Skip to main content

The History of Chemoreception

  • Chapter
Respiratory Physiology

Part of the book series: People and Ideas ((PEOPL))

Abstract

From our current perspective the purpose of respiration is well understood. The necessity of having mechanisms sensitive to levels of oxygen (O2) or carbon dioxide (CO2) that determine respiratory behavior seems entirely clear. However, the existence of these two chemicals was unknown to the pioneer observers of breathing. For them, respiration addressed other needs. Almost two millenia passed before biologists and physicians understood that breathing is a process needed to acquire O2 and eliminate CO2. When O2 and CO2 were recognized as chemicals intimately involved with life, and respiration was appreciated as the process of transfer, investigators could focus more precisely on the chemosensitive loci and the processes of chemoreception. The discovery of O2 and CO2 are interesting chapters in the history of chemoreception, filled with many talented, imaginative investigators from the ancients to the prime contributors of the 17th and 18th centuries. But these stories are told elsewhere in this volume. This chapter will begin with investigators who knew that the real purpose of respiration is to acquire O2 and to discharge CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acker H., E. Dufau, J. Huber, and D. Sylvester. Indications of an NADPH oxidase as a possible PoZ sensor in the rat carotid body. FEBS Lett. 256: 76–78, 1989.

    Article  Google Scholar 

  2. Andersch C.S. Tractatio Anatomico-Physiologico de Nervis Humani Corporis Aliquibus, edited by E. R Andersch Riomonti. Germany: Fasch, 1797.

    Google Scholar 

  3. Anichkov S. and M. Belen’kii. Pharmacology of the Carotid Body Chemoreceptors. New York: Macmillan, 1963.

    Google Scholar 

  4. Arnold J. Ueber die Structur des Ganglion intercaroticum. Arch. Pathol. Anat., Physiol., Klin. Med. 33: 190–209, 1865.

    Google Scholar 

  5. Biscoe T. and M. Duchen. Responses of type I cells dissociated from the rabbit carotid body to hypoxia. J. Physiol. (Lond.) 428: 39–54, 1990.

    CAS  Google Scholar 

  6. Biscoe T. and M. Duchen. Monitoring PoZ by the carotid chemoreceptor. News Physiol. Sci. (NIPS) 5: 229–233, 1990.

    Google Scholar 

  7. Biscoe T., A. Lall, and S. Sampson. Electron microscopic and electrophysiological studies on the carotid body following intracranial section of the glossopharyngeal nerve. J. Physiol. (Lond.) 208: 133–152, 1970.

    CAS  Google Scholar 

  8. Bouckaert J.-J., L. Dautrebande, and C. Heymans. Dissociation anatomo-physiologique des deux sensibilités du sinus carotidien: sensibilité à la pression et sensibilité chimique. Ann. Physiol., Physicochim. Biol. 7: 207–210, 1931.

    Google Scholar 

  9. Bruce E. and N. Cherniack. Central chemoreceptors. J. Appl. Physiol. 62: 389–402, 1987.

    CAS  PubMed  Google Scholar 

  10. Buckler, K. and R. Vaughan-Jones. Effect of acidic stimuli on intracellular calcium in isolated type-I cells of the neonatal rat carotid body. Pfluger’s Arch. Gesamte Physiol. 425: 22–27, 1993.

    Article  CAS  Google Scholar 

  11. Buckler K., R. Vaughan-Jones, C. Peers, D. Lagadic-Gossman, and P. Nye. Effect of acidic stimuli on intracellular calcium in isolated type-I cells of the neonatal rat carotid body. J. Physiol. (Lond.) 444: 703–721, 1991.

    CAS  Google Scholar 

  12. Buckler K., R. Vaughan-Jones, C. Peers, and P. C.G. Nye. Intracellular pH and its regulation in isolated type-I carotid body cells of the neonatal rat. J. Physiol. (Lond.) 436: 107129, 1991.

    Google Scholar 

  13. Cunningham D.J.C. and B.B. Lloyd. The Regulation of Human Respiration, Philadelphia: F.A. Davis, 1963.

    Google Scholar 

  14. Dean J., D. Bayliss, J. Erickson, W. Lawing, and D. Millhorn. Depolarization and stimulation of neurons in nucleus tractus solitarii by carbon dioxide does not require chemical synaptic input. Neuroscience 36: 207–216, 1990.

    Article  CAS  PubMed  Google Scholar 

  15. De Castro F. Sur la structure et l’innervation de la glande intercarotidienne (Glomus caroti-cum) de l’homme et des mammifères, et sur un noveau système d’innervation autonome du nerf glossophayngien. Tray. Lab. Rech. Biol. Univ. Madrid 24: 365–432, 1926.

    Google Scholar 

  16. De Castro F. Sur la structure et l’innervation du sinus carotidien de l’homme et des mammifères. Nouveaux faits sur l’innervation et la fonction du glomus caroticum. Tray. Lab. Rech. Biol. Univ. Madrid 25: 331–380, 1928.

    Google Scholar 

  17. Dempsey J. and H. Forster. Mediation of ventilatory adaptations. Physiol. Rev. 62: 26 2346, 1982.

    Google Scholar 

  18. Dev N. and H. Loeschcke. A cholinergic mechanism involved in the respiratory chemosensitivity of the medulla oblongata in the cat. Pfluger’s Arch.Gesamte Physiol. 379: 29–36, 1979.

    Article  CAS  Google Scholar 

  19. Dev N. and H. Loeschcke. Topography of the respiratory and circulatory responses to acetylcholine and nicotine in the ventral surface of the medulla oblongata. Pfluger’s Arch. Gesamte Physiol. 379: 19–27, 1979.

    Article  CAS  Google Scholar 

  20. Douglas W. The effect of a ganglionic-blocking drug, hexamethonium, on the response of the cat’s carotid body to various stimuli. J. Physiol. (Lond.) 118: 373–383, 1952.

    CAS  Google Scholar 

  21. Douglas W. Is there chemical transmission at chemoreceptors? Pharmacol. Rev. 6: 81–83, 1954.

    CAS  PubMed  Google Scholar 

  22. Euler U. v., G. Liljestrand, and Y. Zotterman. The excitation mechanism of the chemoreceptors of the carotid body. Skand. Arch. Physiol. 83: 132–152, 1939.

    Article  Google Scholar 

  23. Eyzaguirre C., R. Fitzgerald, S. Lahiri, and P. Zapata. Arterial chemoreceptors. In: Handbook of Physiology. The Cardiovascular System. Peripheral Circulation and Organ Blood Flow, vol. III, edited by J.T. Shepherd and F.M. Abboud. Bethesda, MD: American Physiological Society, 1983, pp. 557–622.

    Google Scholar 

  24. Eyzaguirre C., H. Koyano, and J. Taylor. Presence of acetylcholine and transmitter release from carotid body chemoreceptors. J. Physiol. (Lond.) 178: 463–476, 1965.

    CAS  Google Scholar 

  25. Eyzaguirre C. and P. Zapata. The release of acetylcholine from carotid body tissues. Further study on the effects of acetylcholine and cholinergic blocking agents on the chemosensory discharge. J. Physiol. (Lond.) 195: 589–607, 1968.

    CAS  Google Scholar 

  26. Fidone S. and C. Gonzalez. Initiation and control of chemoreceptor activity in the carotid body. In: Handbook of Physiology. The Respiratory System, vol. II, edited by N.S. Cherniack and J.G. Widdicombe. Bethesda, MD: American Physiological Society, 1986, pp. 247–312.

    Google Scholar 

  27. Fishman M. C., W.L. Greene, and D. Platika. Oxygen chemoreception by carotid body cells in culture. Proc. Natl. Acad. Sci. USA 82: 1448–1450, 1985.

    Article  CAS  PubMed  Google Scholar 

  28. Fitzgerald R. and M. Shirahata. Acetylcholine and carotid body excitation during hypoxia in the cat. J.Appl.Physiol. 76: 1566–1574, 1994.

    CAS  Google Scholar 

  29. Flourens P. Recherches Expérimentales sur le Propriétés et les Fonctions du Système Nerveux, dans les Animaux Vertébrés. Paris: Crevot, 1824, pp. 168–202.

    Google Scholar 

  30. Flourens P. Recherches Expérimentales sur les Propriétés et les Fonctions du Système Nerveux, dans les Animaux Vertébrés,Paris:Baillière, 1842, 2d ed. pp. 169–207.

    Google Scholar 

  31. Flourens P. Nouveaux détails sur le noeud vital. C.R.Acad.Sci., Paris 47: 803–806, 1858.

    Google Scholar 

  32. Fredericq L. Sur la circulation céphalique croisée, ou échange de sang carotidien entre deux animaux. Arch. Biol. 10: 127–130, 1890.

    Google Scholar 

  33. Fredricq L. L’augmentation de la tension de l’oxygène du sang peut-elle produire l’apnée? Arch. Biol. 14: 119–125, 1896.

    Google Scholar 

  34. Fredricq L. Sur la cause de l’apnée. Arch. Biol. 17: 561–576, 1901.

    Google Scholar 

  35. Fukuda Y. and H. Loeschcke. A cholinergic mechanism involved in the neuronal excitation by H+ in the respiratory chemosensitive structures of the ventral medulla oblongata of rats in vitro. Pfluger’s Arch. Gesamte Physiol. 379: 125–135, 1979.

    Article  CAS  Google Scholar 

  36. Garcia, Sancho J., F. Giraldez, and C. Belmonte. Absence of apparent cell pH variations during hypoxia in the carotid body chemoreceptors in vitro. Neurosci. Lett. 10: 247–249, 1978.

    Article  Google Scholar 

  37. Gesell R. On the chemical regulation of respiration. I. The regulation of respiration with special reference to the metabolism of the respiratory center and the coordination of the dual function of hemoglobin. Am. J. Physiol. 66: 5–49, 1923.

    CAS  Google Scholar 

  38. Gonzalez C., B.G. Dinger, and S. Fidone. Mechanisms of carotid body chemoreception. In: Regulation of Breathing, edited by J.A. Dempsey and A.I. Pack. New York: Marcel Dekker, 1995, pp. 391–471.

    Google Scholar 

  39. Gonzalez C., J.R. Lopez-Lopez, A. Obeso, A. Rocher, and J. Garcia-Sancho. Ca2+ dynamics in chemoreceptor cells: an overview. In: Neurobiology and Cell Biology of Chemoreception, edited by P.G. Data, H. Acker, and S. Lahiri. New York: Plenum, 1993, pp. 149–156.

    Google Scholar 

  40. Gorlach A., B. Bolling, E. Dufau, G. Holtermann, and H. Acker. Spectrophotometric analysis of heure proteins in oxygen. In: Neurobiology and Cell Physiology of Chemoreception, edited by P.G. Data, H. Acker, and S. Lahiri. New York: Plenum, 1993, pp. 157–166.

    Google Scholar 

  41. Haldane J. S. and J.G. Priestley. The regulation of lung-ventilation. J. Physiol. (Lond.) 32: 225–266, 1905.

    CAS  Google Scholar 

  42. Haldane J.S. and J.G. Priestley. Respiration. Oxford: Oxford University Press (Clarendon Press ), 1935.

    Google Scholar 

  43. He S.-F., J.-Y. Wei, and C. Eyzaguirre. Effects of relative hypoxia and hypercapnia on intracellular pH and membrane potential of cultured carotid body glomus cells. Brain Res. 556: 333–338, 1991.

    Article  CAS  PubMed  Google Scholar 

  44. Heymans C. Le sinus carotidien, zone réflexogène régulatrice due tonus vagal cardiaque du tonus neurovasculaire et de l’adrénalosécrétion. Arch. Int. Pharmacodyn. Ther. 35: 269–306, 1929.

    Google Scholar 

  45. Heymans C. Pharmacology in old and modern medicine. Annu. Rev. Pharmacol. 7: 1–13, 1967.

    Article  CAS  PubMed  Google Scholar 

  46. Heymans C., J.-J. Bouckaert, and L. Dautrebande. Rôle réflexogène respiratoire des zones vaso-sensibles cardio-aortique et sino-carotidiennes. Ion hydrogène, CO2, sinus carotidiens et réflexes respiratoires. C.R. Soc. Biol. 105: 881–884, 1930.

    CAS  Google Scholar 

  47. Heymans C., J-J. Bouckaert, and L. Dautrebande. Au sujet du mécanisme de la bradycardie provoquée par la nicotine, la lobéline, le cyanure, le sulfure de sodium, les nitrites et la morphine, et de la bradycardie asphyxique. Arch. Int. Pharmacodyn. Ther. 41: 261–289, 1931.

    CAS  Google Scholar 

  48. Heymans C., J-J. Bouckaert, U.S. v. Euler, and L. Dautrebande. Sinus carotidiens et réflexes vasomoteurs. Au sujet de la sensibilité réflexogène vasomotrice des vaisseux artériel aux excitants chimiques. Arch. Int. Pharmacodyn. Ther. 43: 86–110, 1932.

    Google Scholar 

  49. Heymans J.-F. and C. Heymans. Sur les modifications directes et sur la régulation réflexe de l’activité du centre respiratoire de la tête isolée du chien. Arch. Int. Pharmacodyn. Ther. 33: 273–372, 1927.

    Google Scholar 

  50. Heymans C. and E. Neil. Reflexogenic Areas of the Cardiovascular System. London: Churchill, 1958, p. 191.

    Google Scholar 

  51. Iturriaga R., W. Rumsey, S. Lahiri, D. Spergel, and D. Wilson. Intracellular pH and oxygen chemoreception in the cat carotid body in vitro. J. Appl. Physiol. 72: 2259–2266, 1992.

    CAS  PubMed  Google Scholar 

  52. Jacobs M.H. To what extent are the physiological effects of carbon dioxide due to hydrogen ions ? Am. J. Physiol. 51: 321–331, 1920.

    CAS  Google Scholar 

  53. Jacobs M.H. The production of intracellular acidity by neutral and alkaline solutions containing carbon dioxide. Am. J. Physiol. 53: 457–463, 1920.

    CAS  Google Scholar 

  54. Jobsis F. What is a molecular oxygen sensor? What is a transduction process? In: Tissue Hypoxia and Ischemia, edited by M. Reivich, R. Coburn, S. Lahiri, and B. Chance. New York: Plenum, 1977, pp. 3–18.

    Chapter  Google Scholar 

  55. Joels N. and E. Neil. The idea of a sensory transmitter. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford: Blackwell Scientific, 1968, pp. 153–178.

    Google Scholar 

  56. Jones J. Localization and quantitation of carotid body enzymes: their relevance to the cholinergic transmitter hypothesis. In: The Peripheral Arterial Chemoreceptors, edited by M.J. Purves. London: Cambridge University Press, 1975, pp. 143–162.

    Google Scholar 

  57. Kellogg R.H. Historical perspectives. In: Regulation of Breathing Part I, edited by T. F. Hornbein. New York: Marcel Dekker, 1981, pp. 3–66.

    Google Scholar 

  58. Kussmaul A. and A. Tenner. Untersuchungen über Ursprung und Wesen der fallsuchtartigen Zuckungen bei Verblutung sowie der Fallsucht überhaupt. Untersuchungen zur Naturlehre Menschen Thiere 3: 1–124, 1857.

    Google Scholar 

  59. Lahiri S. Introductory remarks: oxygen linked response of chemoreceptors. In: Tissue Hypoxia and Ischemia, edited by M. Reivich, R. Coburn, S. Lahiri, and B. Chance. New York: Plenum, 1977, pp. 185–202.

    Chapter  Google Scholar 

  60. Lahiri S. Chemical modification of carotid body chemoreception by sulfhydryls. Science 212: 1065–1066, 1981.

    Article  CAS  PubMed  Google Scholar 

  61. Lahiri S. Chromophores on 02 chemoreception: the carotid body model. News in Physiol. Sci. 9: 9–12, 1994.

    Google Scholar 

  62. Lahiri S. and R. Delaney. The nature of response of single chemoreceptor fibers of carotid body changes in arterial Po2 and Pco2-H+. In: Morphology and Mechanisms of Chemoreceptors, edited by A.S. Paintal. New Delhi: Navchetan, 1976, pp. 18–24.

    Google Scholar 

  63. Landgren, S., G. Liljestrand, and Y. Zotterman. The effect of certain autonomic drugs on the action potentials of the sinus nerve. Acta Physiol. Scand. 26: 264–290, 1952.

    Article  CAS  PubMed  Google Scholar 

  64. Laqueur E. and F. Verzâr. Über die spezifische Wirkung der Kohlensäure auf das Atemzentrum. Pfluger’s Arch. Gesamte Physiol. 143: 395–427, 1911.

    Article  Google Scholar 

  65. Legallois C.-J.-J. Expériences sur le Principe de la Vie, Notamment sur Celui des Mouvemens du Coeur, et sur la Siège de ce Principe, Paris: D’Hautel, 1812.

    Google Scholar 

  66. Leusen, I. Influence du pH du liquide cephalorachidien sur la respiration. Experientia 6: 272, 1950.

    Article  CAS  PubMed  Google Scholar 

  67. Leusen I. Chemosensitivity of the respiratory center. Influence of CO2 in the cerebral ventricles on respiration. Am. J. Physiol. 176: 39–44, 1954.

    PubMed  Google Scholar 

  68. Leusen I. Chemosensitivity of the respiratory center. Influence of changes in the H+ and total buffer concentration in the cerebral ventricles on respiration. Am. J. Physiol. 176: 45–51, 1954.

    PubMed  Google Scholar 

  69. Lever J.D. and J.D. Boyd. Osmiophile granules in glomus cells of the rabbit carotid body. Nature 179: 1082–1083, 1957.

    Article  CAS  PubMed  Google Scholar 

  70. Liljestrand G. The problem of transmission at chemoreceptors. Pharmacol. Rev. 6: 73–76, 1954.

    CAS  PubMed  Google Scholar 

  71. Lloyd B., D.J. C. Cunningham, and R. Goode. Depression of hypoxic hyperventilation in man by sudden inspiration of carbon monoxide. In: Arterial Chemoreceptors, edited by R.W. Torrance. Oxford: Blackwell Scientific, 1968, pp. 145–148.

    Google Scholar 

  72. Loeschcke H., J. DeLattre, M. Schlaefke, and C. Trouth. Effects on respiration and circulation of electrically stimulating the ventral surface of the medulla oblongata. Respir. Physiol. 10: 184–197, 1970.

    Article  CAS  PubMed  Google Scholar 

  73. Loeschcke H. and H. Koepchen. Beeinflussung von Atmung und Vasomotorik durch Einbringen von Novocain in die Liquorräume. Pfluger’s Arch. Gesamte Physiol. 266: 611–627, 1958.

    Article  CAS  Google Scholar 

  74. Loeschcke H. and H. Koepchen. Versuch zur Lokalisation des Angriffsortes der Atmungsand Kreislaufwirkung von Novocain im Liquor cerebrospinalis. Pfluger’s Arch. Gesamte Physiol. 266: 628–641, 1958.

    Article  CAS  Google Scholar 

  75. Loeschcke H., H. Koepchen, and K. Gertz. Über den Einfluss von Wasserstoffionenkonzentration und CO2-druck im Liquor cerebrospinalis auf die Atmung. Pfluger’s Arch. Gesamte Physiol. 266: 569–585, 1953.

    Article  Google Scholar 

  76. Loeschcke H. and H. Koepchen. Über das Verhalten der Atmung und des arteriellen Drucks bei Einbringen von Veratridin, Lobelin and Cyanid in den Liquor cerebrospinalis. Pfluger’s Arch. Gesamte Physiol. 266: 586–610, 1958.

    Article  CAS  Google Scholar 

  77. Lopez-Barneo J. Oxygen-sensitive channels: how ubiquitous are they? Trends Neurosci. 17: 133–135, 1994.

    Article  CAS  PubMed  Google Scholar 

  78. Lumsden T. Observations on the respiratory centres in the cat. J. Physiol. 57: 153–160, 1923.

    CAS  PubMed  Google Scholar 

  79. Lumsden T. Observations on the respiratory centres. J. Physiol. 57: 354–367, 1923.

    PubMed  Google Scholar 

  80. Luschka H. Über die drüsenartige Natur der sogenannten Ganglion intercaroticum. Arch. Anat., Physiol., Wiss. Med. 406–414, 1862.

    Google Scholar 

  81. Marckwald M. Die Athembewegungen und deren Innervation beim Kaninchen. A. Biol. 23: 149–283, 1887.

    Google Scholar 

  82. Mayer A. Über ein neuentdeckes Ganglion im Winkel der aüssern und innern Carotis, bei’m Menschen und sen Säugethieren (Ganglion intercaroticum). Notizen Gebiete Nat.Heilk. 36: 8–9, 1833.

    Google Scholar 

  83. McDonald D. Peripheral chemoreceptors: structure-function relationships of the carotid body. In: Lung Biology in Health and Disease. The Regulation of Breathing, edited by T.F. Hornbein. Vol. 17. New York: Dekker, 1981, pp. 105–319.

    Google Scholar 

  84. McDonald D. and R. Mitchell. The innervation of glomus cells, ganglion cells and blood vessels in the rat carotid body: a quantitative ultrastructural analysis. J. Neurocytol. 4: 177–230, 1975.

    Article  Google Scholar 

  85. McQueen D. A quantitative study of the effects of cholinergic drugs on carotid chemoreceptors in the cat. J. Physiol. (Lond.) 273: 515–532, 1977.

    CAS  Google Scholar 

  86. Meischer-Rösch F. Bemerkungen zur Lehre von den Atembewegungen. Arch. Anat. Physiol. 6: 355–380, 1885.

    Google Scholar 

  87. Millhorn D. and F. Eldridge. Role of ventrolateral medulla in regulation of respiratory and cardiovascular systems. J. Appl. Physiol. 61: 1249–1263, 1986.

    CAS  PubMed  Google Scholar 

  88. Mills E. Spectrophotometric and fluorometric studies on the mechanism of chemoreception in the carotid body. Federation Proc. 31: 1394–1398, 1972.

    CAS  Google Scholar 

  89. Mills E. and F. Jobsis. Mitochondrial respiratory chain of carotid body and chemoreceptor response to changes in oxygen tension. J. Neurophysiol. 35: 405–428, 1972.

    CAS  PubMed  Google Scholar 

  90. Mitchell R. and D. Herbert. The effect of carbon dioxide on the membrane potential of medullary respiratory neurons. Brain Res. 75: 345–349, 1974.

    Article  CAS  PubMed  Google Scholar 

  91. Mitchell R., H. Loeschcke, W. Massion, and J. Severinghaus. Respiratory responses mediated through superficial chemosensitive areas on the medulla. J. Appl. Physiol. 18: 523–533, 1963.

    CAS  Google Scholar 

  92. Moe G., L. Capo, and B. Peralta. Action of tetraethyl ammonium on chemoreceptor and stretch receptor mechanisms. Am. J. Physiol. 153: 601–605, 1948.

    CAS  PubMed  Google Scholar 

  93. Mulligan E. and S. Lahiri. Dependence of carotid chemoreceptor stimulation by metabolic agents of Pao2 and Paco2 J. Appl. Physiol. 50: 884–891, 1981.

    CAS  PubMed  Google Scholar 

  94. Mulligan E. and S. Lahiri. Separation of carotid body chemoreceptor responses to 02 and CO2 by oligomycin and by antimycin A. Am. J. Physiol. 242 (Cell Physiol. 11): C200 - C206, 1982.

    CAS  PubMed  Google Scholar 

  95. Mulligan E., S. Lahiri, and B. Storey. Carotid body 02 chemoreception and mitochondrial oxidative phosphorylation. J. Appl. Physiol. 51:438–446, 1981.

    Google Scholar 

  96. Nattie E. E. Diethylpyrocarbonate (an imidazole binding substance) inhibits rostral VLM CO2 sensitivity. J. Appl. Physiol. 61: 843–850, 1986.

    CAS  PubMed  Google Scholar 

  97. Nattie E. E. Intracisternal diethylpyrocarbonate inhibits central chemosensitivity in conscious rabbits. Respir. Physiol. 64: 1161–1176, 1986.

    Article  Google Scholar 

  98. Nattie E. E. Diethylpyrocarbonate inhibits rostral ventrolateral medullary H+ sensitivity. J. Appl. Physiol. 64: 1600–1609, 1988.

    CAS  PubMed  Google Scholar 

  99. Nattie E.E. Central chemoreception. In: Regulation of Breathing, edited by J.A. Dempsey and A. I. Pack. New York: Marcel Dekker, 1995, pp. 473–510.

    Google Scholar 

  100. Neubauer J., S. Gonsalves, W. Chou, H. Geller, and N. Edelman. Chemosensitivity of medullary neurons in explant tissue cultures. Neuroscience 45: 701–708, 1991.

    Article  CAS  PubMed  Google Scholar 

  101. Obeso, A., S.J. Fidone, and C. Gonzalez. Pathways for calcium entry into type I cells: significance for the secretory response. In: Chemoreceptors in Respiratory Control, edited by J.A. Ribeiro and D.J. Pallot. London: Croom Helm, 1987, pp. 91–97.

    Chapter  Google Scholar 

  102. Okajima Y. and K. Nishi. Analysis of inhibitory and excitatory actions of dopamine on chemoreceptor discharges of carotid body of cat in vitro. Jpn. J.Physiol. 31: 695–704, 1981.

    Article  CAS  PubMed  Google Scholar 

  103. Paintal A. Mechanisms of stimulation of aortic chemoreceptors by natural stimuli and chemical substances. J. Physiol. (Lond.) 189: 63–84, 1967.

    CAS  Google Scholar 

  104. Pappenheimer J. The ionic composition of cerebral extracellular fluid and its relation to control of breathing. Harvey Lect. 6: 71–93, 1967.

    Google Scholar 

  105. Pappenheimer J., V. Fend, S. Heisey, and D. Held. Role of cerebral fluids in control of respiration as studied in unanesthetized goats. Am. J. Physiol. 208: 436–450, 1965.

    CAS  PubMed  Google Scholar 

  106. Perkins J.F., Jr. Historical development of respiratory physiology. In: Handbook of Physiology, section 3: Respiration, vol. I, edited by W. O. Fenn and H. Rahn. Washington,D. C.: American Physiological Society, 1964, pp. 1–62.

    Google Scholar 

  107. Pflüger E. Über der Ursache der Athembewegungen, sowie der Dyspnoë und Apnoë. Pfluger’s Arch.Gesamte Physiol. 1: 61–106, 1868.

    Article  Google Scholar 

  108. Pick J. The discovery of the carotid body. J.Hist.Med. 14: 61–72, 1959.

    CAS  Google Scholar 

  109. Rosenthal J. Die Anthembewegungen und ihre Beziehungen zum Nervus Vagus. Berlin: Hirschwald, 1862.

    Google Scholar 

  110. Rosenthal J. Die Physiologie der Anthembewegungen und der Innervation derselben. III Cap. Der Innervation des Athmungsapparats. In: Handbuch der Physiologie, edited by L. Hermann. Leipzig: Vogel, 1882, pp. 240–286.

    Google Scholar 

  111. Ruomy M. and L.-M. Leitner. Role of calcium ions in the mechanisms of arterial chemoreceptor excitation. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. Lubbers, and R. Torrance. Berlin: Springer-Verlag, 1977, pp. 257–263.

    Chapter  Google Scholar 

  112. Sampson S. Effects of mecamylamine on responses of carotid body chemoreceptors in vivo to physiological and pharmacological stimuli. J. Physiol. (Lond.) 212: 656–666, 1971.

    Google Scholar 

  113. Sampson S. and E. Vidruk. Hyperpolarising effects of dopamine on chemoreceptor nerve endings from cat and rabbit carotid bodies in vitro. J. Physiol. (Lond.) 268: 211–221, 1977.

    CAS  Google Scholar 

  114. Sato M., K. Ikeda, K. Yoshizaki, and H. Koyano. Response of cytosolic calcium to anoxia and cyanide in cultured glomus cells of newborn rabbit carotid body. Brain Res. 551: 327–330, 1991.

    Article  CAS  PubMed  Google Scholar 

  115. Sato M., K. Yoshizaki, and H. Koyano. Elevation of cytosolic calcium induced by pH changes in cultured carotid body glomus cells. In: Neurobiology and Cell Physiology of Chemoreception, edited by P.G. Data, H. Acker, and S. Lahiri. New York: Plenum, 1993, pp. 205–211.

    Google Scholar 

  116. Schlaefke M. and H. Loeschcke. Lokalisation eines an der Regulation von Atmung und Kreislauf beteiltigten Gebietes an der ventralen Oberflächen der Medulla oblongata durch Kälteblockade. Pfluger’s Arch. Gesamte Physiol. 297: 201–220, 1967.

    Article  Google Scholar 

  117. Schweitzer A. and S. Wright. Action of prostigmine and acetylcholine on respiration. Q. J. Exp. Physiol. 28: 33–47, 1938.

    CAS  Google Scholar 

  118. Shirahata M. and R. Fitzgerald. Dependency of hypoxic chemotransduction in cat carotid body on voltage-gated calcium channels. J. Appl. Physiol. 71: 1062–1069, 1991.

    CAS  PubMed  Google Scholar 

  119. Torrance R. Arterial chemoreceptors. In: Respiratory Physiology I, edited by J.G. Widdicombe. Baltimore, MD: University Park, 1974, pp. 247–271.

    Google Scholar 

  120. Torrance R. Manipulation of bicarbonate in the carotid body. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. Lubbers, and R. Torrance. Berlin: Springer-Verlag, 1977, pp. 286–293.

    Chapter  Google Scholar 

  121. Torrance R., E. Bartels, and A. McLaren. Update on the bicarbonate hypothesis. In: Neurobiology and Cell Physiology of Chemoreception, edited by P.G. Data, H. Acker, and S. Lahiri. New York: Plenum, 1993, pp. 241–250.

    Google Scholar 

  122. Traube L. Zur Physiologie der Respiration. Allgem. Med. Centr. Z. 31: 297–301, 1862.

    Google Scholar 

  123. Wilding T., B. Cheng, and A. Roos. pH regulation in adult rat carotid body glomus cells. J. Gen. Physiol. 100: 593–608, 1992.

    Article  CAS  PubMed  Google Scholar 

  124. Willenberg I., R. Dermietzel, A. Leibstein, and M. Effenberger. Mapping of cholinoceptive (nicotinoceptive) neurons in the lower brainstem: with special reference to the ventral surface of the medulla. J. Auton. Nerv. Syst. 14: 287–298, 1985.

    Article  CAS  PubMed  Google Scholar 

  125. Winder C. On the mechanism of stimulation of carotid gland chemoreceptors. Am. J. Physiol. 118: 389–398, 1937.

    CAS  Google Scholar 

  126. Winslow J.-B. Exposition Anatomique de la Structure du Corps Humain. Paris: Desprez and Desessartz, 1732, pp. 463.

    Google Scholar 

  127. Winterstein H. Die Regulierung der Atmung durch das Blut. Pfluger’s Arch.Gesamte Physiol. 138: 167–184, 1911.

    Article  CAS  Google Scholar 

  128. Winterstein H. Neue Untersuchungen über die physikalisch-chemische Regulierung der Atmung. Biochem Z. 70: 45–73, 1915.

    CAS  Google Scholar 

  129. Winterstein H. Die Reaktionstheorie Rer Atmungsregulation. Pfluger’s Arch. Gesamte Physiol. 187: 293–298, 1921.

    Article  CAS  Google Scholar 

  130. Winterstein H. and N. Gokhan. Ammoniumchlorid-acidose und Reaktionstheorie der Atmungsregulation. Arch. Intern. Pharmacodyn. 93: 212–282, 1953.

    CAS  Google Scholar 

  131. Xu F.D., M.J. Spellman Jr., M. Sato, J. E. Baumgartner, S.F. Ciricillo, and J.W. Severinghaus. Anomalous hypoxic acidification of medullary ventral surface. J. Appl. Physiol. 71: 2211–2217, 1991

    CAS  PubMed  Google Scholar 

  132. Xu F.D., M. Sato, M.J. Spellman, Jr., R.A. Mitchell, and J.W. Severinghaus. Topography of cat medullary ventral surface hypoxic acidification. J. Appl. Physiol. 73: 2631–2637, 1992.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 American Physiological Society

About this chapter

Cite this chapter

Fitzgerald, R.S., Lahiri, S. (1996). The History of Chemoreception. In: West, J.B. (eds) Respiratory Physiology. People and Ideas. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7520-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7520-0_10

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7520-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics