Skip to main content

Lung Surface Tension and Surfactant: The Early Years

  • Chapter
Book cover Respiratory Physiology

Part of the book series: People and Ideas ((PEOPL))

Abstract

This chapter deals with work on pulmonary surface tension and surfactant and makes no attempt to be complete. Readers who wish for more information will find it elsewhere (17, 25, 22, 19, 64, 48). What I present here are ideas, people, and vignettes from the early years of the field that will soon be lost to view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam N. K. The Physics and Chemistry of Surfaces. Oxford: Oxford University Press, 1941.

    Google Scholar 

  2. Adamson A. W. Physical Chemistry of Surfaces. New York: John Wiley and Sons, 1990.

    Google Scholar 

  3. Avery M. E. Surfactant deficiency in hyaline membrane disease: the story of the discovery. In: The Roots of Perinatal Medicine, edited by G. Rooth and O. D. Saugstad. New York: Thieme-Stratton, pp. 1–6.

    Google Scholar 

  4. Avery M. E. and J. Mead. Surface properties in relation to atelectasis and hyaline membrane disease. Am. J. Dis. Child 97: 517–523, 1959.

    CAS  Google Scholar 

  5. Bachofen H., P. Gehr, and E. R. Weibel. Alterations of mechanical properties and morphology in excised rabbit lungs rinsed with a detergent. J. Appl. Physiol. 47: 1002–1010, 1979.

    PubMed  CAS  Google Scholar 

  6. Bachofen H., S. Schürch, M. Urbinelli, and E. R. Weibel. Relations among alveolar surface tension, surface area, volume, and recoil pressure. J. Appl. Physiol. 62: 1878–1887, 1987.

    PubMed  CAS  Google Scholar 

  7. Bikerman J. J. Capillarity before Laplace- Clairaut, Segner, Monge, Young. Arch. Hist. Exact Sci. 18: 103–122, 1978.

    Google Scholar 

  8. Brown E. S. Lung area from surface tension effects. Fed. Proc. 15: 26, 1956.

    Google Scholar 

  9. Brown E. S. Lung area from surface tension effects. Proc. Soc. Exp. Biol. Med. 95: 168170, 1957.

    Google Scholar 

  10. Brown, E. S. Isolation and assay of dipalmityl lecithin in lung extracts. Am. J. Physiol. 207: 402–406, 1964.

    PubMed  CAS  Google Scholar 

  11. Brown E. S. Assay of surface active material from emphysematous lungs. Med. Thorac. 22: 70–76, 1965.

    PubMed  CAS  Google Scholar 

  12. Brown E. S. Aspiration and lung surfactant. Anesth. Analg. 46: 665–672, 1967.

    PubMed  CAS  Google Scholar 

  13. Brown E. S., R. P. Johnson, and J. A. Clements. Pulmonary surface tension. J. Appl. Physiol. 14: 717–720, 1959.

    PubMed  CAS  Google Scholar 

  14. Clements, J. A. Dependence of pressure-volume characteristics of lungs on intrinsic surface-active material. Am. J. Physiol. 187: 592, 1956.

    Google Scholar 

  15. Clements, J. A. Surface tension of lung extracts. Proc. Soc. Exp. Biol. Med. 95: 170–172, 1957.

    PubMed  CAS  Google Scholar 

  16. Clements, J. A., R. F. Hustead, R. P. Johnson, and I. Gribetz. J. Appl. Physiol. 16: 444–450, 1961.

    PubMed  CAS  Google Scholar 

  17. Clements J. A. Sixth Bowditch Lecture: Surface phenomena in relation to pulmonary function. Physiol. 5: 11–28, 1962.

    CAS  Google Scholar 

  18. Clements J. A., E. S. Brown, and R. P. Johnson. Pulmonary surface tension and the mucus lining of the lungs: some theoretical considerations. J. Appl. Physiol. 12: 262–268, 1958.

    PubMed  CAS  Google Scholar 

  19. Comroe J. H. Jr. Retrospectroscope. Insights into medical discovery. Menlo Park, CA: von Gehr Press, 1977. pp. 140–182.

    Google Scholar 

  20. Curry C. F. and M. Nickerson. Control of pulmonary edema with silicone aerosols. J. Pharmacol. Exp. Thera. 106: 379–380, 1952.

    Google Scholar 

  21. Defay F., I. Prigogine, and A. Bellemans. Surface Tension and Adsorption, translated by D.H. Everett. New York: John Wiley and Sons, 1966.

    Google Scholar 

  22. Farrell R M. and M. E. Avery. Hyaline membrane disease. Am. Rev. Respir. Dis. 111: 657–688, 1975.

    PubMed  CAS  Google Scholar 

  23. Fung Y.-C. Stress, deformation, and atelectasis of the lung. Circ. Res. 37: 481–496, 1975.

    Article  PubMed  CAS  Google Scholar 

  24. Gaines G. L. Insoluble Monolayers at Liquid-Gas Interfaces. New York: Interscience Publishers, 1966.

    Google Scholar 

  25. Goerke J. Lung surfactant. Biochim. Biophys. Acta 344: 241–261, 1974.

    Article  PubMed  CAS  Google Scholar 

  26. Gruenwald P. Surface tension as a factor in the resistance of neonatal lungs to aeration. Am. J. Obs. Gyn. 53: 996–1007, 1947.

    CAS  Google Scholar 

  27. Hardy W. B. The general theory of colloidal solutions. Proc. R. Soc. Lond. A86: 601–635, 1912.

    Article  Google Scholar 

  28. Hardy W. B. Historical notes upon surface energy and forces of short range. Nature 109: 375–378, 1922.

    Article  Google Scholar 

  29. Harkins W. D. The Physical Chemistry of Surface Films. New York: Reinhold, 1952.

    Google Scholar 

  30. Harkins W. D., E. C. H. Davies, and G. L. Clark. The orientation of molecules in the surfaces of liquids, the energy relations at surfaces, solubility, adsorption, emulsification, molecular association, and the effect of acids and bases on interfacial tensions. J. Am. Chem. Soc. 39: 541–596, 1917.

    Article  CAS  Google Scholar 

  31. Hayek H. v. Über die veränderlichkeit der oberflächenspannung in den alveolen und ihre bedeutung für die retraktionskraft der lunge. Arch. Exper. Path. u. Pharmakol. 214: 266–268, 1952.

    CAS  Google Scholar 

  32. Höber R., D. I. Hitchcock, J. B. Bateman, D. R. Goddard, and W. A. Fenn. Physical Chemistry of Cells and tissues. Philadelphia: The Blakiston Co., 1945.

    Google Scholar 

  33. Hoppin F. G. Jr. and J. Hildebrandt. Mechanical properties of the lung. In: Bioengineering Aspects of the Lung, edited by J. B. West. New York: Marcel Dekker, 1977, pp. 83–162.

    Google Scholar 

  34. Kilches R. Zur frage der retraktionskräfte der lunge. Klin. Wschr. 19: 695–696, 1940.

    Article  Google Scholar 

  35. Langmuir I. The constitution and fundamental properties of solids and liquids. II. Liquids. J. Am. Chem. Soc. 39: 1848–1906, 1917.

    Article  CAS  Google Scholar 

  36. Lawton R. W. and D. Joslin. Measurements on the elasticity of the isolated rat lung. Am. J. Physiol. 167: 111–118, 1951.

    PubMed  CAS  Google Scholar 

  37. Leathes J. B. Croonian Lectures on the role of fats in vital phenomena: Lecture II. Lancet 237: 853–856, 1925.

    Article  Google Scholar 

  38. Luisada A. Über lungendynamik. Ergebn. d. inn. Med. u. Kinderh. 47: 92–184, 1934.

    Article  Google Scholar 

  39. Mead J. and C. Collier. Relation of volume history of lungs to respiratory mechanics in anesthetized dogs. J. Appl. Physiol. 14: 669–678, 1959.

    Google Scholar 

  40. Mead J., T. Takishima, and D. Leith. Stress distribution in lungs. J. Appl. Physiol. 28: 596–608, 1970.

    PubMed  CAS  Google Scholar 

  41. Mead J., J. L. Whittenberger, and E. R. Radford Jr. Surface tension as a factor in pulmonary volume-pressure hysteresis. J. Appl. Physiol. 10: 191–196, 1957.

    PubMed  CAS  Google Scholar 

  42. Miller J. A. Pulmonary fibrosis and emphysema. Ann. Internal Med. 9: 219–233, 1935.

    Article  Google Scholar 

  43. Miller J. A. and I. Rappaport. The relation of pulmonary function to fibrosis and emphysema. Ann. Internal Med. 11: 1644–1661, 1938.

    Article  Google Scholar 

  44. Neergaard K. v. Neue auffassungen über einen grundbegriff der atemmechanik. Die retraktionkraft der lunge, abhängig von der oberflächenspannung in den alveolen. Z. Gesamte Exp. Med. 66: 1–22, 1929.

    Article  Google Scholar 

  45. Neergaard K. v. Beitrag zur lehre vom emphysem. Verhandl. d. deuthsch. Gessellsch. f. inn. Med. 42: 624, 1930.

    Google Scholar 

  46. Neergaard K. v. Beitrage zur atemmechanik. Dtsch. Z. Chir. 244:268–278, 1934–35.

    Google Scholar 

  47. Neergaard K. v. and K. Wirzber Eine methode zur messung der lungenelastizität am lebenden menschen, insbesondere beim emphysem. Z. klini. Med. 105: 35–50, 1927.

    Google Scholar 

  48. Obladen M. History of Surfactant Research. In: Pulmonary Surfactant: From Molecular Biology to Clinical Practice, edited by B. Robertson, L. M. G. Van Golde, and J. J. Batenburg. Amsterdam: Elsevier, 1992, pp. 1–18.

    Google Scholar 

  49. Ono. S., and S. Kondo. Molecular theory of surface tension in liquids. In: Encyclopedia of Physics, vol. X, Structure of Liquids, edited by F. Flügge. Heidelberg: Springer-Verlad, 1960, pp 134–280.

    Google Scholar 

  50. Otis A. B. and D. F. Proctor. Measurement of alveolar pressure in human subjects. Am. J. Physiol. 152: 106–112, 1948.

    PubMed  CAS  Google Scholar 

  51. Pattie R. E. Properties, function and origin of the alveolar lining layer. Nature 175: 1125–1126, 1955.

    Article  Google Scholar 

  52. Pattle R. E. Properties, function, and origin of the alveolar lining layer. Proc. R. Soc. Lond. 148: 217–240, 1958.

    Article  PubMed  CAS  Google Scholar 

  53. Pockels A. Surface tension. Nature 43: 437–439, 1891.

    Google Scholar 

  54. Radford E. P. Method for estimating respiratory surface area of mammalian lungs from their physical characteristics. Proc. Soc. exp. Biol. Med. 87: 58–61, 1954.

    PubMed  Google Scholar 

  55. Rappaport I. The problem of the visceral function of the lungs. Dis. Chest 25: 1–15, 1954.

    Article  PubMed  CAS  Google Scholar 

  56. Rappaport I. and E. Mayer. The problem of pulmonary emphysema: the missing link between structure and function. Lancet 1217–1220, 1960.

    Google Scholar 

  57. Rayleigh L. Investigations in capillarity: the size of drops, the liberation of gas from supersaturated solutions, colliding jets, the tension of contaminated water surfaces. Phil. Mag. 48: 321–337, 1899.

    CAS  Google Scholar 

  58. Robertson B., L. M. G. Van Golde, and J. J. Batenburg. Pulmonary Surfactant: From Molecular Biology to Clinical Practice. Amsterdam: Elsevier, 1992.

    Google Scholar 

  59. Rohrer, F. Der zusammenhang der atemkräfte und ihre abhängigkeit vom dehnungszustand der atmungsorgane. Pflüger’s Arch. Gesamte Physiol. Menschen Tiere 165: 419–444, 1916.

    Article  Google Scholar 

  60. Rowlinson J. S. and B. Widom. Molecular Theory of Capillarity. Oxford: Clarendon, 1989.

    Google Scholar 

  61. Schürch S., J. Goerke, and J. A. Clements. Direct determination of surface tension in the lung. Proc. Nat. Acad. Sci. U. S. A. 73: 4698–4702, 1976.

    Article  Google Scholar 

  62. Schürch S., J. Goerke, and J. A. Clements. Direct determination of volume-and-timedependence of alveolar surface tension in excised lungs. Proc. Nat. Acad. Sci. U. S. A. 75: 3417–3421, 1978.

    Article  Google Scholar 

  63. Tenney S. M. A tangled web: Young, Laplace, and the surface tension law. NIPS 8: 179–183, 1993.

    Google Scholar 

  64. Tierney D. F. Lung surfactant: some historical perspectives leading to its cellular and molecular biology. Am. J. Physiol. 257 (Lung Cell Mol. Physiol.): L1 - L12, 1989.

    PubMed  CAS  Google Scholar 

  65. Weibel E. R. and J. Gil. Structure-function relationships at the alveolar level. In: Bioengineering Aspects of the Lung, edited by J. B. West. New York: Marcel Dekker, 1977, pp. 1–81.

    Google Scholar 

  66. Whittenberger J. L. and J. E. Affeldt. Conference on Artificial Respiration. Medical Division, Army Chemical Center. Special Report No. 5. September 1950.

    Google Scholar 

  67. Wilson T. A. Surface tension-surface area curves calculated from pressure—volume loops. J. Appl. Physiol. 53: 1512–1520, 1982.

    PubMed  CAS  Google Scholar 

  68. Wirz K. Das verhalten des druckes im pleuraraum bei der atmung und die ursachen seiner veränderlichkeit. Pflüger’s Arch. Gesamte Physiol. Menschen Tiere 199: 1–56, 1923.

    Article  Google Scholar 

  69. Wright J. R. and J. A. Clements. Lung surfactant turnover and factors that affect turnover. In: Lung Cell Biology, edited by D. Massaro. New York: Marcel Dekker, 1989, pp. 655–699.

    Google Scholar 

  70. Young S. L., D. F. Tierney, and J. A. Clements. Mechanism of compliance change in excised rat lungs at low transpulmonary pressure. J. Appl. Physiol. 29: 780–785, 1970.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 American Physiological Society

About this chapter

Cite this chapter

Clements, J.A. (1996). Lung Surface Tension and Surfactant: The Early Years. In: West, J.B. (eds) Respiratory Physiology. People and Ideas. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7520-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7520-0_7

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7520-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics