Respiratory Control in Andean and Himalayan High-Altitude Natives

  • Sukhamay Lahiri
Part of the Clinical Physiology book series (CLINPHY)


studies of the high-altitude natives in the South American Andes focused attention for the first time on aspects of respiratory adaptation that were different from those of sojourners at the same high altitude (4, 9, 12, 28; see also 7, 14, 15). Previously it was thought that the level of adaptation in the fully acclimatized sojourners would be the same as in the native high-altitude residents (1; see also 9). To understand high-altitude adaptation, researchers at the Andean Institute of Biology in Peru compared sea-level natives and high-altitude natives in their own respective environments. Recently respiratory control has gained particular attention because of the striking observation that the adult natives of high altitude ventilate less at a given resting metabolic rate so that their partial pressure of carbon dioxide in alveolar gas (PaCO2) is higher and partial pressure of oxygen in alveolar gas (PaO2) lower (4, 13, 14). It was also established that hyperpnea of exercise was less in the high-altitude natives than in the sojourners (14, 15).


High Altitude Carotid Body Ventilatory Response Chronic Hypoxia Periodic Breathing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barcroft, J. B. The Respiratory Function of the Blood. I. Lessons From High Altitudes. Cambridge, UK: Cambridge Univ. Press, 1925.Google Scholar
  2. 2.
    Biscoe, T. J., G. W. Bradley, and M. J. Purves. The relation between carotid body chemoreceptor discharge, carotid sinus pressure and carotid body venous flow. J. Physiol. London 208: 99–120, 1970.PubMedGoogle Scholar
  3. 3.
    Ceretelli, P Gas exchange-at high altitude. In: Pulmonary Gas Exchange, edited by J. B. West. New York: West. 1980, vol. II, p. 98–147.Google Scholar
  4. 4.
    Chiodi, H. Respiratory adaptations to chronic high altitude hypoxia. J. Appl. Physiol. 10: 81–87, 1957.PubMedGoogle Scholar
  5. 5.
    Cross, B., D. A. Guz, P. G. Katona, M. Maclean, K. Murphy, S. J. G. Semple, and R. Stidwill. The pH oscillations in arterial blood during exercise: a potential signal for the ventilatory response in the dog. J. Physiol. London 329: 57–73, 1982.PubMedGoogle Scholar
  6. 6.
    Cunningham, D. J. C. The control system regulating breathing in man. Q. Rev. Biophys. 6: 433–483, 1973.PubMedCrossRefGoogle Scholar
  7. 7.
    Dempsey, J. A., and H. V. Forster. Mediation of ventilatory adaptations. Physiol. Rev. 62: 262–346, 1982.PubMedGoogle Scholar
  8. 8.
    Eyzaguirre, C., R. S. Fitzgerald, S. Lahiri, and P. Zapata. Arterial chemoreceptors. In: Handbook of Physiology. Peripheral Circulation and Organ Blood Flow, edited by J. T. Shepherd and F. M. Abboud. Bethesda, MD: Am. Physiol. Soc., 1983, sect. 2, vol. III, pt. 2, chapt. 16, p. 557–621.Google Scholar
  9. 9.
    Frisancho, R. A. Human Adaptation. Ann Arbor: Univ. Michigan Press, 1981.Google Scholar
  10. 10.
    Hackett, P., J. T. Reeves, C. D. Reeves, R. F. Grover, and D. Rennie. Control of breathing in Sherpas at low and high altitude. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 374–379, 1980.Google Scholar
  11. 11.
    Hochachka, P. W. Living Without Oxygen. Cambridge, UK: Harvard Univ. Press, 1980.Google Scholar
  12. 12.
    Hurtado, A. Animals in high altitudes: resident man. In: Handbook of Physiology. Adaptation to the Environment, edited by D. B. Dill and E. F. Adolph. Washington, DC: Am. Physiol. Soc., 1964, sect. 4, chapt. 54, p. 843–860.Google Scholar
  13. 13.
    Lahiri, S. Alveolar gas pressures in man with life-time hypoxia. Respir. Physiol. 4: 373–386, 1968.PubMedCrossRefGoogle Scholar
  14. 14.
    Lahiri, S. Physiological response and adaptations to high altitude. In: Environmental Physiology II,edited by D. Robertshaw. Baltimore, MD: University Park, 1977, vol. 15, p. 217–251. (Int. Rev. Physiol. Ser.)Google Scholar
  15. 15.
    Lahiri, S., P. Barnard, and R. Zhang. Initiation and control of ventilatory adaptation to chronic hypoxia of high altitude. In: Control of Respiration, edited by D. Pallot. London: Helm, 1983, p. 298–325.CrossRefGoogle Scholar
  16. 16.
    Lahiri, S., F. F. Kao, T. Velasquez, C. Martinez, and W. Pezzia Irreversible blunted respiratory sensitivity to hypoxia in high altitude natives. Respir. Physiol. 6: 360–374, 1969.PubMedCrossRefGoogle Scholar
  17. 17.
    Lahiri, S., and J. S. Milledge. Sherpa physiology. Nature London 207: 610–612.Google Scholar
  18. 18.
    Lahiri, S., J. S. Milledge, H. P. Chattopadhyay, A. K. Bhattacharyya, and A. K. Sinha. Respiration and heart rate of Sherpa highlanders during exercise. J. Appl. Physiol. 23: 545–554, 1967.PubMedGoogle Scholar
  19. 19.
    Lahiri, S., J. S. Milledge, and S. C. Sqrenson. Ventilation in man during exercise at high altitude. J. Appt. Physiol. 32: 766–769, 1972.Google Scholar
  20. 20.
    Lahiri, S., A. Mokashi, E. Mulligan, and T. Nishino. Comparison of aortic and carotid chemoreceptor responses to hypercapnia and hypoxia. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 55–61, 1981.Google Scholar
  21. 21.
    Lahiri, S., E. Mulligan, T. Nishino, A. Mokashi, and R. O. Davies. Relative responses of aortic body and carotid body chemoreceptors to carboxyhemoglobinemia. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 580–586, 1981.Google Scholar
  22. 22.
    Lahiri, S., T. Nishino, A. Mokashi, and E. Mulligan. Interaction of dopamine and haloperidol with 02 and CO2 chemoreception in carotid body. J. Appt Physiol.: Respirat. Environ. Exercise Physiol. 49: 45–51, 1980.Google Scholar
  23. 24.
    Lahiri, S., N. J. Smatresk, and E. Mulligan. Responses of peripheral chemoreceptors to natural stimuli. In: Physiology of the Peripheral Arterial Chemoreceptors, edited by H. Acker and R. O’Regan. Amsterdam: Elsevier, 1983, p. 221–256.Google Scholar
  24. 25.
    Lefrancois, R., H. Gautier, and P. Pasquis. Ventilatory oxygen drive in acute and chronic hypoxia. Respir. Physiol. 4: 217–228, 1968.CrossRefGoogle Scholar
  25. 26.
    Milledge, J. S., and S. Lahiri. Respiratory control in lowlanders and Sherpa highlanders at altitude. Respir. Physiol. 2: 310–322, 1967.PubMedCrossRefGoogle Scholar
  26. 27.
    Miller, J. D., and S. M. Tenney. Hypoxia-induced tachypnea in carotid deafferented cats. Respir. Physiol. 23: 31–39, 1975.PubMedCrossRefGoogle Scholar
  27. 28.
    Monge, M. C., and C. C. Monge. High Altitude Diseases. Mechanisms and Management. Springfield, IL: Thomas, 1966.Google Scholar
  28. 29.
    Nishino, T., and S. Lahiri. Effects of dopamine on chemoreflexes in breathing. J. Appt. Physiol.: Respirat. Environ. Exercise Physiol. 50: 892–897, 1981.Google Scholar
  29. 30.
    Pugh, L. G. C. E., M. B. Gill, S. Lahiri, J. S. Mil-Ledge, M. P. Ward, and J. B. West. Muscular exercise q.great altitudes. J. Appl. Physiol. 19: 431–440, 1964.PubMedGoogle Scholar
  30. 31.
    Rahn, H., and A. B. Otis. Man’s respiratory response during and after acclimatization to high altitude. Am. J. Physiol. 157: 445–462, 1949.PubMedGoogle Scholar
  31. 32.
    Ramaswamy, S. S. Load carriage by infantry soldiers at high altitude. In: International Symposium on Problems of High Altitude. New Delhi, India: Armed Forces Medical Services, 1962, p. 74–86.Google Scholar
  32. 33.
    Read, D. J. C. A clinical method for assessing the ventilatory response to carbon dioxide. Aust. Ann. Med. 16: 2032, 1967.Google Scholar
  33. 34.
    Saldana, M. J., L. E. Salem, and R. Travezan. High altitude hypoxia and chemodectomas. Hum. Pathol. 4: 251–263, 1973.PubMedCrossRefGoogle Scholar
  34. 35.
    Severinghaus, J. W., C. R. Bainton, and A. CarcelÉN. Respiratory insensitivity to hypoxia in chronically hypoxic man. Respir. Physiol. 1: 308–334, 1966.PubMedCrossRefGoogle Scholar
  35. 36.
    Smatresk, N., and S. Lahiri. Aortic body chemoreceptor responses to dopamine, haloperidol, and pargyline. J. Appt Physiol.: Respirat. Environ. Exercise Physiol. 53: 596–602, 1982.Google Scholar
  36. 37.
    Smatresk, N. J., M. Pokorski, and S. Lahiri. Opposing effects of dopamine receptor blockade on ventilation and carotid chemoreceptor activity. J. Appt Physiol.: Respirat. Environ. Exercise Physiol. 54: 1567–1573, 1983.Google Scholar
  37. 38.
    ST. John, W. M. Respiratory neuron responses to hypercapnia and carotid chemoreceptor stimulation. J. Appt. Physiol.: Respirat. Environ. Exercise Physiol 51: 816–822, 1981.Google Scholar
  38. 39.
    Tenney, S. M., and L. C. Ou. Hypoxic ventilatory response of cats to high altitude: an interpretation of blunting. Respir. Physiol. 30: 185–189, 1977.PubMedCrossRefGoogle Scholar
  39. 40.
    Velasquez, T. Tolerance to acute anoxia in high altitude natives. J. Appt. Physiol. 14: 357–362, 1959.Google Scholar
  40. 41.
    Weil, J. V., E. Byrne-Quinn, E. Ingvar, G. F. Filly, and R. F. Grover. Acquired attenuation of chemoreceptor function in chronically hypoxic man at high altitude. J. Clin. Invest. 50: 186–195, 1971.PubMedCrossRefGoogle Scholar
  41. 42.
    West, J. B., P. H. Hackett, K. H. Maret, J. S. Milledge, R. M. Peters, Ja., C. J. Pizzo, and R. M. Winslow. Pulmonary gas exchange on the summit of Mount Everest. J. Appt. Physiol.: Respirat. Environ. Exercise Physiol. 55: 678–687, 1983.Google Scholar

Copyright information

© American Physiological Society 1984

Authors and Affiliations

  • Sukhamay Lahiri
    • 1
  1. 1.Department of Physiology, Institute for Environmental MedicineUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations