Advertisement

Nonenzymatic Glycosylation of Macromolecules: Prospects for Pharmacologic Modulation

  • Hans-Peter Hammes
  • Michael Brownlee
Part of the Clinical Physiology Series book series (CLINPHY)

Abstract

The primary factor associated with the development of most diabetic complications is prolonged exposure to hyperglycemia (7). The extent and rate of progression of retinopathy, nephropathy, and neuropathy correlate closely with the magnitude and duration of target tissue exposure to abnormally high levels of blood glucose. Data from ongoing prospective studies of selected diabetic populations also indicate a clear association with diabetic macrovascular complications. Current evidence suggests that a particular diabetic individual’s clinical course is also influenced by genetic determinants of tissue susceptibility and independent accelerating factors such as hypertension.

Keywords

Amadori Product Mesangial Expansion Glycation Product Nonenzymatic Glycosylation Axonal Atrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baynes, J. W., and Monnier, V. M. (eds.). The Conference on the Maillard Reaction in Aging, Diabetes and Nutrition. New York: Alan R. Liss, 410 pp, 1989.Google Scholar
  2. 2.
    Brownlee, M., and Spiro, R. G. Glomerular basement membrane metabolism in the diabetic rat: in vivo studies. Diabetes 28: 121–125, 1979.PubMedCrossRefGoogle Scholar
  3. 3.
    Brownlee, M., Pongor, S., and Cerami, A. Covalent attachment of soluble proteins by nonenzymatically glycosylated collagen. J. Exp. Med. 158: 1739–1744, 1983.PubMedCrossRefGoogle Scholar
  4. 4.
    Brownlee, M., Vlassara, H., and Cerami, A. Nonenzymatic glycosylation products on collagen covalently trap low-density lipoprotein. Diabetes 34: 938–941, 1985.PubMedCrossRefGoogle Scholar
  5. 5.
    Brownlee, M., Vlassara, H., Kooney, T., Ulrich, P., and Cerami, A Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking. Science 232: 1629 1632, 1986.Google Scholar
  6. 6.
    Brownlee, M., Vlassara, H., and Cerami, A. Advanced glycosylation endproducts in tissue and biochemical basis of complications. (Beth Israel Seminar in Medicine). N. Engl. J. Med. 318: 1315–1321, 1988.PubMedCrossRefGoogle Scholar
  7. 7.
    Brownlee, M., and Sherwood, L. M. (eds.). Diabetes Mellitus and Its Complications: Pathogenesis and Treatment. Philadelphia: Hanley & Belfus, pp. 1–300, 1990.Google Scholar
  8. 8.
    Brownlee, M., Williamson, J. R., and Ruderman, N. B. Hyperglycemia, diabetes and the vascular wall. Faseb J. (in press).Google Scholar
  9. 9.
    Bucala, R., Tracey, K., and Cerami, A. Diabetes 39: 30A, 1990 (abstr.).Google Scholar
  10. 10.
    Cagliero, E., Roth, T., Sayon, R., and Lorenz’, M. Characteristics and mechanisms of high-glucose-induced overexpression of basement membrane components in cultured human endothelial cells. Diabetes 40: 102–110, 1991.PubMedCrossRefGoogle Scholar
  11. 11.
    Charonis, A. S., Reger, L. A., Dege, J. E., Kouzii-Koliakos, K., Furcht, L. T., et al. Lam-Min alteration after in vitro nonenzymatic glucosylation. Diabetes 39: 807–814, 1990.PubMedCrossRefGoogle Scholar
  12. 12.
    Crowley, S., Brownlee, M., Edelstein, D., Satriano, J., Mori, T., et al. Effect of nonenzymatic glycation of mesangial matrix on proliferation of mesangial cells. Diabetes 40: 540–547, 1990.CrossRefGoogle Scholar
  13. 13.
    Ellis, E. N., and Good, B. H. Prevention of glomerular basement membrane thickening by aminoguanidine in experimental Diabetes Mellitis. Metabolism 40: 1016–1019, 1991.PubMedCrossRefGoogle Scholar
  14. 14.
    Engerman, R. L., and Kern, T. S. Progression of incipient diabetic retinopathy during good glycemic control. Diabetes 36: 808–812, 1987.PubMedCrossRefGoogle Scholar
  15. 15.
    Esposito, C., Gerlach, H., Brett, J., Stern, D., and Vlassara, H. Endothelial receptor-mediated binding of glucose-modified albumin is associated with increased monolayer permeability and modulation of cell surface coagulant properties. J. Exp. Med. 170: 1387–1407, 1989.PubMedCrossRefGoogle Scholar
  16. 16.
    Hammes, H. P., Martin, S., Federlin, K., Geisen, K., and Brownlee, M. Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. Proc. Natl. Acad. Sci. USA 88: 11555–11558, 1991.PubMedCrossRefGoogle Scholar
  17. 17.
    Hammes, H. P., Federlin, K., and Brownlee, M Aminoguanidine treatment inhibits advanced glycosylation product accumulation in diabetic retinal vessels. International Diabetes Federation Congress, 1991 (abstr.).Google Scholar
  18. 18.
    Hicks, M., Delbridge, L., Yue, D. K., and Reeve, T. S. Increase in crosslinking of nonenzymatically glycosylated collagen induced by products of lipid peroxidation. Arch. Biochem. Biophys. 268: 249–254, 1989.PubMedCrossRefGoogle Scholar
  19. 19.
    Kelly, S. B., Olerud, J. E., Witztum, J. L., Curtis, L. K., Gown, A. M., et al. A method for localizing the early products of nonenzymatic glycosylation in fixed tissue. J. Invest. Dermatol. 93: 327–331, 1989.PubMedCrossRefGoogle Scholar
  20. 20.
    Kirstein, M., Aston, C., and Vlassara, H. Diabetes 39: 182A, 1990 (abstr.).Google Scholar
  21. 21.
    Klahr, S., Schreiner, G., and Ichikawa, I. The progression of renal disease. N. Engl. J. Med. 318: 1657–1666, 1988.PubMedCrossRefGoogle Scholar
  22. 22.
    Lee, A. T., and Cerami, A. Elevated glucose 6-phosphate levels are associated with plasmid mutations in vivo. Proc. Natl. Acad. Sci. USA 84: 8311–8314, 1987.PubMedCrossRefGoogle Scholar
  23. 23.
    Lorenzi, M., Montisano, D. F., Toledo, S., and Barrieux, A. High glucose and Dna damage in endothelial cells. J. Clin. Invest. 77: 322–325, 1986.PubMedCrossRefGoogle Scholar
  24. 24.
    Lubec, G., and Pollak, A. Reduced susceptibility of nonenzymatically glucosylated glomerular basement membrane to proteases. Renal. Physiol. 3: 4–8, 1980.PubMedGoogle Scholar
  25. 25.
    Makita, Z., Radoff, S., Rayfield E., and Cerami, A. Diabetes 39(Suppl. 1): 29A, 1990 (abstr.).Google Scholar
  26. 26.
    Nicholls, K., and Mandel, T. E. Advanced glycosylation end-products in experimental murine diabetic nephropathy: effect of islet isografting and aminoguanidine. Lab. Invest. 60: 486–493, 1989.PubMedGoogle Scholar
  27. 27.
    Radoff, S., Vlassara, H., and Cerami, A. Characterization of a solubilized cell surface binding protein on macrophages specific for proteins modified nonenzymatically by advanced glycosylated end products. Arch. Biochem. Biophys. 263: 418–423, 1988.PubMedCrossRefGoogle Scholar
  28. 28.
    Rohrbach, D. H., Hassel, J. R., Kleinman, H. K., and Martin, G. R. Alterations in basement membrane (heparan sulfate) proteoglycan in diabetic mice. Diabetes 31: 185–188, 1982.PubMedCrossRefGoogle Scholar
  29. 29.
    Tanaka, S., Avigad, G., Brodsky, B., and Eikenberry, E. F. Glycation induces expansion of the molecular packing of collagen. J. Mol. Biol. 203: 495–505, 1988.PubMedCrossRefGoogle Scholar
  30. 30.
    Tilton, R. G., Chang, K., Ostrow, E., Allison, W., and Williamson, J. R. Aminoguanidine reduces increased ‘3’I albumin permeation of retinal and uveal vessels in streptozotocin diabetic rats. Invest. Ophthalmol. 31: 342, 1990.Google Scholar
  31. 31.
    Tsilibary, E. C., Charonis, A. S., Reger, L. A., Wohlhueter, R. M., and Furcht, L. T. The effect of nonenzymatic glucosylation on the binding of the main noncollagenous Nci domain to type IV collagen. J. Biol. Chem. 263: 4302–4308, 1988.PubMedGoogle Scholar
  32. 32.
    Tsilibary, E. C., and Charonis, A. S. The effect of nonenzymatic glucosylation on cell and heparin binding microdomains from type IV collagen and laminin (abstr.). Diabetes 39: 194A, 1990.Google Scholar
  33. 33.
    Vlassara, H., Brownlee, M., Monogue, K., Dinarello, C. A., and Pasagian, A. Cachectin/ Tnf and IL-1 induced by glucose-modified proteins: role in normal tissue remodeling. Science 240: 1546–1548, 1988.PubMedCrossRefGoogle Scholar
  34. 34.
    Yamashita, H., Yoshikawa, C., et al. Glycation of glomerular basement membrane (Gbm) type IV collagen (Ivc) and proteinuria. (abstr.). Diabetes 38: 25A, 1989.Google Scholar
  35. 35.
    Soules-Laparata T., Cooper M., Papazoglou D., Clarke B., and Jerums G. Retardation by aminoguanidine of development of albuminuria mesangial expansion and tissue fluorescence in streptozotocin induced diabetic rat. Diabetes 40: 1328–1335, 1991.CrossRefGoogle Scholar
  36. 36.
    Edelstein D. and Brownlee M. Aminoguanidine ameliorates albuminuria in diabetic hypertensive rats. Diabetologia 35: 96–97, 1992.PubMedCrossRefGoogle Scholar
  37. 37.
    Kiara M., Schmelzer J. D., Poduslo J. F., Curran F. F., Nickander K. K., Low P. A. Aminoguanidine effect on nerve blood flow, vascular permeability, electrophysiology, and oxygen free radicals. Proc. Natl. Acad. Sci. USA 88: 6107–6111, 1991.CrossRefGoogle Scholar

Copyright information

© American Physiological Society 1992

Authors and Affiliations

  • Hans-Peter Hammes
  • Michael Brownlee

There are no affiliations available

Personalised recommendations