Skip to main content

Transfer of Gas by Diffusion and Chemical Reaction in Pulmonary Capillaries

  • Chapter
Respiratory Physiology

Part of the book series: People and Ideas ((PEOPL))

Abstract

The key concepts concerning exchange of gases in the lungs over the past 150 years, in my opinion, have been: first, the hypothesis of secretion versus diffusion of 02 from alveolar air to blood; second, the importance of chemical reactions and transport within the capillary blood; and third, nonuniformity of parameters of the lung, particularly of alveolar ventilation, alveolar blood flow, and capillary blood volume, which melds with diffusion of gases in the air-filled volumes of the lung. The third concept will not be addressed completely here because it is covered in Chapter 5. This chapter centers on development since 1940, a period in which I was at least an observer, because there are already several excellent reviews of the earlier period (2, 22, 63, 84) that include the famous controversy between August Krogh and Sir Joseph Barcroft on one side, and Christian Bohr and J. S. Haldane on the other. The questions our scientific forbears asked were important; they simply did not have the methods available to answer them correctly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adaro F., P. Scheid, J. Teichmann, and J. Piiper. A rebreathing method for estimating pulmonary Doe: theory and measurements in dog lungs. Respir. Physiol 18:43–63, 1973.

    Article  PubMed  CAS  Google Scholar 

  2. Astrup P. and J. W. Severinghaus. The History of Blood Gases, Acids and Bases. Copenhagen: Munksgaard, 1986, pp. 96.

    Google Scholar 

  3. Austrian R., J. H. McClement, A. D. Renzetti Jr., K. W. Donald, R. L. Riley, and A. Cournand. Clinical and physiologic features of some types of pulmonary diseases with impairment of alveolar-capillary diffusion. The syndrome of “alveolar-capillary block.” Am. J. Med. 11: 667–685, 1951.

    Article  PubMed  CAS  Google Scholar 

  4. Bates D. V. The uptake of carbon monoxide in health and in emphysema. Clin. Sci. 11: 21–32, 1952.

    PubMed  CAS  Google Scholar 

  5. Bidani A., E. D. Crandall, and R. E. Forster. Analysis of post-capillary pH changes in blood after gas exchange. J. Appl. Physiol.44:770–781, 1978.

    Google Scholar 

  6. Bohr C. Über die spezifische Tätigkeit der Lungen bei der respiratorischen Gasaufnahme. Skand. Arch. Physiol. 22: 221–280, 1909.

    Article  Google Scholar 

  7. Bohr C. Über die Lungenathmung. Skand. Arch. Physiol. 2: 236–268, 1891.

    Article  Google Scholar 

  8. Borland C. D. R. and T. W. Higenbottam. A simultaneous single breath measurement of pulmonary diffusing capacity with nitric oxide and carbon monoxide. Eur. Respir. J. 2: 5663, 1989.

    Google Scholar 

  9. Cain S. M. and A. B. Otis. Carbon dioxide transport in anesthetized dogs during inhibition of carbonic anhydrase. J. Appl. Physiol. 16: 1023–1028, 1961.

    PubMed  CAS  Google Scholar 

  10. Carlsen E. and J. H. Comroe Jr. The uptake of carbon monoxide and of nitric oxide by normal human erythrocytes and experimentally produced spherocytes. J. Gen. Physiol. 42: 83–107, 1958.

    Article  PubMed  CAS  Google Scholar 

  11. Clark L. Ç. Jr. Monitoring and control of blood and tissue 02 tensions. Trans. Am. Soc. Artif. Intern. Organs. 2: 41, 1956.

    Google Scholar 

  12. Coburn R. F., W. S. Blakemore, and R. E. Forster. Endogenous carbon monoxide production in man. J. Clin. Invest. 42: 1172–1178, 1963.

    Article  PubMed  CAS  Google Scholar 

  13. Comroe J. H. Jr., editor. In: Pulmonary Function Tests: Methods in Medical Research, vol.I1. Chicago: Yearbook Publishers, 1950.

    Google Scholar 

  14. Cotes J. E. Lung Function. 4th Edition, ch. 2. London: Blackwell, 1979, pp. 239–250.

    Google Scholar 

  15. Dalziel, K. An apparatus for the spectrokinetic study of rapid reactions. Biochem. J. 55: 79–93, 1953.

    PubMed  CAS  Google Scholar 

  16. Davenport H. W. The early days of research on carbonic anhydrase. In: Biology and Chemistry of the Carbonic Anhydrases, edited by R. E. Tashian and D. Hewett-Emmett. Ann. N.Y. Acad. Sci.429:4–9, 1984.

    Google Scholar 

  17. Faurholt T. C. Études sur les solutions acqueuses de carbaminates et de carbonates. J. Chim. Phy. 21: 400–1924; 22: 1–44, 1925.

    Google Scholar 

  18. Filley G. F., D. J. Maclntosh, and G. W. Wright. Carbon monoxide uptake and pulmonary diffusing capacity in normal subjects at rest and during exercise. J. Clin. Invest. 33: 530–539, 1954.

    Article  PubMed  CAS  Google Scholar 

  19. Forbes W. H., F. Sargent, and F. J. W. Roughton. The rate of carbon monoxide uptake by normal men. Am. J. Physiol. 143: 594–608, 1945.

    CAS  Google Scholar 

  20. Forster R. E., W. S. Fowler, D. V. Bates, and B. Van Lingen. The absorption of carbon monoxide by the lungs during breath holding. J. Clin. Invest. 33: 1128–1134, 1954.

    Article  PubMed  CAS  Google Scholar 

  21. Forster R. E., J. E. Cohn, W. A. Briscoe, W. A. Blakemore, and R. L. Riley. A modification of the Krogh carbon monoxide breath holding technique for estimating the diffusion capacity of the lung; a comparison with three other methods. J. Clin. Invest. 34: 1417 1426, 1955.

    Google Scholar 

  22. Forster, R. E. Exchange of gases between alveolar air and pulmonary capillary blood: pulmonary diffusing capacity. Physiol. Rev. 37: 391–452, 1957.

    PubMed  CAS  Google Scholar 

  23. Forster R. E., F. J. W. Roughton, F. Kreuzer, and W. A. Briscoe. Photocolorimetric determination of rate of uptake of CO and 02 by reduced human red cell suspension at 37°C J. Appl. Physiol. 11: 260–268, 1957a.

    PubMed  CAS  Google Scholar 

  24. Forster R. E., F. J. W. Roughton, L. Cander, W. A. Briscoe, and F. Kreuzer. Apparent pulmonary diffusing capacity for CO at varying alveolar 02 tensions. J. Appl. Physiol. 11: 277–289, 1957b.

    PubMed  CAS  Google Scholar 

  25. Forster R. E. and G. H. Gurtner. Can alveolar Pco2 exceed pulmonary end-capillary CO2. J. Appl. Physiol. 42: 323–328, 1977.

    Google Scholar 

  26. Gibson Q. H., F. Kreuzer, E. Meda, and F. J. W. Roughton. The kinetics of human haemoglobin in solution and in the red cell at 37°C. J. Physiol. 129: 65–89, 1955.

    PubMed  CAS  Google Scholar 

  27. Gibson Q. H. and F. J. W. Roughton. The kinetics and equilibria of the reactions of nitric oxide with sheep haemoglobin. J. Physiol. 136: 507–526, 1957.

    PubMed  CAS  Google Scholar 

  28. Gibson Q. H. Francis John Worsley Roughton. 1899–1972. Biographical Memoirs of Fellows of the Royal Society. 19: 562–582, 1973.

    Article  Google Scholar 

  29. Gilson J. C. and P. Hugh-Jones. Lung function in coalworkers’ pneumoconiosis. Medical Research Council special report series no. 290. London, Her Majesty’s Stationery Office, 1955.

    Google Scholar 

  30. Green J. F., M. Sheldon, and G. Gurtner. Alveolar-to-arterial PcoZ differences. J. Appl. Physiol. 54: 349–354, 1983.

    PubMed  CAS  Google Scholar 

  31. Guénard H., V. Varène, and P. Vaida. Determination of lung capillary blood volume and membrane diffusing capacity in man by the measurements of NO and CO transfer. Respir. Physiol. 70: 113–120, 1987.

    Article  PubMed  Google Scholar 

  32. Gurtner G. H., S. H. Song, and L. E. Fahri. Alveolar to mixed venous Pco2 difference under conditions of no gas exchange. Respir. Physiol. 7: 173–187, 1969.

    Article  PubMed  CAS  Google Scholar 

  33. Haldane J. S. and J. L. Smith. The oxygen tension of arterial blood. J. Physiol. 20: 497520, 1896.

    Google Scholar 

  34. Haldane J. S. Respiration. Oxford: Clarendon Press, 1936.

    Google Scholar 

  35. Hartridge H. A spectroscopic method of estimating carbon monoxide. J. Physiol. 44: 1–4, 1912a.

    PubMed  CAS  Google Scholar 

  36. Hartridge H. Experiments on oxygen secretion in the lung of man by the carbon monoxide method. J. Physiol. 45: 170–191, 1912b.

    PubMed  CAS  Google Scholar 

  37. Hartridge, H. and F. J. W. Roughton. The velocity with which carbon monoxide displaces oxygen from combination with haemoglobin. I. Proc. R. Soc. Lond. B 94: 336–367, 1923a.

    Article  Google Scholar 

  38. Hartridge H. and F. J. W. Roughton. A method of measuring the velocity of very rapid chemical reactions. Proc. R. Soc. Lond. A 104: 376–394, 1923b.

    Article  CAS  Google Scholar 

  39. Hartridge H. and F. J. W. Roughton. The rate of distribution of dissolved gases between the red blood corpuscle and its fluid environment. I. The rate of uptake of oxygen and carbon monoxide by sheep’s corpuscles. J. Physiol., Lond. 62: 232–242, 1927.

    CAS  Google Scholar 

  40. Hasselbalch K. A. Wasserstoffzahl and Sauerstoffbindung des Blutes. Biochem. Z. 82: 282–288, 1917.

    CAS  Google Scholar 

  41. Henriques O. M. Die Bindungsweise des Kohlendioxids im Blute. Biochem.Z 200:1–4, 4–9, 10–17, 18–21, 22–24, 1928.

    Google Scholar 

  42. Hlastala M. P. and H. T. Robertson. Evidence for active elimination from the lung. In: Pulmonary Gas Exchange, edited by J. B. West. Vol.II. New York; Academic, 1980. pp. 241–273.

    Google Scholar 

  43. Hyde R. W., R. E. Forster, G. G. Power, J. Nairn, and R. Rynes. Measurement of 02 diffusing capacity of the lungs with a stable 02 isotope. J. Clin. Invest. 45: 1178–1193, 1966.

    Article  PubMed  CAS  Google Scholar 

  44. Jennings D. B. and C. C Chen. Negative arterial mixed expired Pco2 gradient during acute and chronic hypercapnia. J. Appl. Physiol. 38: 382–388, 1975.

    PubMed  CAS  Google Scholar 

  45. Jones N. L., E. J. M. Campbell, R. H. T. Edwards, and W. G. Wilkoff. Alveolar-to-blood Pco2 differences during rebreathing in exercise. J. Appl. Physiol. 23: 311–327, 1967.

    Google Scholar 

  46. Keilin D. and T. Mann. Carbonic anhydrase. Purification and nature of the enzyme. Biochem. J. 34: 1163–1176, 1940.

    PubMed  CAS  Google Scholar 

  47. Kety S. S. The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol. Rev. 3: 1–41, 1951.

    PubMed  CAS  Google Scholar 

  48. Krogh A. and M. Krogh. On the tension of gases in the arterial blood. The mechanism of gas-exchange. I. Skand. Arch. Physiol. 23: 179–192, 1910a.

    Article  Google Scholar 

  49. Krogh A. and M. Krogh. On the rate of diffusion of carbonic oxide into the lungs of man. The mechanism of gas-exchange. VI. Skand. Arch. Physiol. 23: 236–247, 1910b.

    Article  Google Scholar 

  50. Krogh A. and J. Lindhard. The volume of the “dead space” in breathing. J. Physiol. 47: 30–43, 1913.

    PubMed  CAS  Google Scholar 

  51. Krogh M. Diffusion of gases through the lungs of man. J. Physiol. 49: 271–300, 1914.

    Google Scholar 

  52. Kruheffer P. Studies on the lung diffusion coefficient for carbon monoxide in normal human subjects by means of l4CO. Acta Physiol. Skand. 32: 106–123, 1954.

    Article  Google Scholar 

  53. Lambertsen C. J. Attempt at direct measurement of values required for calculating the pulmonary diffusing coefficient for oxygen. Fed. Proc. 8: 90, 1949.

    Google Scholar 

  54. Lawson W. H. Jr. and R. E. Forster. Oxygen tension gradients in peripheral capillary blood. J. Appl. Physiol. 22: 970–973, 1967.

    PubMed  Google Scholar 

  55. Lilienthal J. L Jr., R. L. Riley, D. D. Proemmel, and R. E. Franke. An experimental analysis in man of the 02 pressure gradient from alveolar air to arterial blood during rest and exercise at sea level and at altitude. Am. J. Physiol. 147: 199–126, 1946a.

    PubMed  Google Scholar 

  56. Lilienthal J. L. Jr., R. L. Riley, D. D. Proemmel, and R. E. Franke. Relationships between CO, 02 and hemoglobin in blood of man at altitude. Am. J. Physiol. 145: 351–358, 1946b.

    PubMed  CAS  Google Scholar 

  57. Meldrum N. U. and F. J. W. Roughton. Carbonic anhydrase. Its preparation and properties. J. Physiol. Lond. 80: 113–142, 1933.

    PubMed  CAS  Google Scholar 

  58. Mendoza C., H. Peavey, B. Burns, and G. Gurtner. Saturation kinetics for steady-state pulmonary CO transfer. J. Appl. Physiol. 43: 880–884, 1977.

    PubMed  CAS  Google Scholar 

  59. Meyer M., K. D. Schuster, H. Schulz, M. Mohr, and J. Piiper. Pulmonary diffusing capacities for nitric oxide and carbon monoxide determined by rebreathing in dogs. J. Appl. Physiol. 68: 2344–2357, 1990.

    PubMed  CAS  Google Scholar 

  60. Millikan G. A. A simple photoelectric colorimeter. J. Physiol. 79:152–157, 1933a. The kinetics of blood pigments: haemocyanin and haemoglobin. J. Physiol. 79: 158–179, 1933b.

    PubMed  CAS  Google Scholar 

  61. Nicloux M. L’oxyde de carbone et l’intoxication oxycarbonique. Paris: Masson et Cie, 1925.

    Google Scholar 

  62. Ogilvie C. M., R. E. Forster, W. S. Blakemore, and J. W. Morton. A standardized breath holding technique for the clinical measurement of the diffusing capacity of the lung for carbon monoxide. J. Clin. Invest. 36: 1–17, 1957.

    Article  PubMed  Google Scholar 

  63. Perkins J. F. Historical development of respiratory physiology. In: Handbook of Physiology. Respiration vol. I. edited by W. O. Fenn and H. Rahn. Washington, D. C.: American Physiological Society, 1964, pp. 1–62.

    Google Scholar 

  64. Piiper, J., P. Haab, and H. Rahn. Unequal distribution of pulmonary diffusing capacity in the anesthetized dog. J. Appl. Physiol. 16: 499–506, 1961.

    Google Scholar 

  65. Piiper J., R. E. Canfield, and H. Rahn. Absorption of various inert gases from subcutaneous gas pockets in rats. J. Appl. Physiol. 17: 268–274, 1962.

    PubMed  CAS  Google Scholar 

  66. Piiper, J. Search for diffusion limitation in pulmonary gas exchange. In: The Pulmonary Circulation and Gas Exchange, edited by W. W. Wagner Jr. and E. K. Weir. Armonk, NY: Futura Publishing, 1994, pp. 125–145.

    Google Scholar 

  67. Rahn H. A concept of mean alveolar air and the ventilation-bloodflow relationships during pulmonary gas exchange. Am. J. Physiol. 158: 21–30, 1949.

    PubMed  CAS  Google Scholar 

  68. Reeves R. B., D. W. Rennie, and J. R. Pappenheimer. Oxygen tension of urine and its significance. Fed. Proc. 16: 693, 1957.

    PubMed  CAS  Google Scholar 

  69. Riley R. L., D. D. Proemmel, and R. E. Franke. Direct method for the determination of oxygen and carbon dioxide tensions in blood. J. Biol. Chem. 161: 621–633, 1945.

    PubMed  CAS  Google Scholar 

  70. Riley R. L. and A. Cournand. Analysis of factors affecting partial pressures of oxygen and carbon dioxide in gas and blood of lungs:theory. J. Appl. Physiol.4: 77–100, 1951a.

    PubMed  CAS  Google Scholar 

  71. Riley R. L., A. Cournand, and K. W. Donald. Analysis of factors affecting partial pressures of oxygen and carbon dioxide in gas and blood of lungs:methods. J. Appl. Physio1.4:102–120, 1951b.

    CAS  Google Scholar 

  72. Rossier P. H. and A. Bühlmann. Respiratory dead space. Physiol. Rev. 35: 860–871, 1955.

    PubMed  CAS  Google Scholar 

  73. Roughton F. J. W. The Kinetics of Oxygen and Carbon Monoxide in Blood. Thesis submitted for the Ph.D. degree for the University of Cambridge. 1925.

    Google Scholar 

  74. Roughton F. J. W. Recent work on the transport of carbon dioxide by blood. Physiol Rev. 15: 241–296, 1935.

    CAS  Google Scholar 

  75. Roughton F. J. W. and R F. Scholander. Micro gasometric estimation of the blood gases. I Oxygen. II Carbon monoxide. VI Carbon dioxide. J. Biol. Chem.148:541–550, 551–563, 573–580, 1943.

    Google Scholar 

  76. Roughton F. J. W. The average time spent by the blood in the human lung capillary and its relation to the rates of CO uptake and elimination in man. Am. J. Physiol. 143: 62 1633, 1945.

    Google Scholar 

  77. Roughton F. J. W. Tribute to Sir Joseph Barcroft. In: Haemoglobin. A Symposium, edited by F. J. W. Roughton and J. C. Kendrew. London: Butterworth, 1949, pp. 26–31.

    Google Scholar 

  78. Roughton F. J. W., R. E. Forster, and L. Cander. Rate at which carbon monoxide replaces oxygen from combination with human hemoglobin in solution and in the red cell. J. Appl. Physiol. 11: 269–276, 1957a.

    PubMed  CAS  Google Scholar 

  79. Roughton F. J. W. and R. E. Forster. Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung, with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries, J. Appl. Physiol. 11:290–302, 1957.b.

    Google Scholar 

  80. Roughton F. J. W. Diffusion and simultaneous chemical reaction velocity in haemoglobin solutions and red cell suspensions. Progress Biophysics Biophysical Chem. 9: 55–104, 1959.

    Google Scholar 

  81. Roughton F. J. W. Transport of oxygen and carbon dioxide. Handbook of Physiology, section 3: Respiration, vol. I. Edited by W. O. Fenn and H. Rahn. Washington, D.C.: American Physiological Society, 1964, pp. 767–825.

    Google Scholar 

  82. Schäfer E. A. Textbook of Physiology, vol. 1. London: Macmillan, 1898.

    Google Scholar 

  83. Scheid P., J. Teichmann, F. Adaro, and J. Piiper. Blood/gas equilibrium of carbon dioxide in lungs-a critical review. Respir. Physiol. 39: 1–31, 1980.

    Article  PubMed  CAS  Google Scholar 

  84. Schmidt-Nielsen B. August and Marie Krogh and respiratory physiology. J. Appl. Physiol. 57: 293–303, 1984.

    PubMed  CAS  Google Scholar 

  85. Sjöstrand T. Endogenous formation of carbon monoxide in man under normal and pathological conditions. Scand. J. Clin. Lab. Invest. 1: 201–214, 1949.

    Article  Google Scholar 

  86. Stadie W. C. and H. O’Brien. The catalysis of the hydration of carbon dioxide and the dehydration of carbonic acid by an enzyme isolated from red blood cells. J. Biol. Chem. 103: 521–529, 1933.

    CAS  Google Scholar 

  87. Verma A., D. J. Hirsch, C. E. Glatt, G. V. Ronnett, and S. H. Snyder. Carbon monoxide. A putative neural messenger. Science 259: 381–384, 1993.

    Article  PubMed  CAS  Google Scholar 

  88. Wagner R. D., H. A. Salzman, and J. B. West. Measurement of continuous distributions of ventilation-perfusion ratios:theory. J. Appl. Physiol. 36: 588–599, 1974.

    PubMed  CAS  Google Scholar 

  89. Weibel E. R. The Pathway for Oxygen Structure and Function in the Mammalian Respiratory System. Cambridge, MA: Harvard University Press, 1984.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 American Physiological Society

About this chapter

Cite this chapter

Forster, R.E. (1996). Transfer of Gas by Diffusion and Chemical Reaction in Pulmonary Capillaries. In: West, J.B. (eds) Respiratory Physiology. People and Ideas. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7520-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7520-0_2

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7520-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics