Skip to main content

Service Selection in Web Service Composition: A Comparative Review of Existing Approaches

  • Chapter
  • First Online:

Abstract

Web service composition (WSC) offers a range of solutions for rapid creation of complex applications in advanced service-oriented systems by facilitating the composition of already existing concrete web services. One critical challenge in WSC is the dynamic selection of concrete services to be bound to the abstract composite service. In this paper, we provide a comprehensive review of the existing proposals for service selection, and a comparative analysis of the optimization and automated negotiation-based approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    There are exceptions to this generalization, such as the work of McIlraith and Son [39]. They have a similar concept to an abstract business process, refered to as the high-level generic procedure.

  2. 2.

    For a set of d-dimensional data points, the skyline is a subset of the points where no point in it is dominated by any other member. If \( \overrightarrow{p}(p_1,... ,p_d)\) and \(\overrightarrow{q}(q_1,... ,q_d )\) are two points in the d-dimensional data set, \(p\) dominates \(q\) iff \(\forall i \in [1,d],p_i \succeq q_i\) and \(\exists j \in [1,d],p_j \succ q_j\) [59]. The notation \( \succeq \) is defined as being better than or equal, and \( \succ \) as better than. In the service domain, a service skyline is the set of providers where no provider is dominated by any other, in terms of the offered values for QoS attributes.

  3. 3.

    Due to space limitations, attributes such as privacy, security, and trust are not included in this paper.

References

  1. Agarwal, V., Jalote, P.: From specification to adaptation: an integrated QoS-driven approach for dynamic adaptation of web service compositions. In: IEEE International Conference on Web Services (ICWS), pp. 275–282 (2010)

    Google Scholar 

  2. Alrifai, M., Skoutas, D., Risse, T.: Selecting skyline services for QoS-based web service composition (2010). doi:10.1145/1772690.1772693

  3. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., Pruyne, J., Rofrano, J., Tuecke, S., Xu, M., (2004\({\rm c\!\!/}\) 2007), O.G.F.O.: Web services agreement specification (WS-Agreement). Technical report (2007)

    Google Scholar 

  4. Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE Trans. Softw. Eng. 33(6), 369–384 (2007)

    Article  Google Scholar 

  5. Baryannis, G., Danylevych, O., Karastoyanova, D., Kritikos, K., Leitner, P., Rosenberg, F., Wetzstein, B.: Service Composition (2010). www.s-cube-network.eu/results/books/Bookv0.4.pdf

    Google Scholar 

  6. Berbner, R., Spahn, M., Repp, N., Heckmann, O., Steinmetz, R.: Heuristics for QoS-aware web service composition. In: International Conference on Web Services (ICWS ’06), pp. 72–82 (2006)

    Google Scholar 

  7. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Orchard, D.: Web Services Architecture (2004). http://www.w3.org/TR/ws-arch/

  8. Brogi, A., Corfini, S.: Behaviour-aware discovery of Web service compositions. Int J Web Serv Res 4(3), 1–25 (2007)

    Article  Google Scholar 

  9. Brogi, A., Corfini, S., Popescu, R.: Semantics-based composition-oriented discovery of web services. ACM Trans. Internet Technol. 8(4), 1–39 (2008). doi:10.1145/1391949.1391953

    Article  Google Scholar 

  10. Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: An approach for QoS-aware service composition based on genetic algorithms (2005). doi:http://doi.acm.org/10.1145/1068009.1068189

  11. Carlson, S.E.: A general method for handling constraints in genetic algorithms. In: Proceedings of the Joint Conference on Information Science, Citeseer, pp. 663–667 (1995)

    Google Scholar 

  12. Chhetri, M.B., Lin, J., Goh, S.K., Yan, J., Zhang, J.Y., Kowalczyk, R.: A coordinated architecture for the agent-based service level agreement negotiation of Web service composition. In: Australian Software Engineering Conference (ASWEC), p. 10 (2006)

    Google Scholar 

  13. Comuzzi, M., Francalanci, C., Giacomazzi, P.: Trade-Off Based Negotiation of Traffic Conditioning and Service Level Agreements in DiffServ Networks. In: Chiara, F., Paolo, G. (eds.) International Conference on Advanced Information Networking and Applications, vol. 1, pp. 189–194. Taipei, Taiwan (2005)

    Google Scholar 

  14. Comuzzi, M., Pernici, B.: An architecture for flexible Web service QoS negotiation. In: IEEE International Enterprise Computing Conference (EDOC), pp. 70–79 (2005)

    Google Scholar 

  15. Comuzzi, M., Pernici, B.: A framework for QoS-based web service contracting. ACM Trans. Web 3(3), 1–52 (2009). doi:10.1145/1541822.1541825

    Article  Google Scholar 

  16. Di Nitto, E., Di Penta, M., Gambi, A., Ripa, G., Villani, M.: Negotiation of Service Level Agreements: An Architecture and a Search-Based Approach. In: Krämer, B., Lin, K.J., Narasimhan P (eds.) Service-Oriented Computing \({\rm c}\!\!/\) ICSOC 2007, vol. 4749, pp. 295–306. Springer, Berlin (2007). doi:10.1007/978-1-4614-7518-7_24

  17. El Haddad, J., Manouvrier, M., Rukoz, M.: TQoS: transactional and QoS-aware selection algorithm for automatic web service composition. IEEE Trans Serv Comput 3(1), 73–85 (2010)

    Article  Google Scholar 

  18. Erl, T.: SOA: Principles of Service Design. Prentice Hall, USA (2008)

    Google Scholar 

  19. Faratin, P., Sierra, C., Jennings, N.R.: Negotiation decision functions for autonomous agents. Int. Journal of, Robot Auton Syst 24(3–4), 159–182 (1998)

    Google Scholar 

  20. Faratin, P., Sierra, C., Jennings, N.R.: Using similarity criteria to make issue trade-offs in automated negotiations. Artif Intell 142(2), 205–237 (2002). doi:10.1016/s0004-3702(02)00290-4

    Article  MathSciNet  Google Scholar 

  21. Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation. IEEE Trans Syst Man Cybernetics Part A: Systems and Humans 28(1), 26–37 (1998)

    Article  Google Scholar 

  22. Foundation for Intelligent Physical Agents: FIPA contract net interaction protocol (2000). http://www.fipa.org/specs/fipa00029/SC00029H.pdf

  23. Georgakopoulos, D., Papazoglou, M.P.: Service-Oriented Computing. MIT Press, Cambridge (2009)

    Google Scholar 

  24. Gimpel, H., Ludwig, H., Dan, A., Kearney, B.: PANDA: Specifying Policies for Automated Negotiations of Service Contracts. In: Orlowska, M.E., Weerawarana, S., Papazoglou, M.P., Yang J. (eds.) Service-Oriented Computing—ICSOC 2003, vol. 2910, pp. 287–302. Springer, Berlin (2003). doi:10.1007/978-1-4614-7518-7_20

  25. Grimm, S.: Discovery, Identifying Relevant Services. In: Semantic Web Services: Concepts, Technologies, and Applications. Springer, New York (2007)

    Google Scholar 

  26. Hao, Y., Zhang, Y., Cao, J.: Web services discovery and rank: an information retrieval approach. Future Gener Comput Syst 26(8), 1053–1062 (2010). doi:10.1016/j.future.2010.04.012

    Article  Google Scholar 

  27. Hilton, A.B.C., Culver, T.B.: Constraint handling for genetic algorithms in optimal remediation design. J.Water Resour. Planning Manag 126(3), 128–137 (2000)

    Article  Google Scholar 

  28. Hudert, S., Ludwig, H., Wirtz, G.: Negotiating SLAs-An approach for a generic negotiation framework for WS-agreement. Journal Grid Comput 7(2), 225–246 (2009). doi:10.1007/s10723-009-9118-3

    Article  Google Scholar 

  29. Jaeger, M.C., Muehl, G.: QoS-based selection of services: the implementation of a genetic algorithm. In: Communication in Distributed Systems (KiVS), 2007 ITG-GI Conference pp. 1–12 (2007)

    Google Scholar 

  30. Jaeger, M.C., Rojec-Goldmann, G., Muhl, G.: QoS aggregation for Web service composition using workflow patterns. In: Eighth IEEE International Enterprise Distributed Object Computing Conference (EDOC), pp. 149–159 (2004)

    Google Scholar 

  31. Jaeger, M.C., Rojec-Goldmann, G., Muhl, G.: QoS aggregation in web service compositions. In: IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE ’05), pp. 181–185 (2005)

    Google Scholar 

  32. Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Wooldridge, M.J., Sierra, C.: Automated negotiation: prospects, methods and challenges. Group Decis Negot 10(2), 199–215 (2001)

    Article  Google Scholar 

  33. Jiuxin, C., Yongsheng, L., Junzhou, L., Bo, M.: Efficient multi-QoS attributes negotiation for service composition in dynamically changeable environments. In: IEEE International Conference on Systems Man and Cybernetics (SMC), pp. 3118–3124 (2010)

    Google Scholar 

  34. Keeney, R.L., Raïffa, H.: Decisions with multiple objectives: preferences and value tradeoffs. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  35. Kim, J.B., Segev, A., Patankar, A., Cho, M.G.: Web services and bpel4ws for dynamic ebusiness negotiation processes. In: Conference on Web Services, ICWS, vol. 3, pp. 111–117. Citeseer (2003)

    Google Scholar 

  36. Lecue, F., Mehandjiev, N.: Towards scalability of quality driven semantic web service composition. In: IEEE Int Conf Web Serv (ICWS), pp. 469–476 (2009)

    Google Scholar 

  37. Ma, Y., Zhang, C.: Quick convergence of genetic algorithm for QoS-driven web service selection. Comput Netw 52(5), 1093–1104 (2008). doi:10.1016/j.comnet.2007.12.003

    Article  MATH  Google Scholar 

  38. Maes, P., Guttman, R.H., Moukas, A.G.: Agents that buy and sell. Commun. ACM 42(3), 81-ff (1999). doi:10.1145/295685.295716

    Google Scholar 

  39. McIlraith, S., Son, T.C.: Adapting golog for composition of semantic web services. In: International Conference on the Principles of Knowledge Representation and Reasoning, pp. 482–496. Citeseer (2002)

    Google Scholar 

  40. Medjahed, B., Atif, Y.: Context-based matching for Web service composition. Distrib Parallel Databases 21(1), 5–37 (2007). doi:10.1007/s10619-006-7003-7

    Article  Google Scholar 

  41. Menasce, D.A., Casalicchio, E., Dubey, V.: On optimal service selection in service oriented architectures. Perform. Eval. 67(8), 659–675 (2010). doi:10.1016/j.peva.2009.07.001

    Article  Google Scholar 

  42. Michalewicz, Z.: A survey of constraint handling techniques in evolutionary computation methods. In: Proceedings of the 4th Annual Conference on Evolutionary Programming, pp. 135–155. The MIT Press, Cambridge (1995)

    Google Scholar 

  43. Mueller, H.J.: Negotiation principles. In: O’Hare, G.M.P., Jennings, N.R. (eds.) Foundations of Distributed Artificial Intelligence, pp. 211–229. Wiley, New York (1996)

    Google Scholar 

  44. Mukhija, A., Dingwall-Smith, A., Rosenblum, D.S.: QoS-Aware service composition in Dino. In: Fifth European Conference on Web Services, pp. 3–12 (2007)

    Google Scholar 

  45. O’Sullivan, J., Edmond, D., ter Hofstede, A.: What’s in a service? Distrib Parallel Datab 12(2), 117–133 (2002). doi:10.1023/a:1016547000822

    Google Scholar 

  46. Parra-Hernandez, R., Dimopoulos, N.J.: A new heuristic for solving the multichoice multidimensional Knapsack problem. IEEE Trans Syst Man Cybernetics A 35(5), 708–717 (2005)

    Article  Google Scholar 

  47. Rao, J., Su, X.: A Survey of Automated Web Service Composition Methods (2005). doi:10.1007/978-1-4614-7518-7_5

  48. Richter, J., Baruwal Chhetri, M., Kowalczyk, R., Bao Vo, Q.: Establishing composite SLAs through concurrent QoS negotiation with surplus redistribution. Concurrency Comput Prac Experience (2011). doi:10.1002/cpe.1727

    Google Scholar 

  49. Richter, J., Chhetri, M.B., Kowalczyk, R., Bao Quoc, V., Talib, M.A., Colman, A.: Utility decomposition and surplus redistribution in composite SLA negotiation. In: IEEE International Conference on Services Computing (SCC), pp. 627–630 (2010)

    Google Scholar 

  50. Rosenberg, F., Celikovic, P., Michlmayr, A., Leitner, P., Dustdar, S.: An End-to-End approach for QoS-Aware service composition. In: IEEE International Enterprise Distributed Object Computing Conference (EDOC ’09), pp. 151–160 (2009)

    Google Scholar 

  51. Schoop, M., Jertila, A., List, T.: Negoisst: a negotiation support system for electronic business-to-business negotiations in e-commerce. Data Knowl Eng 47(3), 371–401 (2003). doi:10.1016/s0169-023x(03)00065-x

    Article  Google Scholar 

  52. UDDI Consortium: UDDI executive white paper (2001). www.uddi.org/pubs/UDDI_Executive_White_Paper.pdf.

  53. Ul Haq, I., Paschke, A., Schikuta, E., Boley, H.: Rule-based validation of SLA choreographies. J Supercomput, pp. 1–22 (2010). doi:10.1007/s11227-010-0492-1

    Google Scholar 

  54. Wang, P.: QoS-aware web services selection with intuitionistic fuzzy set under consumer\({\rm c\!\!/}{\rm c\!\!/}\)s vague perception. Expert Syst Appl 36(3, Part 1), 4460–4466 (2009). doi:10.1016/j.eswa.2008.05.007

    Google Scholar 

  55. Wiesemann, W., Hochreiter, R., Kuhn, D.: A stochastic programming approach for QoS-aware service composition. In: IEEE International Symposium on Cluster Computing and the Grid (CCGRID ’08), pp. 226–233 (2008)

    Google Scholar 

  56. Wilkes, J.: Utility Functions, Prices, and Negotiation. In: Buyya, R., Bubendorfer, K. (eds.) Market-Oriented Grid and Utility Computing. Wiley, Hoboken (2009)

    Google Scholar 

  57. Yan, J., Kowalczyk, R., Lin, J., Chhetri, M.B., Goh, S.K., Zhang, J.: Autonomous service level agreement negotiation for service composition provision. Future Gener Comput Syst 23(6), 748–759 (2007). doi:10.1016/j.future.2007.02.004

    Article  Google Scholar 

  58. Yan, J., Zhang, J., Lin, J., Chhetri, M.B., Goh, S.K., Kowalczyk, R.: Towards autonomous service level agreement negotiation for adaptive service composition. In: 10th International Conference on Computer Supported Cooperative Work in Design (CSCWD ’06), pp. 1–6 (2006)

    Google Scholar 

  59. Yu, Q., Bouguettaya, A.: Multi-attribute optimization in service selection. World Wide Web 15(1), 1–31 (2012). doi:10.1007/s11280-011-0121-9

    Article  Google Scholar 

  60. Yu, T., Zhang, Y., Lin, K.J.: Efficient algorithms for web services selection with end-to-end QoS constraints. ACM Trans. Web (TWEB) 1(1), 6 (2007)

    Article  Google Scholar 

  61. Zadeh, L.A.: Similarity relations and fuzzy orderings. Inf Sci 3(2), 177–200 (1971). doi:10.1016/s0020-0255(71)80005-1

    Article  MathSciNet  MATH  Google Scholar 

  62. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-Aware middleware for web services composition. IEEE Trans. Softw. Eng. 30(5), 311–327 (2004). doi:10.1109/tse.2004.11

    Article  Google Scholar 

  63. Zulkernine, F., Martin, P., Craddock, C., Wilson, K.: A policy-based middleware for web services SLA negotiation. In: IEEE International Conference on Web Services ICWS, pp. 1043–1050 (2009)

    Google Scholar 

  64. Zulkernine, F.H., Martin, P.: An adaptive and intelligent SLA negotiation system for web services. IEEE Trans. Serv. Comput. 4(1), 31–43 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahboobeh Moghaddam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moghaddam, M., Davis, J.G. (2014). Service Selection in Web Service Composition: A Comparative Review of Existing Approaches. In: Bouguettaya, A., Sheng, Q., Daniel, F. (eds) Web Services Foundations. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7518-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7518-7_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7517-0

  • Online ISBN: 978-1-4614-7518-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics