Skip to main content

Mobilization of Arachidonic Acid from Diacyl and Ether Phospholipids in Cultured Endothelial Cells

  • Chapter
Hyperglycemia, Diabetes, and Vascular Disease

Part of the book series: Clinical Physiology Series ((CLINPHY))

  • 434 Accesses

Abstract

Cultured endothelial cells are invaluable tools in studying the effect of diabetes and its vast symptomology on the metabolism of the vasculature. The culture of endothelial cells provides an important tissue model, pure in cell type and easily manipulated. Although tissue culture offers slight possibilities of mimicking the total diabetic milieu, specific conditions that arise in the course of diabetes can be reproduced in a controlled and isolated manner. In this chapter, the discussion focuses on studies undertaken to examine arachidonic acid metabolism in endothelial cells and the influence upon it by elevated glucose levels similar to those found in patients with diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aanderud, S., Krane, S. A., and Nordoy, A. Influence of glucose, insulin, and sera of diabetic patients on prostacyclin synthesis in vitro in cultured human endothelial cells. Diabetologia 28: 641–644, 1985.

    Article  PubMed  CAS  Google Scholar 

  2. Adams-Brotherton, A. F., and Hoak, J. C. Prostacyclin biosynthesis in cultured vascular endothelium is limited by deactivation of cyclooxygenase. J. Clin. Invest. 72: 1255 1261, 1983.

    Google Scholar 

  3. Brown, M. L., and Deykin, D. Passage state affects arachidonic acid content and eicosanoid release in porcine aortic endothelial cells. Arteriosclerosis 11: 167–173, 1991.

    Article  CAS  Google Scholar 

  4. Brown, M. L., Jakubowski, J. A., Leventis, L. L., and Deykin, D. Ionophore-induced metabolism of phospholipids and eicosanoid production in porcine aortic endothelial cells: selective release of arachidonic acid from diacyl and ether phospholipids. Biochim. Biophys. Acta 921: 159–166, 1987.

    Article  PubMed  CAS  Google Scholar 

  5. Brown, M. L., Jakubowski, J. A., Leventis, L. L., and Deykin, D. Elevated glucose alters eicosanoid release from porcine aortic endothelial cells. J. Clin. Invest. 82: 2136 2141, 1988.

    Google Scholar 

  6. Chang, J., Blazek, E., Kreft, A. F., and Lewis, A. J. Inhibition of platelet and neutrophil phospholipase AZ by hydroxyeicosatetraenoic acids (Hetes). A novel pharmacological mechanism for regulating free fatty acid release. Biochem. Pharmacol. 34: 1571 1575, 1985.

    Google Scholar 

  7. Coffey, R. G., and Hadden, J. W. Phorbol myristate acetate stimulation of lymphocyte guanylate cyclase and cyclic guanosine 3’:5’-monophosphate phosphodiesterase and reduction of adenylate cyclase. Cancer Res. 43: 150–158, 1983.

    PubMed  CAS  Google Scholar 

  8. Colard, O., Breton, M., Pepin, D., Chevy, F., Bereziat, G., and Polonovski, J. Arachidonate cannot be released directly from diacyl-sn-glycero-3-phosphocholine in thrombin-stimulated platelets. Biochem. J. 259: 333–339, 1989.

    PubMed  CAS  Google Scholar 

  9. Denning, G. M., Figard, P. H., Kaduce, T. L., and Spector, A. A. Role of triglycerides in endothelial cell arachidonic acid metabolism. J. Lipid Res. 24: 993–1001, 1983.

    PubMed  CAS  Google Scholar 

  10. Fitzpatrick, F. A., and Murphy, R. C. Cytochrome P-450 metabolism of arachidonic acid: formation and biological actions of “epoxygenase”-derived eicosanoids. Pharmacol. Rev. 40: 229–241, 1989.

    Google Scholar 

  11. Gross, R. W., and Sobel, B. E. Lysophosphatidylcholine metabolism in the rabbit heart. Characterization of metabolic pathways and partial purification of myocardial lysophospholipase-transacylase. J. Biol. Chem. 257: 6702–6708, 1982.

    PubMed  CAS  Google Scholar 

  12. Hadjiagapiou, C., and Spector, A. A. 12-Hydroxyeicosatetraenoic acid reduces prostacyclin production by endothelial cells. Prostaglandins 31: 1135–1144, 1986.

    Article  PubMed  CAS  Google Scholar 

  13. Halushka, P. V., Mayfield, R., and Colwell, J. A. Insulin and arachidonic acid metabolism in diabetes mellitus. Metabolism 34: 32–36, 1985.

    Article  PubMed  CAS  Google Scholar 

  14. Hendra, T., and Betteridge, D. J. Platelet function, platelet prostanoids and vascular prostacyclin in diabetes mellitus. Prostaglandins, Leukotrienes and Essential Fatty Acids: Reviews 35: 197–212, 1989.

    Article  CAS  Google Scholar 

  15. Hill, E. E., and Lands, W. E. M. Phospholipid Metabolism. In Lipid Metabolism, edited by S. J. Wakil. New York: Academic Press, 1970, pp. 185–279.

    Chapter  Google Scholar 

  16. Hong, S. L., Carty, T., and Deykin, D. Tranylcypromine and 15-hydroperoxyarachidonate affect arachidonic acid release in addition to inhibition of prostacyclin synthesis in calf aortic endothelial cells. J. Biol. Chem. 255: 9538–9540, 1980.

    PubMed  CAS  Google Scholar 

  17. Hong, S. L., and Deykin, D. Activation of phospholipases A2 and C in pig aortic endothelial cells synthesizing prostacyclin. J. Biol. Chem. 257: 7151–7154, 1982.

    PubMed  CAS  Google Scholar 

  18. Jeremy, J. Y., Mikhailidis, D. P., and Dandona, P. Simulating the diabetic environment modifies in vitro prostacyclin synthesis. Diabetes 32: 217–221, 1983.

    Article  PubMed  CAS  Google Scholar 

  19. Jeremy, J. Y., Thompson, C. S., Mikiiailidis, D. P., and Dandona, P. Experimental diabetes mellitus inhibits prostacyclin synthesis by the rat penis: pathological implications. Diabetologia 28: 365–368, 1985.

    Google Scholar 

  20. Kramer, R. M., and Deykin, D. Arachidonoyl transacylase in human platelets. Coenzyme A-independent transfer of arachidonate from phosphatidylcholine to lysoplasmenylethanolamine. J. Biol. Chem. 258: 13806–13811, 1983.

    CAS  Google Scholar 

  21. Kramer, R. M., Pritzker, C. R., and Deykin, D. Coenzyme A-mediated arachidonic acid transacylation in human platelets. J. Biol. Chem. 259: 2403–2406, 1984.

    CAS  Google Scholar 

  22. KuRachi, Y., Ito, H., Sugimoto, T., Shimizu, T., Miri, I., and UI, M. Arachidonic acid metabolites as intracellular modulators of the G protein-gated cardiac K channel. Nature 337: 555–557, 1989.

    Article  Google Scholar 

  23. Laychock, S. G. Phospholipase Az activity in pancreatic islets is calcium dependent and stimulated by glucose. Cell Calcium 3: 43–54, 1982.

    Article  PubMed  CAS  Google Scholar 

  24. Lorenzi, M., Cagliero, E., and Toledo, S. Glucose toxicity for human endothelial cells in culture. Delayed replication, disturbed cell cycle, and accelerated death. Diabetes 34: 621–627, 1985.

    Google Scholar 

  25. Mckinney, M. Blockade of receptor-mediated cyclic Gmp formation by hydroxyeicosatetraenoic acid. J. Neurochem. 49: 331–341, 1987.

    Article  PubMed  CAS  Google Scholar 

  26. Needleman, P., Turk, J., Jakschik, B. A., Morrison, A. R., and Lefkowith, J. B. Arachidonic acid metabolism. Ann. Rev. Biochem. 55: 69–102, 1986.

    Article  CAS  Google Scholar 

  27. Ono, H., Umeda, F., Inoguchi, T., and Ibayashi, H. Glucose inhibits prostacyclin production by cultured aortic endothelial cells. Thromb. Haemostas. 60: 174–177, 1988.

    CAS  Google Scholar 

  28. Ordway, R. W., Walsh, J. V., JR., and Singer, J. J. Arachidonic acid and other fatty acids directly activate potassium channels in smooth muscle cells. Science 244: 1176–1179, 1989.

    CAS  Google Scholar 

  29. Ragab-Thomas, J. M. F., Hullin, F., Chap, H., and Douste-Blazy, L. Pathways of arachidonic acid liberation in thrombin and calcium ionophore A23187-stimulated human endothelial cells: respective roles of phospholipids and triacylglycerol and evidence for diacylglycerol generation from phosphatidylcholine. Biochim. Biophys. Acta 917: 388–397, 1987.

    Article  Google Scholar 

  30. Robinson, M., Blank, M. L., and Snyder, F. Acylation of lysophospholipids by rabbit alveolar macrophages. Specificities of CoA-dependent and CoA-independent reactions. J. Biol. Chem. 260: 7889–7895, 1985.

    PubMed  CAS  Google Scholar 

  31. Rosen, P., and Schror, K. Increased prostacyclin release from perfused hearts of acutely diabetic rats. Diabetologia 18: 391–394, 1980.

    PubMed  CAS  Google Scholar 

  32. Rosenthal, M. D., and Whitehurst, M. C. Fatty acyl delta6-desaturation activity of cultured human endothelial cells. Modulation by fetal bovine serum. Biochim. Biophys. Acta 750: 490–496, 1983.

    Article  PubMed  CAS  Google Scholar 

  33. Sagone, A. L., JR., Greenwald, J., Kraut, E. H., Bianchine, J., and Singh, D. Glucose: a role as a free radical scavenger in biological systems. J. Lab. Clin. Med. 101: 97–104, 1983.

    Google Scholar 

  34. Salari, H., Braquet, P., and Borgeat, P. Comparative effects of indomethacin, acetylenic acids, 15-Hete, nordihydroguaiaretic acid and BW755c on the metabolism of arachidonic acid in human leukocytes and platelets. Prostaglandins Leukotrienes Med. 13: 53–60, 1984.

    Article  CAS  Google Scholar 

  35. Samuelsson, B., Goldyne, M., Granstrom, E., Hamberg, M., Hammarstrom, S., and Malmsten, C. Prostaglandins and thromboxanes. Annu. Rev. Biochem. 47: 997–1029, 1978.

    Article  PubMed  CAS  Google Scholar 

  36. Setty, B. N. Y., Dubowy, R. L., and Stuart, M. J. Endothelial cell proliferation may be mediated via the production of endogenous lipoxygenase metabolites. Biochem. Biophys. Res. Commun. 144: 345–351, 1987.

    Article  PubMed  CAS  Google Scholar 

  37. Setty, B. N. Y., Graeber, J. E., and Stuart, M. J. The mitogenic effect of 15- and 12hydroxyeicosatetraenoic acid on endothelial cells may be mediated via diacylglycerol kinase inhibition. J. Biol. Chem. 262: 17613–17622, 1987.

    PubMed  CAS  Google Scholar 

  38. Setty, B. N. Y., and Stuart, M. J. 15-Hydroxy-5,8,11,13-eicosatetraenoic acid inhibits

    Google Scholar 

  39. vascular cyclooxygenase. Potential role in diabetic vascular disease. J. Clin. Invest. 77: 202–217, 1986.

    Article  Google Scholar 

  40. Shakir, K. M. M., Reed, H. L., and O’Brian, J. T. Decreased phospholipase A2 activity in plasma and liver in uncontrolled diabetes mellitus. A defect in the early steps of prostaglandin synthesis? Diabetes 35: 403–410, 1986.

    Article  PubMed  CAS  Google Scholar 

  41. Silberbauer, K., Schnernthaner, A., Sinzinger, H., Piza-Katzer, H., and Winter, M. Decreased vascular prostacyclin in juvenile-onset diabetes (Letter). N. Engl. J. Med. 300: 366–367, 1979.

    PubMed  CAS  Google Scholar 

  42. Spector, A. A., Kaduce, T. L., Hoak, J. C., and Fry, G. L. Utilization of arachidonic and linoleic acids by cultured human endothelial cells. J. Clin. Invest. 68: 1003–1011, 1981.

    Article  PubMed  CAS  Google Scholar 

  43. Sterin-Borda, L., Borda, E. S., Gimeno, M. F., Lazzari, M. A., Del Castillo, E., and GI-Meno, A. L. Contractile activity and prostacyclin generation in isolated coronary arteries from diabetic dogs. Diabetologia 22: 56–69, 1982.

    Article  Google Scholar 

  44. Stout, R. W. Glucose inhibits replication of cultured human endothelial cells. Diabetologia 23: 436–439, 1982.

    Article  PubMed  CAS  Google Scholar 

  45. Takamura, H., Kasai, H., Arita, H., and Kito, M. Phospholipid molecular species in human umbilical artery and vein endothelial cells. J. Lipid Res. 31: 709–717, 1990.

    PubMed  CAS  Google Scholar 

  46. Takeda, H., Maeda, H., Fukushima, H., Nakamura, N., and Uzawa, H. Increased platelet phospholipase activity in diabetic subjects. Thrombosis Res. 24: 131–141, 1981.

    Article  CAS  Google Scholar 

  47. Tesfamariam, B., Brown, M. L., Deykin, D., and Cohen, R. A. Elevated glucose promotes generation of endothelium-derived vasoconstrictor prostanoids in rabbit aorta. J. Clin. Invest. 85: 929–932, 1990.

    Article  PubMed  CAS  Google Scholar 

  48. Thomas, J. M. F., Chap, H., and Douste-Blazy, L. Calcium ionophore A23187 induces arachidonic acid release from phosphatidylcholine in cultured human endothelial cells. Biochem. Biophys. Res. Commun. 103: 819–824, 1981.

    Article  PubMed  CAS  Google Scholar 

  49. Thomas, J. M. F., Hullin, F., Chap, H., and Douste-Blazy, L. Phosphatidylcholine is the major phospholipid providing arachidonic acid for prostacyclin synthesis in thrombin-stimulated endothelial cells. Thrombosis Res. 34: 117–123, 1984.

    Article  CAS  Google Scholar 

  50. Vanderhoek, J. Y., Bryant, R. W., and Bailey, J. M. Inhibition of leukotriene biosynthesis by the leukocyte product 15-hydroxy-5,8,11,13-eicosatetraenoic acid. J. Biol. Chem. 255: 10064–10066.

    Google Scholar 

  51. Vanderhoek, J. Y., Tare, N. S., Bailey, J. M., Goldstein, A. L., and Pluznik, D. H. New role for 15-hydroxyeicosatetraenoic acid. Activation of leukotriene biosynthesis in PT-18 mast/basophil cells. J. Biol. Chem. 261: 12191–121915, 1983.

    Google Scholar 

  52. Weimann, B. J., Lorch, E., and Baumgartner. H. R. High glucose concentrations do not influence replication and prostacyclin release of human endothelial cells (Letter). Diabetologia 27: 62–63, 1984.

    Article  PubMed  CAS  Google Scholar 

  53. Wey, H. E., Jakubowski, J. A., and Deykin, D. Effect of streptozotocin-induced diabetes on prostaglandin production by rat cerebral microvessels. Thrombosis Res. 42: 527538, 1986.

    Google Scholar 

  54. Wey, H. E., Jakubowski, J. A., and Deykin, D. Incorporation and redistribution of arachidonic acid in diacyl and ether phospholipids of bovine aortic endothelial cells. Biochim. Biophys. Acta 878: 380–386, 1986.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 American Physiological Society

About this chapter

Cite this chapter

Brown, M.L. (1992). Mobilization of Arachidonic Acid from Diacyl and Ether Phospholipids in Cultured Endothelial Cells. In: Ruderman, N., Williamson, J., Brownlee, M. (eds) Hyperglycemia, Diabetes, and Vascular Disease. Clinical Physiology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7524-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7524-8_10

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7524-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics