Skip to main content

Mechanics of Lung and Chest Wall

  • Chapter

Part of the book series: People and Ideas ((PEOPL))

Abstract

Arthur Otis has already provided a historical account of respiratory mechanics spanning two millennia (49). This chapter will emphasize events occurring more or less within living memory in what can be referred to as the pressure—volume era. Fritz Rohrer showed the way (56). As I put it in 1975 (63); his “intentional simplification of the complex motions and forces of respiration to single variables—volumes and pressures—is the basis of most of the advances in the field of respiratory mechanics of the past 50 years.”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agostoni E., E. D’Angelo, and G. Roncoroni. The thickness of the pleural liquid. Respir. Physiol. 5: 1–13, 1968.

    Article  PubMed  CAS  Google Scholar 

  2. Agostoni E. and H. Rahn. Abdominal and thoracic pressures at different lung volumes. J. Appl. Physiol. 15: 1087–1092, 1960.

    PubMed  CAS  Google Scholar 

  3. Agostoni E., A. Taglietti, and I. Setnikar. Absorption force of the capillaries of the visceral pleura in determination of the intrapleural pressure. Am. J. Physiol. 191: 277–282, 1957.

    PubMed  CAS  Google Scholar 

  4. Barnas G.M., K. Yoshino, D. Stamenovic, Y. Kikuchi, S.M. Loring, and J. Mead. Chest wall impedance partitioned into rib cage and abdominal pathways. J. Appl. Physiol. 66: 350–359, 1989.

    Article  PubMed  CAS  Google Scholar 

  5. Bayliss L.E. and G.W. Robertson. The visco-elastic properties of the lungs. Q.J. Exp. Physiol. 29: 27–47, 1939.

    Google Scholar 

  6. Bouhuys A., D. F. Proctor, and J. Mead. Kinetic aspects of singing. J. Appl. Physiol. 21: 483–496, 1966.

    PubMed  CAS  Google Scholar 

  7. Butler J., H.C. White, and W.M. Arnott. Pulmonary compliance in normal subjects. Clin. Sci. 16: 709–729, 1957.

    PubMed  CAS  Google Scholar 

  8. Buytendijk H.J. Oesophagusdruck en longelasticiteit. Groningen: Dissertatie, 1949.

    Google Scholar 

  9. Dawson S. V. and E.A. Elliott. Wave-speed limitation on expiratory flow — a unifying concept. J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 43: 498–515, 1977.

    CAS  Google Scholar 

  10. Dayman H. Mechanics of airflow in health and in emphysema. J. Clin. Invest. 30: 1175–1190, 1951.

    Article  PubMed  CAS  Google Scholar 

  11. DuBois A.B., S.Y. Botelho, G.N. Bedell, R. Marshall, and J.H. Comroe Jr. A rapid plethysmographic method for measuring thoracic gas volume: a comparison with a nitrogen washout method for measuring functional residual capacity in normal subjects. J. Clin. Invest. 35: 322–326, 1956.

    Article  PubMed  CAS  Google Scholar 

  12. DuBois A.B., S.Y. Botelho, and J.H. Comroe Jr. A new method for measuring airway resistance in man using a body plethysmograph: values in normal subjects and in patients with respiratory disease. J. Clin. Invest. 35: 327–335, 1956.

    Article  PubMed  CAS  Google Scholar 

  13. DuBois A.B., A. W. Brody, D.H. Lewis, and B.F. Burgess Jr. Oscillation mechanics of lungs and chest in man. J. Appl. Physiol. 8: 587–594, 1956.

    PubMed  CAS  Google Scholar 

  14. Einthoven W. Ueber die Wirkung der Bronchialmuskeln, nach eine neuen Methode untersucht, und über Asthma nervosum. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 51: 367–445, 1892.

    Article  Google Scholar 

  15. Fenn W.O. Mechanics of respiration. Am. J. Med. 10: 77–91, 1951.

    Article  PubMed  CAS  Google Scholar 

  16. Ferris B.G., J. Mead, and L.H. Opie. Partitioning of respiratory flow-resistance in man. J. Appl. Physiol. 19: 653–658, 1964.

    PubMed  Google Scholar 

  17. Fredberg J.J., D.H. Keefe, G.M. Glass, R.G. Castile, and I.D. Frantz III, Alveolar pressure nonhomogeneity during small-amplitude-high-frequency oscillations. J. Appl. Physiol. 57: 788–800, 1984.

    PubMed  CAS  Google Scholar 

  18. Fredberg J.J. and D. Stamenovic. On the imperfect elasticity of lung tissue. J. Appl. Physiol. 67 (6): 2408–2419, 1989.

    PubMed  CAS  Google Scholar 

  19. Fry D. L., R. V. Ebert, W. W. Stead, and C.C. Brown. Mechanics of pulmonary ventilation in normal subjects and in patients with emphysema. Am. J. Med. 16: 80–97, 1954.

    Article  PubMed  CAS  Google Scholar 

  20. Fry D.L., L.J. Thomas, and J.C. Greenfield Jr. Flow in collapsible tubes. In: Basic Hemodynamics and its Role in Disease Processes, edited by Patel and Vaishnov. Baltimore, M.D.: University Park Press, 1980.

    Google Scholar 

  21. Griffiths D.J. Hydrodynamics of male micturition. I. Theory of steady flow through elastic-walled tubes. Med. Biol. Eng. 9: 581–588, 1971.

    Article  PubMed  CAS  Google Scholar 

  22. Haber P.S., H.J.H. Colebatch, L.K.Y. Ng, and I.A. Graves. Alveolar size as a determinant of pulmonary distensibility in mammalian lungs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 54 (3): 837–845, 1983.

    CAS  Google Scholar 

  23. Heynsius A. Über die Grösse des negativen Drucks im Thorax beim rubigen Athmen. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 29: 265–311, 1882.

    Article  Google Scholar 

  24. Hildebrandt J. Dynamic properties of air-filled excised cat lung determined by liquid plethysmograph. J. Appl. Physiol. 27: 246–250, 1969.

    PubMed  CAS  Google Scholar 

  25. Hildebrandt J. Pressure-volume data of cat lung interpreted by a plastoelastic, linear viscoelastic model. J. Appl. Physiol. 28: 365–372, 1970.

    PubMed  CAS  Google Scholar 

  26. Horsfield K. and G. Cumming. Morphology of the bronchial tree in man. J. Appl. Physiol. 24: 373–383, 1968.

    PubMed  CAS  Google Scholar 

  27. Hyatt R. E., D.P. Schilder, and D.L. Fry. Relationship between maximum expiratory flow and degree of lung inflation. J. Appl. Physiol. 13: 331–336, 1958.

    PubMed  CAS  Google Scholar 

  28. Hyatt R.E. and R.E. Wilcox. Extrathoracic airway resistance in man. J. Appl. Physiol. 16: 326–330, 1961.

    PubMed  CAS  Google Scholar 

  29. Konno K. and J. Mead. Measurement of separate volume changes of rib cage and abdomen during breathing. J. Appl. Physiol. 22: 407–422, 1967.

    PubMed  CAS  Google Scholar 

  30. Konno K. and J. Mead. Static volume-pressure characteristics of the rib cage and abdomen. J. Appl. Physiol. 24: 544–548, 1968.

    PubMed  CAS  Google Scholar 

  31. Lai-Fook S.J., D.C. Price, and N.C. Staub. Liquid thickness vs. vertical pressure gradient in a model of the pleural space. J. Appl. Physiol. 62 (4): 1747–1754, 1987.

    PubMed  CAS  Google Scholar 

  32. Liebermeister G. Zur normalen und pathologischen Physiologie der Atmungsorgane. I. Über das Verhältnis zwischen Lungendehnung und Lungenvolumen. Zentralbl. Allg. Pathol. Pathol. Anat. 18: 644–650, 1907.

    Google Scholar 

  33. Liljestrand G. Untersuchungen über die Atmungsarbeit. Skand. Arch. Physiol. 35: 199–293, 1918.

    Article  Google Scholar 

  34. Macklem P.T. and J. Mead. Factors determining maximum expiratory flow in dogs. J. Appl. Physiol. 25: 159–169, 1968.

    PubMed  CAS  Google Scholar 

  35. Macklem P.T. and J. Mead. Resistance of central and peripheral airways measured by a retrograde catheter. J. Appl. Physiol. 22: 395–401, 1967.

    PubMed  CAS  Google Scholar 

  36. Macklem P.T. and N.J. Wilson. Measurement of intrabronchial pressure in man. J. Appl. Physiol. 20: 653–663, 1965.

    PubMed  CAS  Google Scholar 

  37. Mcllroy M.B., R. Marshall, and R.V. Christie. Work of breathing in normal subjects. Clin. Sci. 13: 127–136, 1954.

    Google Scholar 

  38. Mcllroy M. B., J. Mead, N.J. Selverstone, and E. R Radford Jr. Measurement of lung tissue viscous resistance using gases of equal kinematic viscosity. J. Appl. Physiol. 7: 485–490, 1955.

    Google Scholar 

  39. McNamara J.J., R.G. Castile, G.M. Glass, and J.J. Fredberg. Heterogeneous lung emptying during forced expiration. J. Appl. Physiol. 63 (4): 1648–1657, 1987.

    PubMed  CAS  Google Scholar 

  40. Mead J. Control of respiratory frequency. J. Appl. Physiol. 15: 325–336, 1960.

    Google Scholar 

  41. Mead J. Mechanics of respiratory structures. Ciba Foundation Symposium on Pulmonary Structure and Function, 1962, pp. 111–131.

    Google Scholar 

  42. Mead J. and C. Collier. Relation of volume history of lungs to respiratory mechanics in anesthetized dogs. J. Appl. Physiol. 14: 669–678, 1959.

    Google Scholar 

  43. Mead J., T. Takishima, and D. Leith. Stress distribution in lungs: a model of pulmonary elasticity. J. Appl. Physiol. 28: 596–608, 1970.

    PubMed  CAS  Google Scholar 

  44. Mead J. and J.L. Whittenberger. Evaluation of airway interruption technique as a method for measuring pulmonary air-flow resistance. J. Appl. Physiol. 6: 408–416, 1954.

    PubMed  CAS  Google Scholar 

  45. Mead J. and J.L. Whittenberger. Physical properties of human lungs measured during spontaneous respiration. J. Appl. Physiol. 5: 779–796, 1953.

    Google Scholar 

  46. Milic-Emili J., J.A.M. Henderson, M.B. Dolovich, D. Trop, and K. Kaneko. Regional distribution of inspired gas in the lung. J. Appl. Physiol. 21 (3): 749–759, 1966.

    PubMed  CAS  Google Scholar 

  47. Milic-Emili J. and J.M. Petit. Mechanical efficiency of breathing. J. Appl. Physiol. 15: 359–362, 1960.

    Google Scholar 

  48. Neergaard K. v. and K. Wirz. Die Messung der Strömungsviderstände in dem Atemwegen des Menschen, insbesondere bei Asthma and Emphysem. Z. Klin. Med. 105: 51–82, 1927.

    Google Scholar 

  49. Otis A.B. History of respiratory mechanics. In: Section 3, vol. III, pt. 1. Handbook of Physiology, edited by A.P. Fishman, P.T. Macklem, and J. Mead. Bethesda, MD: American Physiological Society, 1986.

    Google Scholar 

  50. Otis A.B., W.O. Fenn, and H. Rahn. Mechanics of breathing in man. J. Appl. Physiol. 2: 592–607, 1950.

    PubMed  CAS  Google Scholar 

  51. Otis A.B., C. B. McKerrow, R.A. Bartlett, J. Mead, M.B. Mcllroy, N.J. Selverstone, and E. P. Radford Jr. Mechanical factors in distribution of pulmonary ventilation. J. Appl. Physiol. 8: 427–443, 1956.

    CAS  Google Scholar 

  52. Otis A.B. and D. F. Proctor. Measurement of alveolar pressure in human subjects. Am. J. Physiol. 152: 106–112, 1948.

    PubMed  CAS  Google Scholar 

  53. Pedersen O. F., B. Thiessen, and S. Lyager. Airway compliance and flow limitation during forced expiration in dogs. J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 52: 357–369, 1982.

    CAS  Google Scholar 

  54. Pedley T.J., R. C. Schroter, and M.F. Sudlow. The prediction of pressure drop and variation of resistance within the human bronchial airways. Respir. Physiol. 9: 387–405, 1970.

    Article  PubMed  CAS  Google Scholar 

  55. Pride N.B., S. Permutt, R.L. Riley, and B. Bromberger-Barnea. Determinants of maximal expiratory flow from the lungs. J. Appl. Physiol. 23: 646–662, 1967.

    PubMed  CAS  Google Scholar 

  56. Rohrer F. Physiologie der Atembewegung. In: Handbuch der normalen and pathologischen Physiologie, edited by A. Bethe, G. von Bergmann, G. Embden, and A. Ellinger. Vol. 2. Berlin: Springer, 1925, pp. 70–127.

    Google Scholar 

  57. Shapiro A.H. Steady flow in collapsible tubes. J. Biomech. Eng. 99: 126–147, 1977.

    Article  Google Scholar 

  58. Silverman L., G. Lee, A.R. Yancey, L. Amory, L.J. Barney, and R.C. Lee. O. S. R. D. Contract No. OEMsr-306, May 1, 1945.

    Google Scholar 

  59. Solway J., J.J. Fredberg, R.H. Ingram Jr., O.F. Pedersen, and J.M. Drazen. Interdependent regional lung emptying during forced expiration: a transistor model. J. Appl. Physiol. 62 (5): 2013–2025, 1987.

    PubMed  CAS  Google Scholar 

  60. Stamenovic D. Micromechanical foundations of pulmonary elasticity. Physiol. Rev. 70: 1117–1134, 1990.

    PubMed  CAS  Google Scholar 

  61. Tien Y.-K., E.A. Elliott, and J. Mead. Variability of the configuration of maximum expiratory flow-volume curves. J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 46: 565–570, 1979.

    CAS  Google Scholar 

  62. Weibel E.R. Morphometry of the Human Lung. Berlin: Springer-Verlag, 1963.

    Google Scholar 

  63. West J.B. (editor). Translations in Respiratory Physiology. Stroudsburg, PA: Dowden, Hutchinson and Ross, 1975.

    Google Scholar 

  64. Wilson T.A., J.R. Rodarte, and J.P. Butler. Wave-speed and viscous flow limitation. In: Handbook of Physiology, edited by A.P. Fishman, P.T. Macklem, and J. Mead. Section 3, vol. III, pt 1. Bethesda, MD: American Physiological Society, 1986.

    Google Scholar 

  65. Wilson T.A. and H. Bachhofen. A model for mechanical structure of the alveolar duct. J. Appl. Physiol.: Respir. Environ. Exercise Physiol 52 (4): 1064–1070, 1982.

    CAS  Google Scholar 

  66. Wirz K. Das Verhalten des Druckes im Pleuraraum bei der Atmung und die Ursachen seiner Veränderlichkeit. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 199: 1–56, 1923.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 American Physiological Society

About this chapter

Cite this chapter

Mead, J. (1996). Mechanics of Lung and Chest Wall. In: West, J.B. (eds) Respiratory Physiology. People and Ideas. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7520-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7520-0_6

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7520-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics