Skip to main content

Cell Culture Model for the Study of Vascular Complications of Diabetes: The Effect of High Glucose Levels on Metabolism and Growth of Vascular Cells

  • Chapter
Hyperglycemia, Diabetes, and Vascular Disease

Part of the book series: Clinical Physiology Series ((CLINPHY))

  • 448 Accesses

Abstract

Vascular complications affect all diabetic patients to some extent and involve both microvessels and macrovessels. In this chapter we discuss studies that show the effects of elevated glucose levels on the metabolism of retinal and aortic vascular cells in culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, S., and Brenner, B. M. Pathogenesis of diabetic glomerulopathy: hemodynamic considerations. Diabetes/Metab. Rev. 4: 163–177, 1988.

    Article  CAS  Google Scholar 

  2. Ashton, N. Oxygen and the growth and development of retinal vessels. In vivo and in vitro studies. In: Vascular Complications of Diabetes Mellitus, edited by S. J. Kimura and W. M. Caggill. St. Louis: Mosby, 1967.

    Google Scholar 

  3. Backer, J. M., and King, G. L. Regulation of receptor-mediated endocytosis by phorbol esters. Biochem. Pharmacol. 41: 1267–1277, 1991.

    Article  PubMed  CAS  Google Scholar 

  4. Banskota, N. K., Taub, R., Zellner, K., and King, G. L. Insulin, insulin-like growth factor I and platelet-derived growth factor interact additively in the induction of the protooncogene c-myc and cellular proliferation in cultured bovine aortic smooth muscle cells. Mol. Endocrinol. 3: 1183–1190, 1989.

    Article  PubMed  CAS  Google Scholar 

  5. Bergman, R. N. Toward physiological understanding of glucose tolerance. Diabetes 38: 1512–1527, 1989.

    Article  PubMed  CAS  Google Scholar 

  6. Berridge, M. J. Inositol triphosphate and diacylglycerol: two interacting second messengers. Annu. Rev. Biochem. 56: 159–193, 1987.

    Article  CAS  Google Scholar 

  7. Bottaro, D. P., Bonner-Weir, S., and King, G. L. Insulin receptor recycling in vascular endothelial cells. J. Biol. Chem. 264: 5916–1923, 1989.

    PubMed  CAS  Google Scholar 

  8. Brownlee, M., Cerami, A., and Valassara, H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N. Engl. J. Med. 318: 1315–1321, 1988.

    Article  PubMed  CAS  Google Scholar 

  9. Burditt, A. F., Caird, F. I., and Proper, G. J. The natural history of diabetic retinopathy. Q. J. Med. 371: 303–317, 1968.

    Google Scholar 

  10. Caird, F. I., Burditt, A. F., and Draper, G. J. Diabetic retinopathy, a further study of prognosis for vision. Diabetes 17: 121–128, 1968.

    PubMed  CAS  Google Scholar 

  11. CoGan, D. G., and KuwAbara, T. Capillary shunts in the pathogenesis of diabetic retinopathy. Diabetes 12: 293–300, 1983.

    Google Scholar 

  12. Cogliero, E., Maiello, M., Boeri, D., Roy, S., and Lorenzi, M. Increased expression of basement membrane components in human endothelial cells cultured in high glucose. J. Clin. Invest. 82: 735–738 1988.

    Article  Google Scholar 

  13. Craven, P. A., Davidson, C. M., and Derubertis, F. R. Increase in diacylglycerol mass in isolated glomeruli by glucose from de novo synthesis of glycerolipids. Diabetes 39: 667–674, 1990.

    Article  PubMed  CAS  Google Scholar 

  14. Craven, P. A., Davidson, C. M., and Derubertis, F. R. Increase in diacylglycerol mass in isolated glomeruli by glucose from de novo synthesis of glycerolipids. Diabetes 39: 667–674, 1990.

    Article  PubMed  CAS  Google Scholar 

  15. Cunda-Vaz, J., Deabrew, J. R. F., and Campos, A. J. Early breakdown of the blood retinal barrier in diabetes. Br. J. Ophthalmol. 59: 649–656, 1975.

    Article  Google Scholar 

  16. Deolweira, F. Pericytes in diabetic retinopathy. Br. J. Ophthalmol. 50: 134–143, 1966.

    Article  Google Scholar 

  17. Engerman, R. L., and Kern, T. S. Progression of incipient diabetic retinopathy during glycemic control. Diabetes 36: 808–812, 1987.

    Article  PubMed  CAS  Google Scholar 

  18. Engerman, R. L. Pathogenesis of diabetic retinopathy. Diabetes 38: 1203–1206, 1989.

    Article  PubMed  CAS  Google Scholar 

  19. Engerman, R. L., and Kern, T. S. Hyperglycemia and development of glomerular pathology: diabetes compared with galactosemia. Kidney Int. 36: 41–45, 1989.

    Article  PubMed  CAS  Google Scholar 

  20. Folkman, J., and Klagsbrun, M. Angiogenic factors. Science 235: 442–447, 1987.

    Article  PubMed  CAS  Google Scholar 

  21. Ganesan, S., Calle, R., Zawalick, K., Smallwood, J. I., Zawalich, W., and Rasmussen, H. Glucose-induced translocation of protein kinase C in rat pancreatic islets. Proc. Natl. Acad. Sci 87: 9893–9897, 1990.

    Article  PubMed  CAS  Google Scholar 

  22. Green, D. A., Lattimer, S. A., and Sima, A. A. F. Sorbitol, phosphoinositides and sodium-potassium Atpase in the pathogenesis of diabetic complications. N. Engl. J. Med. 316: 599–606, 1987.

    Article  Google Scholar 

  23. Grunwald, J. E., Brucker, A. J., Schwartz, S. S., Braunstein, S. N., Baker, L., Petrig, B. L., and Riva, C. E. Diabetic glycemic control and retinal blood flow. Diabetes 39: 602–607, 1990.

    Article  PubMed  CAS  Google Scholar 

  24. Hachiya, H. L., Takayama, S., White, M. F., and King, G. L. Regulation of insulin receptor internalization in vascular endothelial cells by insulin and phorbol ester. J. Biol. Chem. 262: 6417–6424, 1987.

    PubMed  CAS  Google Scholar 

  25. Hocevar, B. A., and Field, A. P. Selective translocation of Bii-protein kinase C to the nucleus of human promyelocytic (HL60) leukemia cells. J. Biol. Chem. 266: 38–33, 1991.

    Google Scholar 

  26. Inoue, A., Yanagisawa, M., Kimura, S., Kasuya, Y., Miyauchi, T., Goto, K., and Masaki, T. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc. Natl. Acad. Sci Usa 86: 2863 2867, 1989.

    Google Scholar 

  27. Jialal, I., King, G. L., Buchwald, S., Kahn, C. R., and Crettaz, M. Processing of insulin by bovine endothelial cells in culture. Diabetes 33: 794–800, 1984.

    Article  PubMed  CAS  Google Scholar 

  28. King, G. L., Buzney, S. M., Kahn, C. R., Heta, N., Buchwald, S., Macdonald, S. G., and Rand, L. I. Differential responsiveness to insulin of endothelial and support cells from micro and macrovessels. J. Clin. Invest. 71: 974–979, 1983.

    Article  PubMed  CAS  Google Scholar 

  29. King. G. L. Cell biology as an approach to the study of vascular complications of diabetes. Metabolism 34 (Suppl. 1 ) 34: 17–24, 1985.

    Google Scholar 

  30. King, G. L., Goodman, A. D., Buzney, S. M., Moses, A., and Kahn, C. R. Receptors and growth-promoting effects of insulin and insulin-like growth factors on cells from bovine retinal capillaries and aorta. J. Clin. Invest. 75: 1028–1036, 1985.

    Article  PubMed  CAS  Google Scholar 

  31. King, G. L., and Johnson, S. Receptor-mediated transport of insulin across endothelial cells. Science 227: 1583–1586, 1985.

    Article  PubMed  CAS  Google Scholar 

  32. King, G. L., Johnson, S., and Wu, G. Possible growth modulators involved in the pathogenesis of diabetic proliferative retinopathy. In: Growth Factors in Health and Disease, edited by B. Westermark, C. Betsholtz, and B. Hokfelt. Netherlands: Elsevier Science, 1990, pp. 303–317.

    Google Scholar 

  33. Kohner, E. M. The problems of retinal blood flow in diabetes. Diabetes 25 (Suppl. 2 ): 839844, 1976.

    Google Scholar 

  34. Kohner, E. M., Mcleod, D., and Marshall, J. Diabetic retinopathy. In: Complications of Diabetes, edited by H. Keen and J. Jarrett. London: Edward Arnold, 1982, pp. 19121.

    Google Scholar 

  35. Kuwabara, T., and Cogan, G. Studies on the retinal vascular pattern. I. Normal architecture. Ama Arch. Ophthalmol. 64: 904–916, 1960.

    Article  CAS  Google Scholar 

  36. Kwok, C. F., Goldstein, B. J., Muller-Wieland, D., Lee, T.-S., Kahn, C. R., and King, G. L. Identification of persistent defects in insulin receptor structure and function in capillary endothelial cells from diabetic rats. J. Clin. Invest. 83: 127–136, 1989.

    Article  PubMed  CAS  Google Scholar 

  37. Lee, M.-E., Block, K. D., Clifford, J. A., and Quertermous, T. Functional analysis of the endothelin-1 gene promoter. J. Biol. Chem. 265: 10446–10450, 1990.

    PubMed  CAS  Google Scholar 

  38. LI, W., Shen, S., Khatami, M., and Rockey, J. H. Stimulation of retinal pericytes, protein and collagen synthesis in culture by high glucose concentration. Diabetes 33: 785789, 1984.

    Google Scholar 

  39. LoY, A., Lurie, K. G., Ghosh, A., Wilson, J. M., Macgregor, L. C., and Matschinsky, F. M. Diabetes and the myoinositol paradox. Diabetes 39: 1305–1312, 1990.

    Article  Google Scholar 

  40. Lynch, J. L., Ferro, T. J., Blumenstock, F. A., Brockenauer, A. M., and Malik, A. B. Increased endothelial albumin permeability mediated by protein kinase C activation. J. Clin. Invest. 85: 1991–1998, 1990.

    Article  PubMed  CAS  Google Scholar 

  41. Montesano, R., and Orci, L. Tumor-promoting esters induce angiogenesis in vitro. Cell 42: 469–477, 1985.

    Article  PubMed  CAS  Google Scholar 

  42. Nayak, R. C., Berman, A. B., George, K. L., Eisenbarth, G. S., and King, G. L. A monoclonal antibody (3G5)-defined ganglioside antigen is expressed on the cell surface of microvascular pericytes. J. Exp. Med. 167: 1003–1015, 1988.

    Article  PubMed  CAS  Google Scholar 

  43. NIsHIzuKA, Y. The family of protein kinase C for signal transduction. Jama 262: 1826 1833, 1989.

    Google Scholar 

  44. Ono, Y., Fujii, T., Ogita, K., Kikkawa, U., Igarashi, K., and Nishizuka, Y. Protein kinase C subspecies from rat brain: its structure, expression, and properties. Proc. Natl. Acad. Sci. Usa 86: 3099–3103, 1989.

    Article  PubMed  CAS  Google Scholar 

  45. Peter-Riesch, B., Fahti, M., Schlegel, W., and Wollheim, C. B. Glucose and carbachol generate 1,2-diacylglycerols by different mechanisms in pancreatic islets. J. Clin. Invest. 81: 1154–1161, 1988.

    Article  Google Scholar 

  46. Pugazhenthi, S., Mantha, S. V., and Khandelwol, R. L. Decrease of liver protein kinase C in streptozotocin-induced diabetic rats and restoration by vanadate treatment. Biochem. Int. 21: 651–657, 1990.

    PubMed  CAS  Google Scholar 

  47. Ramsay, R. C., Goetz, F. C., Sutherland, D. E. R., Mauer, S. M., Robison, L. L., Cantrill, H. L., Knobloch, W. H., and Najarian, J. S. Progression of diabetic retinopathy after pancreatic transplantation for insulin dependent diabetic mellitus. N. Engl. J. Med. 318: 208–214, 1988.

    Article  PubMed  CAS  Google Scholar 

  48. Rand, L. I. Recent advances in diabetic retinopathy. Am. J. Med. 70: 595–602, 1981.

    Article  Google Scholar 

  49. Robison, W. G., Tillis, T N, Laver, N., and Kinoshita, J. Diabetes-related histopathologies of rat retina prevented with an aldose reductase inhibitor. Exp. Eye Res. 50: 355, 1970.

    Article  Google Scholar 

  50. Saad, M F., Lillioja, S., Nyomba, B. L., Castillo, C., Ferraro, R., Gregorio, M. D., Ravussen, E., Knowler, W. C., Bennett, P. H., Howard, B. V., and Bogardus, C. Racial differences in the relation between blood pressure and insulin resistance. N. Engl. J. Med. 324: 733–739, 1991.

    Article  PubMed  CAS  Google Scholar 

  51. Shiba, T., Bursell, S.-E., Clermont, A., Sportsman, R., Heath, W., and King, G. L. Protein kinase C activation is a causal factor for the alteration of retinal blood flow in diabetes of short duration. Invest. Ophthalmol. Vis. Sci. Usa 32: 785, 1991.

    Google Scholar 

  52. Small, K. W., Stefansson, E., and Hatchell, D. C. Retinal blood flow in normal and diabetic dogs. Invest. Ophthalmol. Vis. Sci. 28: 672–675, 1987.

    PubMed  CAS  Google Scholar 

  53. Sussman, I., Carson, M. P., Schultz, V., Wu, V. P., Mccall, A. L., Ruderman, N. B., and Tornheim, K. Chronic exposure to high glucose decreases myo-inositol in cultured cerebral microvascular pericytes but not in endothelium. Diabetologia 31: 771–775, 1988.

    Article  PubMed  CAS  Google Scholar 

  54. Takayama, S., White, M. F., Lauris, V., and Kahn, C. R. Phorbol esters modulate insulin receptor phosphorylation and insulin in cultured hepatoma cells. Proc. Natl. Acad. Sci. Usa 81: 7797–7801, 1984.

    Article  PubMed  CAS  Google Scholar 

  55. Tesfamarian, B., Brown, M. L., and Cohen, R. A. Elevated glucose impairs endothelium-dependent relaxation by activation protein kinase C. J. Clin. Invest. 87: 1643–1648, 1991.

    Article  Google Scholar 

  56. Trus, M. D., Zawalich, W. S., Burch, P. T., Berner, D. K., Weill, V. A., and Matshinsky, F. M. Regulation of glucose metabolism in pancreatic islets. Diabetes 30: 911–922, 1981.

    Article  PubMed  CAS  Google Scholar 

  57. Wise, G. N. Retinal neovascularization. Trans. Am. Ophthalmol. Soc. 54: 729–826, 1956.

    PubMed  CAS  Google Scholar 

  58. Wolf, B. A., Williamson, J. R., Easom, R. A., Chang, K., Sherman, W. R., and Turk, J. Diacylglycerol accumulation and microvascular abnormalities induced by elevated glucose levels. J. Clin. Invest. 87: 31–38, 1991.

    CAS  Google Scholar 

  59. Yamauchi, T., Keizo, O., Takayanagi, R., Umeda, F., and Nawata, H. Enhanced secretion of endothlin-1 by elevated glucose levels from cultured bovine aortic endothelial cells. Febs Lett. 267: 16–18, 1990.

    Article  PubMed  CAS  Google Scholar 

  60. Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, M., Mitsui, Y., Yazaki, Y., Goto, K., and Masaki, T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411–415, 1988.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 American Physiological Society

About this chapter

Cite this chapter

King, G.L., Shiba, T., Feener, E.P., Nayak, R. (1992). Cell Culture Model for the Study of Vascular Complications of Diabetes: The Effect of High Glucose Levels on Metabolism and Growth of Vascular Cells. In: Ruderman, N., Williamson, J., Brownlee, M. (eds) Hyperglycemia, Diabetes, and Vascular Disease. Clinical Physiology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7524-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7524-8_9

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7524-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics