molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc. Natl. Acad. Sci. U.S.A. 89: 6348–6352, 1992.PubMedCrossRefGoogle Scholar
  45. 45.
    Lamontagne, D., A. Konig, E. Bassenge, and R. Busse. Prostacyclin and nitric oxide contribute to the vasodilator action of acetylcholine and bradykinin in the intact rabbit coronary bed. J. Cardiovasc. Pharmacol. 20: 652–657, 1992.PubMedCrossRefGoogle Scholar
  46. 46.
    Lamontagne, D., U. PoHL, and R. Busse. Mechanical deformation of vessel wall and shear stress determine the basal Edrf release in the intact coronary vascular bed. Circ. Res. 70: 123–130, 1992.PubMedCrossRefGoogle Scholar
  47. 47.
    Lansman, J. B., T. J. Hallam, and T. J. Rink. Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? Nature 325: 811–813, 1987.PubMedCrossRefGoogle Scholar
  48. 48.
    Levin, R. I., B. B. Weksler, and E. A. Jaffe. The interaction of sodium nitroprusside with human endothelial cells and platelets: nitroprusside and prostacyclin synergistically inhibit platelet function. Circulation 66: 1299–1307, 1982.PubMedCrossRefGoogle Scholar
  49. 49.
    Lewis, M. J., and J. A. Smith. Platelets, thrombosis, and the endothelium. In Cardiovascular significance of endothelium-derived vasoactive factors, G. Rubanyi, ed. Mount Kisco, N.Y.: Futura Publishing, 1991, pp. 293–306.Google Scholar
  50. 50.
    Liao, J. K., M. A. Bettmann, T. Sandor, J. I, Tucker, S. M. Coleman, and M. A. Creager. Differential impairment of vasodilator responsiveness of peripheral resistance and conduit vessels in humans with atherosclerosis. Circ. Res. 68: 1027–1034, 1991.Google Scholar
  51. 51.
    Linder, L., W. KiowsKI, F. R. Buhler, and T. F. Luscher. Indirect evidence for release of endothelium-derived relaxing factor in human forearm circulation in vivo—blunted response in essential hypertension. Circulation 81: 1762–1767, 1990.PubMedCrossRefGoogle Scholar
  52. 52.
    Luckhoff, A., and D. E. Clapham. Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Ca2 + -permeable channel. Nature 355: 356–358, 1992.PubMedCrossRefGoogle Scholar
  53. 53.
    Luckhoff, A., U. PoHL, A. Mulsch, and R. Busse. Differential role of extra-and intracellular calcium in the release of Edrf and prostacyclin from cultured endothelial cells. Br. J. Pharmacol. 95: 189–196, 1988.PubMedCrossRefGoogle Scholar
  54. 54.
    Lauchoff, A., and R. Busse. Activators of potassium channels enhance calcium influx into endothelial cells as a consequence of potassium currents. Naunyn-Schmiedebergs Arch. Pharmacol. 342: 94–99, 1990.Google Scholar
  55. 55.
    Luckhoff, A., and R. Busse. Calcium influx into endothelial cells and formation of Edrf is controlled by the membrane potential. Pflügers Arch. 416: 305–311, 1990.PubMedCrossRefGoogle Scholar
  56. 56.
    Lugnier, C., and V. B. Schini. Characterization of cyclic nucleotide phosphodiesterases from cultured bovine aortic endothelial cells. Biochem. Pharmacol. 39: 75–84, 1990.PubMedCrossRefGoogle Scholar
  57. 57.
    Lyons, C. R., G. J. Orloff, and J. M. Cunningham. Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J. Biol. Chem. 267: 6370–6374, 1992.PubMedGoogle Scholar
  58. 58.
    Macdonald, P. S., M. A. Read, and G. J. Dusting. Synergistic inhibition of platelet aggregation by endothelium-derived relaxing factor and prostacyclin. Thromb. Res. 49: 437449, 1988.Google Scholar
  59. 59.
    Mackie, K., Y. Lai, A. C. Nairn, P. Greengard, B. R. Pitt, and J. S. Lazo. Protein phosphorylation in cultured endothelial cells. J. Cell. Physiol. 128: 367–374, 1986.PubMedCrossRefGoogle Scholar
  60. 60.
    Marsden, P. A., K. T. Schappert, H. S. Chen, M. Flowers, C. L. Sundell, J. N. Wilcox, S. Lamas, and T. Michel. Molecular cloning and characterization of human endothelial nitric oxide synthase. Febs. Lett. 307: 287–293, 1992.PubMedCrossRefGoogle Scholar
  61. 61.
    Maurice, D. H., and R. J. Haslam. Molecular basis of the synergistic inhibition of platelet function by nitrovasodilators and activators of adenylate cyclase—inhibition of cyclic Amp breakdown by cyclic Gmp. Mol. Pharmacol. 37: 671–681, 1990.PubMedGoogle Scholar
  62. 62.
    Mcienachan, J. M., J. Vita, R. D. Fish, C. B. Treasure, D. A. Cox, P. Ganz, and A. P. Selwyn. Early evidence of endothelial vasodilator dysfunction at coronary branch points. Circulation 82: 1169–1173, 1990.CrossRefGoogle Scholar
  63. 63.
    Mehta, J., P. Mehta, and C. J. Pepine. Platelet aggregation in aortic and coronary venous blood in patients with and without coronary disease. 3. Role of tachycardia stress and propranolol. Circulation 58: 881–886, 1978.Google Scholar
  64. 64.
    Meldolesi, J., E. Clementi, C. Fasolato, D. Zacchetti, and T. Pozzan. Ca2+ influx following receptor activation. Trends Pharmacol. Sci. 12: 289–292, 1991.PubMedCrossRefGoogle Scholar
  65. 65.
    Milner, P., K. A. Kirkpatrick, V. Ralevic, V. Toothill, J. Pearson, and G. Burnstock. Endothelial cells cultured from human umbilical vein release Atp, substance P and acetylcholine in response to increased flow. Proc. R. Soc. Lond. B. 241: 245–248, 1990.CrossRefGoogle Scholar
  66. 66.
    Mo, M., S. G. Eskin, and W. P. Schilling. Flow-induced changes in Ca2 + signaling of vascular endothelial cells—effect of shear stress and Atp. Am. J. Physiol. 260 (Heart Circ. Physiol. 29 ): H1698–H1707, 1991.Google Scholar
  67. 67.
    Moncada, S., R. M. J. Palmer, and E. A. Higgs. Prostacyclin and endothelium-derived relaxing factor: biological interactions and significance. In Thrombosis and Haemostasis. M. Verstraete, J. Vermylen, H. R. Lijnen, and J. Arnout, eds. Leuven: Leuven University Press, 1987, pp. 597–618.Google Scholar
  68. 68.
    Moncada, S., R. M. J. Palmer, and E. A. Higgs. Nitric oxide—physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43: 109–142, 1991.PubMedGoogle Scholar
  69. 69.
    Mulsch, A., A. Luckhoff, U. PoHL, R. Busse, and E. Bassenge. LY 83583 (6-anilino-5,8quinolinedione) blocks nitrovasodilator-induced cyclic Gmp-dependent increases and inhibition of platelet activation. Naunyn-Schmiedebergs Arch. Pharmacol. 340: 119–125, 1989.PubMedGoogle Scholar
  70. 70.
    Mulsch, A., P. Mordvintcev, A. F. Vanin, and R. Busse. The potent vasodilating and guanylyl cyclase activating dinitrosyl-iron (II) complex is stored in a protein-bound form in vascular tissue and is released by thiols. Febs Letters 294: 252–256, 1991.PubMedCrossRefGoogle Scholar
  71. 71.
    Mulsch, A., A. Vanin, P. Mordvincev, S. Hauschildt, and R. Busse. Electron paramagnetic resonance study of the oxygenated nitrogen species generated by enzymatic L-arginine oxygenation. Biochem. J. 288: 597–603, 1992.PubMedGoogle Scholar
  72. 72.
    Murata, M., Y. Ikeda, Y. Araki, H. Murakami, K. Sato, M. Yamamoto, K. Watanabe, Y. Ando, T. Igawa, and I. Maruyama. Inhibition of endothelial cells of platelet aggregating activity of thrombin—role of thrombomodulin. Thromb. Res. 50: 647–656, 1988.PubMedCrossRefGoogle Scholar
  73. 73.
    Nabel, E. G., P. Ganz, J. B. Gordon, R. W. Alexander, and A. P. Selwyn. Dilation of normal and constriction of atherosclerotic coronary arteries caused by the cold pressor test. Circulation 77: 43–52, 1988.PubMedCrossRefGoogle Scholar
  74. 74.
    Nabel, E. G., A. P. Selwyn, and P. Ganz. Large coronary arteries in humans are responsive to changing blood flow—An endothelium-dependent mechanism that fails in patients with atherosclerosis. J. Am. Coll. Cardiol. 16: 349–356, 1990.PubMedCrossRefGoogle Scholar
  75. 75.
    Nabel, E. G.. Biology of the impaired endothelium. Am. J. Cardiol. 68: C6–C8, 1991.CrossRefGoogle Scholar
  76. 76.
    Nathan, C.. Nitric oxide as a secretory product of mammalian cells. Faseb J. 6: 30513064, 1992.Google Scholar
  77. 77.
    Newman, P. J., M. C. Berndt, J. Gorski, G. C. White II, S. Lyman, C. Paddock, and W. A. Muller. Pecam-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science 247: 1219–1222, 1990.PubMedCrossRefGoogle Scholar
  78. 78.
    Nishizuka, Y.. Studies and perspectives of protein kinase C. Science 233: 305–312, 1986.PubMedCrossRefGoogle Scholar
  79. 79.
    Nollert, M. U., E. R. Hall, S. G. Eskin, and L. V. Mcintire. The effect of shear stress on the uptake and metabolism of arachidonic acid by human endothelial cells. Biochim. Biophys. Acta 1005: 72–78, 1989.PubMedCrossRefGoogle Scholar
  80. 80.
    Nolte, C., M. Eigenthaler, P. Schanzenbacher, and U. Walter. Endothelial cell-dependent phosphorylation of a platelet protein mediated by cAmp-elevating and cGmp-elevating factors. J. Biol. Chem. 266: 14808–14812, 1991.PubMedGoogle Scholar
  81. 81.
    O’Brien, J. R.. Shear-induced platelet aggregation. Lancet 335: 711–713, 1990.CrossRefGoogle Scholar
  82. 82.
    Panza, J. A., A. A. Quyyumi, J. E. Brush, and S. E. Epstein. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N. Engl. J. Med 323: 22–27, 1990.Google Scholar
  83. 83.
    Parsaee, H., J. R. Mcewan, S. Joseph, and J. Macdermot. Dififerential sensitivities of the prostacyclin and nitric oxide biosynthesis pathways to cytosolic calcium in bovine aortic endothelial cells. Br. J. Pharmacol. 107: 1013–1019, 1992.PubMedCrossRefGoogle Scholar
  84. 84.
    Pirotton, S., E. Raspe, D. Demolle, C. Erneux, and J. M. Boeynaems. Involvement Of inositol 1,4,5-trisphosphate and calcium in the action of adenosine nucleotides on aortic endothelial cells. J. Biol. Chem. 262: 17461–17466, 1987.PubMedGoogle Scholar
  85. 85.
    PoHL, U., R. Busse, E. Kuon, and E. Bassenge. Pulsatile perfusion stimulates the release of endothelial autacoids. J. Appl. Cardiol. 1: 215–235, 1986.Google Scholar
  86. 86.
    PoHL, U., and R. Busse. Edrf increases cyclic Gmp in platelets during passage through the coronary vascular bed. Circ. Res. 65: 1798–1803, 1989.CrossRefGoogle Scholar
  87. 87.
    Pohl, U., A. Bunse, and J. KAss. Attenuated calcium-increase and Atp-release of thrombin-stimulated human platelets after a single passage through the rabbit coronary bed. Pflügers Arch. 422 (Suppl. 1): R197, 1993.Google Scholar
  88. 88.
    Pryor, W. A., D. F. Chusch, C. K. Govindan, and G. Czenk. Oxidation of thiols by nitric oxide and nitrogen dioxide: synthetic utility and toxicological implications. J. Org . Chem. 47: 156–159, 1982.Google Scholar
  89. 89.
    Radomski, M. W., R. M. J. Palmer, and S. Moncada. The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br. J. Pharmacol. 92: 639–646, 1987.PubMedCrossRefGoogle Scholar
  90. 90.
    Reinhard, M., M. Halbrugge, U. Scheer, C. Wiegand, B. M. Jockusch, and U. Walter. The 46/50kDa phosphoprotein Vasp purified from human platelets is a novel protein associated with actin filaments and focal contracts. Embo J. 11: 2063–2070, 1992.PubMedGoogle Scholar
  91. 91.
    Ross, R., E. W. Raines, and D. F. Bowen-Pope. The biology of platelet-derived growth factor. Cell 46: 155–169, 1986.PubMedCrossRefGoogle Scholar
  92. 92.
    Ryan, U. S., and G. M. Rubanyi. Endothelial Regulation of Vascular Tone. New York: Marcel Dekker, 1992.Google Scholar
  93. 93.
    Saenz DE Tejada, I., I. Goldstein, K. Azadzoi, R. J. Krane, and R. A. Cohen. Impaired neurogenic and endothelium-mediated relaxation of penile smooth muscle from diabetic men with impotence. N. Engl. J. Med. 320: 1025–1030, 1989.PubMedCrossRefGoogle Scholar
  94. 94.
    Sauve, R., L. Parent, C. Simoneau, and G. Roy. External Atp triggers a biphasic activation process of a calcium-dependent K+ channel in cultured bovine aortic endothelial cells. Pflügers Arch. 412: 469–481, 1988.PubMedCrossRefGoogle Scholar
  95. 95.
    Schray-Utz, B., A. Sause, A. Zeiher, and R. Busse. Nitric oxide modulates the expression of monocyte chemoattractant protein-1 and fibronectin mRna in endothelial cells. Pflug-ers Arch. 422 (Suppl. 1): R118, 1993.Google Scholar
  96. 96.
    Schror, K.. Prostaglandins, other eicosanoids and endothelial cells. Basic Res. Cardiol. 80: 502–514, 1985.PubMedCrossRefGoogle Scholar
  97. 97.
    Schwarz, G., G. Droogmans, and B. Nilius. Shear stress-induced membrane currents and calcium transients in human vascular endothelial cells. Pflügers Arch. 421: 394–396, 1992.PubMedCrossRefGoogle Scholar
  98. 98.
    Sessa, W. C., J. K. Harrison, C. M. Barber, D. Zeng, M. E. Durieux, D. D. D’Angelo, K. R. Lynch, and M. J. Peach. Molecular cloning and expression of a cDna encoding endothelial cell nitric oxide synthase. J. Biol. Chem. 267: 15274–15276, 1992.Google Scholar
  99. 99.
    Shen, J., F. W. Luscinskas, A. Connolly, C. F. Dewey, and M. A. Gimbrone. Fluid shear stress modulates cytosolic free calcium in vascular endothelial cells. Am. J. Physiol. 262 (Cell Physiol. 31 ): C384 - C390, 1992.Google Scholar
  100. 100.
    Siess, W., R. Lorenz, P. Roth, and P. C. Weber. Plasma catecholamines, platelet aggregation and associated thromboxane formation after physical exercise, smoking or norepinephrine infusion. Circulation 66: 44–48, 1982.PubMedCrossRefGoogle Scholar
  101. 101.
    Siess, W.. Molecular mechanisms of platelet activation. Physiol. Rev. 69: 58–178, 1989.PubMedGoogle Scholar
  102. 102.
    Stamler, J. S., O. Jaraki, J. Osborne, D. I. Simon, J. Keanley, J. Vita, D. Singel, C. R. Valeri, and J. Loscalzo. Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc. Natl. Acad. Sci. U.S.A. 89: 7674–7677, 1992.Google Scholar
  103. 103.
    Stevens, D. E., J. H. JoisT, and S. P. Suters. Role of platelet-prostaglandin synthesis in shear-induced platelet alterations. Blood 56: 753–758, 1980.PubMedGoogle Scholar
  104. 104.
    Stuehr, D. J. Mammalian nitric oxide synthases. Ado. Enzymol. 65: 287–346, 1992.Google Scholar
  105. 105.
    Treasure, C. B., J. A. Vita, D. A. Cox, R. D. Fish, J. B. Gordon, G. H. Mudge, W. S. CoLucci, M. G. S. Sutton, A. P. Selwyn, R. W. Alexander, and P. Ganz. Endothelium-dependent dilation of the coronary microvasculature is impaired in dilated cardiomyopathy. Circulation 81: 772–779, 1990.PubMedCrossRefGoogle Scholar
  106. 106.
    Trip, M. D., V. Manger-Cats, F. J. L. Vancapelle, and J. Vreeken. Platelet hyperreactivity and prognosis in survivors of myocardial infarction. N. Engl. J. Med. 322: 1549–1554, 1990.Google Scholar
  107. 107.
    Turitto, V. T.. Blood viscosity, mass transport, and thrombogenesis. Prog. Hemostasis Thromb. 6: 139–174, 1982.Google Scholar
  108. 108.
    Tyres, M., R. A. Rachubinski, M. I. Stewart, A. M. Varrichio, R. G. L. Shorr, R. J. Has-Lam, and C. B. Harley. Molecular cloning and expression of the major protein kinase C substrate of platelets. Nature 333: 470–473, 1988.CrossRefGoogle Scholar
  109. 109.
    Vaca, L., W. P. Schilling, and D. L. Kunze. G-protein-mediated regulation of a Ca2 +–dependent K+ channel in cultured vascular endothelial cells. Pflügers Arch. 422: 66–74, 1992.PubMedCrossRefGoogle Scholar
  110. 110.
    Vanin, A. F. Endothelium-derived relaxing factor is a nitrosyl iron complex with thiol ligands. Febs Lett. 289: 1–3, 1991.PubMedCrossRefGoogle Scholar
  111. 111.
    Vita, J. A., C. B. Treasure, P. Ganz, D. A. Cox, R. D. Fish, and A. P. Selwyn. Control of shear stress in the epicardial coronary arteries of humans—impairment by atherosclerosis. J. Am. Coll. Cardiol. 14: 1193–1199, 1989.PubMedCrossRefGoogle Scholar
  112. 112.
    Walter, U., P. Decamilli, S. M. Lohmann, P. Miller, and P. Greengard. Regulation and cellular localization of cAmp-dependent and cGmp-dependent protein kinases In Cold Spring Harbor Conferences on Cell Proliferation. Vol. 8: Protein Phosphorylation, Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory, 1981, pp. 141–157.Google Scholar
  113. 113.
    Walter, U. Physiological role of cGmp and cAmp-dependent protein kinase in the cardiovascular system. Rev. Physiol. Biochem. Pharmacol. 113: 41–88, 1989.PubMedCrossRefGoogle Scholar
  114. 114.
    Walter, U., C. Nolte, J. Geiger, P. Schanzenb4Cher, and K. Kochsiek. Inhibition of platelet function by cyclic nucleotides and cyclic nucleotide-dependent protein kinases. In Antithrombotics, A. G. Herman, ed. The Netherlands: Kluwer Academic Publishers, 1991, pp. 121–138.CrossRefGoogle Scholar
  115. 115.
    Waugh, D. A., A. M. Tercyak, and D. M. Small. Physico-chemical properties of cholesterol-fed rabbit beta-vldl are not affected by different dietary oils. Atherosclerosis 76: 237243, 1989.Google Scholar
  116. 116.
    Weyrich, A. S., G. A. SoLIs, K. S. LI, T. N. Tulenko, and W. P. Santamore. Platelet amplification of vasospasm. Am. J. Physiol. 263 (Heart Circ. Physiol. 32 ): H349–H358, 1992.Google Scholar
  117. 117.
    White, K. A., and M. A. Marletta. Nitric oxide synthase is a cytochrome P-450 type hemoprotein. Biochemistry 31: 6627–6631, 1992.PubMedCrossRefGoogle Scholar
  118. 118.
    Wiemer, G., B. A. Scholkens, R. M. A. Becker, and R. Busse. Ramiprilat enhances endothelial autacoid formation by inhibiting breakdown of endothelium-derived bradykinin. Hypertension 18: 558–563, 1991.PubMedCrossRefGoogle Scholar
  119. 119.
    Xie, Q. W., H. J. Cho, J. Calaycay, R. A. Mumford, K. M. Swiderek, T. D. Lee, A. H. Ding, T. Troso, and C. Nathan. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256: 225–228, 1992.Google Scholar
  120. 120.
    Yeung, A. C., V. I. Vekshtein, D. S. Krantz, J. A. Vita, T. J. Ryan, P. Ganz, and A. P. Selwyn. The effect of atherosclerosis on the vasomotor response of coronary arteries to mental stress. N. Engl. J. Med. 325: 1551–1556, 1991.PubMedCrossRefGoogle Scholar
  121. 121.
    Zeiher, A. M., H. Drexler, H. Wollschlager, and H. Just. Modulation of coronary vasomotor tone in humans—progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation 83: 391–401, 1991.PubMedCrossRefGoogle Scholar
  122. 122.
    Zeiher, A. M., V. Schachinger, S. H. Weitzel, H. Wollschlager, and H. Just. Intracoronary thrombus formation causes focal vasoconstriction of epicardial arteries in patients with coronary artery disease. Circulation 83: 1519–1525, 1991.PubMedCrossRefGoogle Scholar

Copyright information

© American Physiological Society 1995

Authors and Affiliations

  • Rudi Busse
  • Ingrid Fleming

There are no affiliations available

Personalised recommendations