Skip to main content

Anion Exchanges and Band 3 Protein

  • Chapter
Membrane Transport

Part of the book series: People and Ideas ((PEOPL))

Abstract

The anion-exchange system of the red blood cell, mediated by the transport protein band 3, has been the subject of intensive investigation for the past decade. Consequently numerous reviews have appeared, and no shortage of source material exists for those who are interested. The bibliography in this chapter includes thirty-six reviews or quasi-reviews (symposium articles) and there are others that are not cited. Clearly band 3—anion transport is an adequately if not overreviewed topic. Why then undertake yet another? Most reviews incorporate a catalogue of relevant research and/or an assembly of information supporting particular models, hypotheses, or points of view in various mixtures. The impression is usually given that a logical progression of ideas propelled by intelligent analysis provides increasing insight into particular biological mysteries. In real life, of course, research is not quite like that. There is a lot of stumbling and fumbling, unexpected results, and chance events that provide considerable impact. In this chapter I tell the story of how and why research on anion exchange came to be done, rather than to simply summarize what has been done and what conclusions can be reached. I attempt to place the development of knowledge of the anion-exchange system in some historical perspective and to describe events and people that substantially influenced the early directions of the research and its ultimate outcome. In doing so I present a highly personal view of the research developments and how they came about. I cannot claim to be a completely objective historian because I was a participant as well as an observer, so this effort is also something of a personal history. Undoubtedly I was unaware of certain influences that shaped the research effort; thus my history may be somewhat flawed and incomplete. I hope, however, that it is at least entertaining. Much of the paper is concerned with earlier events that in retrospect proved to be important. The mainstream of current research is also considered, but largely in the context of its historical origins. (For current status of the field see refs. 35, 38, 39, 56, 66.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Bender, W. W., H. Garan, and H. C. Berg. Proteins of the human erthrocyte membrane as modified by pronase. J. Mol. Biol. 58: 783797, 1971.

    Google Scholar 

  2. Bennett, V., and P. J. Stenbuck. The membrane attachment protein for spectrin is associated with band 3 in human erthrocyte membranes. Nature Lond. 280: 468–473, 1979.

    Article  PubMed  CAS  Google Scholar 

  3. Berg, H. C., J. M. Diamond, and P. S. Marfey. Erythrocyte membrane: chemical modification. Science Wash. DC 150: 64–66, 1965.

    Article  CAS  Google Scholar 

  4. Bodemann, H., and H. Passow. Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonie hemolysis. J. Membr. Biol. 8: 1–26, 1972.

    Article  PubMed  CAS  Google Scholar 

  5. Boodhoo, A., and R. A. Reithmeier. Characterization of matrix-bound band 3, the anion transport protein from human erythrocyte membranes. J. Biol. Chem. 259: 785–790, 1984.

    PubMed  CAS  Google Scholar 

  6. Bretscher, M. S. Human erythrocyte membranes: specific labelling of surface proteins. J. Mol. Biol. 58: 775–781, 1971.

    Article  PubMed  CAS  Google Scholar 

  7. Bursaux, E., M. Hilly, A. Bluze, and C. Poyart. Organic phosphates modulate anion self-exchange across the human erythrocyte membrane. Biochim. Biophys. Acta 777: 253–260, 1984.

    Article  PubMed  CAS  Google Scholar 

  8. Cabantchik, Z. I., M. Balshin, W. Breuer, and A. Rothstein. Pyridoxal phosphate. An anionic probe for protein amino groups exposed on the outer and inner surfaces of intact human red blood cells. J. Biol. Chem. 250: 5130–5136, 1975.

    PubMed  CAS  Google Scholar 

  9. Cabantchik, Z. I., P. A. Knauf, T. Ostwald, H. Markus, L. Davidson, W. Breuer, and A. Rothstein. The interaction of an anionic photo-reactive probe with the anion transport system of the human red blood cell. Biochim. Biophys. Acta 455: 526–537, 1976.

    Article  PubMed  CAS  Google Scholar 

  10. Cabantchik, Z. I., P. A. Knauf, and A. Rothstein. The anion transport system of the red blood cell. The role of membrane protein evaluated by the use of “probes.” Biochim. Biophys. Acta 515: 239–302, 1978.

    CAS  Google Scholar 

  11. Cabantchik, Z. I., and A. Rothstein. The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives. J. Membr. Biol. 10: 311–330, 1972.

    Article  PubMed  CAS  Google Scholar 

  12. Cabantchik, Z. I., and A. Rothstein. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation. J. Membr. Biol. 15: 207–226, 1974.

    Article  PubMed  CAS  Google Scholar 

  13. Cabantchik, Z. I., and A. Rothstein. Membrane proteins related to anion permeability of human red blood cells. II. Effects of proteolytic enzymes on disulfonic stilbene sites of surface proteins. J. Membr. Biol. 15: 227–248, 1974.

    Article  PubMed  CAS  Google Scholar 

  14. Cabantchik, Z. I., D. J. Volsky, H. Ginsburg, and A. Loyter. Reconstitution of the erythrocyte anion transport system: in vitro and in vivo approaches. Ann. NY Acad. Sci. 341: 444–454, 1980.

    Article  PubMed  CAS  Google Scholar 

  15. Cox, J. V., R. T. Moon, and E. Lazarides. Anion transporter: highly cell-type-specific expression of distinct polypeptides and transcripts in erythroid and non-erythroid cells. J. Cell Biol. 100: 1548–1577, 1985.

    Article  PubMed  CAS  Google Scholar 

  16. Dalmark, M. Chloride in the human erythrocyte: distribution and transport between cellular and extracellular fluids and structural features of the cell membrane. Prog. Biophys. Mol. Biol. 31: 145–164, 1976.

    Article  PubMed  CAS  Google Scholar 

  17. Deuticke, B. Properties and structural basis of simple diffusion pathways in the erythrocyte membrane. Rev. Physiol. Biochem. Pharmacol. 78: 1–97, 1977.

    Article  PubMed  CAS  Google Scholar 

  18. Drickamer, K. Arrangement of the red cell anion transport protein in the red cell membrane: investigation by chemical labelling methods. Ann. Nyacad. Sci. 341: 419–432, 1980.

    Article  CAS  Google Scholar 

  19. Fairbanks, G., T. L. Steck, and D. F. H. Wallach. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10: 2606–2617, 1971.

    Article  PubMed  CAS  Google Scholar 

  20. Falke, J. J., and S. I. Chan. Evidence that anion transport by band 3 proceeds via a ping-pong mechanism involving a single transport site. A 35C1 Nmr study. J. Biol. Chem. 260: 9537–9544, 1985.

    PubMed  CAS  Google Scholar 

  21. Falke, J. J., K. J. Kanes, and S. I. Chan. The minimal structure containing the band 3 anion transport site. A 35C1 Nmr study. J. Biol. Chem. 260: 13294–13303, 1985.

    PubMed  CAS  Google Scholar 

  22. Forman, S. A., A. S. Verkman, J. A. Dix, and A. K. Solomon. N-alkanols and halothane inhibit red cell anion transport and increase band 3 conformational rate change. Biochemistry 24: 4859–4866, 1985.

    Article  PubMed  CAS  Google Scholar 

  23. Fortes, P. A. Anion movements in red cells. In: Membrane Transport in Red Cells, edited by J. C. Ellory and V. L. Lew. New York: Academic, 1977, p. 175–195.

    Google Scholar 

  24. FRÖHlich, O. The external anion binding site of the human erythrocyte anion transporter: Dnds binding and competition with chloride. J. Membr. Biol. 45: 111–123, 1982.

    Google Scholar 

  25. FRÖHlich, O. Relative contributions of the slippage and tunneling mechanisms to anion net efflux from human erythrocytes. J. Gen. Physiol. 84: 877–893, 1984.

    Article  PubMed  Google Scholar 

  26. Furuya, W., T. Tarshis, F. Y. Law, and P. A. Knauf. Transmembrane effects of intracellular chloride on the inhibitory potency of extracellular H2Dids. Evidence for two conformations of the transport site of the human erythrocyte anion exchange protein. J. Gen. Physiol. 83: 657–681, 1984.

    Article  PubMed  CAS  Google Scholar 

  27. Garfield, E. Abcs of cluster mapping. II. Most-active fields in the physical sciences in 1978. Curr. Contents 41: 5–12, 1980.

    Google Scholar 

  28. Grinstein, S., L. Mcculloch, and A. Rothstein. Transmembrane effects of irreversible inhibitors of anion transport in red blood cells. Evidence for mobile transport sites. J. Gen. Physiol. 73: 493–514, 1979.

    Article  PubMed  CAS  Google Scholar 

  29. Grinstein, S., S. Ship, and A. Rothstein. Anion transport in relation to proteolytic dissection of band 3 protein. Biochim. Biophys. Acta 507: 294–304, 1978.

    Article  CAS  Google Scholar 

  30. Guidotti, G. The structure of intrinsic membrane proteins. J. Supra-mol. Struct. 7: 489–497, 1977.

    Article  CAS  Google Scholar 

  31. GuNN, R. B. Considerations of the titratable carrier model for sulfate transport in human red blood cells. In: Membrane Transport Processes, edited by D. C. Tosteson, A. Yu, and R. L. Ovchinnikov. New York: Raven, 1978, p. 61–77.

    Google Scholar 

  32. Gunn, R. B. Transport of anions across red cell membranes. In: Membrane Transport in Biology, edited by G. Giebisch, D. C. Tosteson, and H. H. Ussing. Berlin: Springer-Verlag, 1979, vol. 2, p. 59–79.

    Google Scholar 

  33. GuNN, R. B., and O. FRÖHlich. Asymmetry in the mechanism for anion exchange in human red cell membranes. Evidence for reciprocating sites that react with one transported ion at a time. J. Gen. Physiol. 74: 351–374, 1979.

    Article  Google Scholar 

  34. GuNN, R. B., and O. FRÖHlich. The kinetics of the titratable carrier for anion exchange in erythrocytes. Ann. NY Acad. Sci. 341: 384–393, 1980.

    Article  Google Scholar 

  35. Gunn, R. B., and O. FRÖHlich. Arguments in support of a single transport site on each anion transporter in human red cells. In: Chloride Transport in Biological Membranes, edited by J. A. Zaidunaisky. New York: Academic, 1982, p. 33–59.

    Chapter  Google Scholar 

  36. Ho, M., and G. GuIDoTti. A membrane protein from human erythrocytes involved in anion exchange. J. Biol. Chem. 250; 675–683, 1975.

    CAS  Google Scholar 

  37. Jennings, M. L. Stoichiometry of a half-turnover of band 3, the chloride transport protein of human erythrocytes. J. Gen. Physiol. 79: 169185, 1982.

    Google Scholar 

  38. Jennings, M. L. Oligomeric structure and the anion transport function of human erythrocyte band 3 protein. J. Membr. Biol. 80: 105–117, 1984.

    Article  PubMed  CAS  Google Scholar 

  39. Jennings, M. L. Kinetics and mechanism of anion transport in red blood cells. Annu. Rev. Physiol. 47: 519–533, 1985.

    Article  CAS  Google Scholar 

  40. Jennings, M. L., M. Adams-Lackey, and G. H. Denny. Peptides of human erythrocyte band 3 protein produced by extracellular papain cleavage. J. Biol. Chem. 259: 4652–4660, 1984.

    PubMed  CAS  Google Scholar 

  41. Jennings, M. L., R. Monaghan, M. S. Douglas, and J. S. Micknish. Functions of extracellular lysine residues in the human erythrocyte anion transport protein. J. Gen. Physiol. 86: 653–669, 1985.

    Article  PubMed  CAS  Google Scholar 

  42. Jennings, M. L., and H. Passow. Anion transport across the erythrocyte membrane, in situ proteolysis of band 3 protein, and cross-linking of proteolytic fragments by 4,4’-diisothiocyano dihydrostilbene-2,2’-disulfonate. Biochim. Biophys. Acta 554: 498–519, 1979.

    Article  PubMed  CAS  Google Scholar 

  43. Juliano, R. L. The proteins of the erythrocyte membrane. Biochim. Biophys. Acta 300: 341–378, 1973.

    Article  PubMed  CAS  Google Scholar 

  44. Kaplan, J. H., M. Pring, and H. Passow. Band-3 protein-mediated anion conductance of the red cell membrane. Slippage vs. ionic diffusion. Febs Lett. 156: 175–179, 1983.

    Article  PubMed  CAS  Google Scholar 

  45. Knauf, P. A. Erythrocyte anion exchange and the band 3 protein: transport kinetics and molecular structure. Curr. Top. Membr. Transp. 12: 251–363, 1979.

    Google Scholar 

  46. Knauf, P. A., G. F. Fuhrmann, S. Rothstein, and A. Rothstein. The relationship between anion exchange and net anion flow across the human red blood cell membrane. J. Gen. Physiol. 69: 363–386, 1977.

    Article  PubMed  CAS  Google Scholar 

  47. Knauf, P. A., and F. Y. Law. Relationship of net anion flow to the anion exchange system. In: Membrane Transport in Erythrocytes, edited by V. V. Lassen, H. H. Ussing, and J. O. Wieth. Copenhagen: Munksgaard, 1980, p. 488–493. (Alfred Benzon Symp., no. 14.)

    Google Scholar 

  48. Knauf, P. A., F. Y. Law, and P. J. Marchant. Relationship of net chloride flow across the human erythrocyte membrane to the anion exchange mechanism. J. Gen. Physiol. 81: 95–126, 1983.

    Article  PubMed  CAS  Google Scholar 

  49. Knauf, P. A., F. Y. Law, T. Tarshis, and W. Furuya. Effects of the transport site conformation on the binding of external Nap-taurine to the human erythrocyte anion exchange system. Evidence for intrinsic asymmetry. J. Gen. Physiol. 83: 683–701, 1984.

    Article  PubMed  CAS  Google Scholar 

  50. Knauf, P. A., and N. A. Mann. Use of niflumic acid to determine the nature of the asymmetry of human erythrocyte anion exchange system. J. Gen. Physiol. 83: 703–725, 1984.

    Article  PubMed  CAS  Google Scholar 

  51. Knauf, P. A., and N. A. Mann. Location of the chloride self-inhibitory site of the human erythrocyte anion exchange system. Am. J. Physiol. 251 (Cell Physiol. 20): C1—C9, 1986

    Google Scholar 

  52. Knauf, P. A., and Rothstein, A. Chemical modification of membranes. I. Effects of sulfhydryl and amino reactive reagents on anion and cation permeability of the human red blood cell. J. Gen. Physiol. 58: 190210, 1971.

    Google Scholar 

  53. KoPito, R. R., and H. F. LoDisch. Primary structure and transmembrane orientation of the murine anion exchange protein. Nature Lond. 316: 234–238, 1985.

    Article  Google Scholar 

  54. Lassen, U. V., L. Pape, and B. Vestergarrd-Bogind. Chloride conductance of the Amphiuma red cell membrane. J. Membr. Biol. 39: 27–48, 1978.

    Article  CAS  Google Scholar 

  55. Lepke, S., H. Fasold, M. Pring, and H. Passow. A study of the relationship between inhibition of anion exchange and binding to the red blood cell membrane of 4,4’-diisothiocyanostilbene-2,2’-disulfonic acid (Dids) and of its dihydro derivative (H2Dids). J. Membr. Biol. 29: 147–177, 1976.

    Article  PubMed  CAS  Google Scholar 

  56. Macara, I. G., and L. C. Cantley. The structure and function of band 3. In: Cell Membranes: Methods and Review, edited by E. Elson, W. Frazier, and L. Glaser. New York: Plenum, 1983, vol 1., p. 41–87.

    Google Scholar 

  57. Maddy, H. A fluorescent label for the outer components of the erythrocyte membrane. Biochim. Biophys. Acta 88: 390–399, 1964.

    Google Scholar 

  58. Matsuyama, H., Y. Kawano, and N. Hamasaki. Anion transport activity in the human erythrocyte membrane modulated by proteolytic digestion of the 38,000 dalton fragment in band 3. J. Biol. Chem. 258: 15376–15381, 1983.

    PubMed  CAS  Google Scholar 

  59. Morn, R. Umkehr der Anionenpermeabilitat der roten Blutkörperchen in eine elektive Durchlässigkeit für Kationen. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 217: 618–630, 1927.

    Google Scholar 

  60. MoTais, R., and J. L. Cousin. A structure activity study of some drugs acting as reversible inhibitors of chloride permeability in red cell membranes: influence of ring substituents. In: Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach, edited by R. W. Straub and L. Bolis. New York: Raven, 1978, p. 219–225.

    Google Scholar 

  61. Oikawa, K., D. M. Lieberman, and R. A. F. Reithmeier. Conformation and stability of the anion transport protein of human erythrocyte membranes. Biochemistry, 24: 2843–2848, 1985.

    Article  PubMed  CAS  Google Scholar 

  62. Passow, H. Passive ion permeability of the erythrocyte membrane: an assessment of the scope and limitations of the fixed charge hypothesis. Prog. Biophys. Mol. Biol. 19: 423–467, 1969.

    Article  PubMed  CAS  Google Scholar 

  63. Passow, H. Effects of pronase on passive ion permeability of the human red blood cell. J. Membr. Biol. 6: 233–258, 1971.

    Article  CAS  Google Scholar 

  64. Passow, H. The binding of 1-fluoro-2,4-dinitrobenzene and of certain stilbene-2,2’-disulfonic acids to anion permeability-controlling sites on the protein in band 3 of the red blood cell membrane. In: Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach, edited by R. W. Straub and L. Bolis. New York: Raven, 1978, p. 203–218.

    Google Scholar 

  65. Passow, H. Anion-transport-related conformational changes of the band 3 protein in the red blood cell membrane. In: Membranes and Transport, edited by A. N. Martonosi. New York: Plenum, 1982, vol. 2, p. 451–460.

    Google Scholar 

  66. Passow, H. Molecular aspects of band 3 protein mediated anion transport across the red blood cell membrane. Rev. Physiol. Biochem. Phar,nacol. 103: 61–203, 1986.

    Google Scholar 

  67. Passow, H., H. Fasold, S. Lepke, M. Pring, and B. Schuhmann. Chemical and enzymic modification of membrane proteins and anion trans[232] port in human red blood cells. In: Membrane Toxicity, edited by M. W. Miller and A. E. Shamoo. New York: Plenum, 1977, p. 353–377.

    Chapter  Google Scholar 

  68. Passow, H., H. Fasold, L. Zaki, B. Schuhmann, and S. Lepke. Membrane proteins and anion exchange in human erythrocytes. In: Biomembranes: Structure and Function, edited by G. Gardos and I. Szasz. Amsterdam: North-Holland, 1975, p. 197–214.

    Google Scholar 

  69. Passow, H., L. Kampmann, H. Fasold, M. Jennings, and S. Lepke. Relations between function and molecular structure. In: Membrane Transport in Erythrocytes, edited by V. V. Lassen, H. H. Ussing, and J. O. Wieth. Copenhagen: Munksgaard, 1980, p. 354–367. (Alfred Benzon Symp., no. 14.)

    Google Scholar 

  70. Passow, H., A. Rothstein, and T. W. Clarkson. The general pharmacology of the heavy metals. Pharmacol. Rev. 13: 185–224, 1961.

    PubMed  CAS  Google Scholar 

  71. Passow, H., and P. G. WooD. Current concepts of the mechanism of anion permeability. In: Drugs and Transport Processes, edited by B. A. Callingham. London: Macmillan, 1974, p. 149–171.

    Google Scholar 

  72. Passow, H., and L. Zaki. Studies on the molecular mechanism of anion transport across the red blood cell membrane. In: Molecular Specialization and Symmetry in Membrane Function, edited by A. K. Solomon and M. Karnovsky. Cambridge, MA: Harvard Univ. Press, 1978, p. 229–250.

    Google Scholar 

  73. Ramjeesingh, M., A. Gaarn, and A. Rothstein. The amino acid conjugate formed by the interaction of the anion transport inhibitor 4,4’diisothiocyano-2,2 stilbenedisulfonic acid (Dids) with band 3 protein from human red blood cell membranes. Biochim. Biophys. Acta 641: 173–182, 1981.

    Article  PubMed  CAS  Google Scholar 

  74. Ramjeesingh, M., A. Gaarn, and A. Rothstein. Pepsin cleavage of band 3 produces its membrane-crossing domains. Biochim. Biophys. Acta 769: 381–389, 1984.

    Article  CAS  Google Scholar 

  75. Reithmeier, R. A. F. Fragmentation of the band 3 polypeptide from human erythrocyte membranes. Size and detergent binding of the membrane-associated domain. J. Biol. Chem. 254: 3054–3060, 1979.

    Google Scholar 

  76. Rothstein, A. Sulfhydryl groups in cell membrane structure and function. Curr. Top. Membr. Transp. 1: 1–76, 1970.

    Google Scholar 

  77. Rothstein, A. The functional roles of band 3 protein of the red blood cell. In: Molecular Specialization and Symmetry in Membrane Function, edited by A. K. Solomon and M. Karnovsky. Cambridge, MA: Harvard Univ. Press, 1978, p. 128–159.

    Google Scholar 

  78. Rothstein, A. Functional structure of band 3, the anion transport protein of the red blood cells, as determined by proteolytic and chemical cleavages. In: Membranes and Transport, edited by A. N. Martonosi. New York: Plenum, vol. 2, 1982, p. 435–440.

    Google Scholar 

  79. Rothstein, A. Membrane mythology: technical versus conceptual developments in the progress of research. Can. J. Biochem. Cell Biol. 62: 1111–1120, 1984.

    Article  PubMed  CAS  Google Scholar 

  80. Rothstein, A., and Z. I. Cabantchik. Protein structures involved in the anion permeability of the red blood cell membrane. In: Comparative Biochemistry and Physiology of Transport, edited by L. Bolis, K. Bloch, S. E. Luria, and F. Lynen. Amsterdam: North-Holland, 1974, p. 354362.

    Google Scholar 

  81. Rothstein, A., Z. I. Cabantchik, M. Balshin, and R. Juliano. Enhance ment of anion permeability in lecithin vesicles by hydrophobic proteins extracted from red blood cells. Biochem. Biophys. Res. Commun. 64: 144–150, 1975.

    Article  CAS  Google Scholar 

  82. Rothstein, A., Z. I. Cabantchik, and P. Knauf. Mechanisms of anion transport in red blood cells: role of membrane proteins. Federation Proc. 35: 3–10, 1976.

    CAS  Google Scholar 

  83. Rothstein, A., S. Grinstein, S. Ship, and P. A. Knauf. Asymmetry of functional sites of the erythrocyte anion transport protein. Trends Biochem. Sci. 3: 126–128, 1978.

    Article  CAS  Google Scholar 

  84. Rothstein, A., and M. Ramjeesingh. The functional arrangement of the anion channel of red blood cells. Ann. NY Acad. Sci. 358: 1–12, 1980.

    Article  PubMed  CAS  Google Scholar 

  85. Rothstein, A., and M. Ramjeesingh. The red cell band 3 protein: its role in anion transport. Philos. Trans. R. Soc. Lond. B Biol. Sci. 299: 497–507, 1982.

    Article  CAS  Google Scholar 

  86. Schnell, K. F., W. Elbe, J. KÄSbauer, and E. Kaufmann. Electron spin resonance studies of the inorganic anion-transport system of the human red blood cell: binding of a disulfonatostilbene spin label (Ndstempo) and inhibition of anion transport. Biochim. Biophys. Acta 732: 266–275, 1983.

    Article  PubMed  CAS  Google Scholar 

  87. Schnell, K. F., S. Gerhardt, and A. Schoppe-Fredenburg. Kinetic characteristics of the sulfate self-exchange in human red blood cells and red blood cell ghosts. J. Membr. Biol. 301: 319–350, 1977.

    Google Scholar 

  88. Shami, Y., J. A. Carver, S. Ship, and A. Rothstein. Inhibition of a binding to anion transport protein of the red blood cell by Dids (4,4’diisothiocyano-2,2’-stilbene disulfonic acid) measured by (35C1)Nmr. Biochem. Biophys. Res. Commun. 76: 429–436, 1977.

    Article  CAS  Google Scholar 

  89. Shami, Y., A. Rothstein, and P. A. Knauf. Identification of the a transport site of human red blood cells by a kinetic analysis of the inhibitory effects of a chemical probe. Biochim. Biophys. Acta 508: 357–363, 1978.

    Article  CAS  Google Scholar 

  90. Ship, S., Y. Shami, W. Breuer, and A. Rothstein. Synthesis of tritiated 4,4’-diisothiocyano-2,2’-stilbene disulfonic acid ([3H]Dids) and its covalent reaction with sites related to anion transport in human red blood cells. J. Membr. Biol. 33: 311–324, 1977.

    Article  PubMed  CAS  Google Scholar 

  91. Solomon, A. K., B. Chasson, J. A. DIx, M. F. Lukavic, M. R. TooN, and A. S. Verkman. The aqueous pore in the red cell membrane: band 3 as a channel for anions, cations, nonelectrolytes, and water. Ann. NY Acad. Sci. 414: 97–124, 1983.

    Article  PubMed  CAS  Google Scholar 

  92. Staros, J. V., and F. M. Richards. Photochemical labelling of the surface proteins of human erythrocytes. Biochemistry 13: 2720–2726, 1974.

    Article  PubMed  CAS  Google Scholar 

  93. Steck, T. L. The organization of proteins in the human red blood cell membrane. J. Cell Biol. 62: 1–19, 1974.

    Article  PubMed  CAS  Google Scholar 

  94. Steck, T. L. Preparation of impermeable inside-out vesicles from erythrocyte membranes. In: Methods in Biology, edited by E. D. Korn. New York: Plenum, 1974, vol. 2, p. 245–281.

    Google Scholar 

  95. Steck, T. L. The band 3 protein of the human red cell membrane: a review. J. Supramol. Struct. 8: 311–324, 1978.

    Article  PubMed  CAS  Google Scholar 

  96. Tanner, M. J. A. Isolation of integral membrane proteins and criteria for identifying carrier proteins. Curr. Top. Membr. Transp. 12: 279325, 1979.

    Google Scholar 

  97. Tanner, M. J. A., D. G. Williams, and R. E. Jenkins. Structure Of the erythrocyte anion transport protein. Ann. NY Acad. Sci. 341: 455464, 1980.

    Google Scholar 

  98. TosTeson, D. C. Halide transport in red blood cells. Acta Physiol. Scand. 46: 19–41, 1959.

    Article  Google Scholar 

  99. Wieth, J. O. The selective ion permeability of the red cell membrane. In: Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status, edited by M. Rorth and P. Astrup. Copenhagen: Munksgaard, 1972, p. 265–278.

    Google Scholar 

  100. Wieth, J. O., O. S. Anderson, J. Brahm, P. J. Bjerruin, and C. C. Borders, JR. Chloride-bicarbonate exchange in red blood cells: physiology of transport and chemical modification binding sites. Philos. Trans. R. Soc. Lond. B Biol. Sci. 299: 383–399, 1982.

    Article  CAS  Google Scholar 

  101. Wieth, J. O., J. Brahm, and J. Funder. Transport and interactions of anions and protons in the red blood cell membrane. Ann. NY Acad. Sci. 341: 394–418, 1980.

    Article  PubMed  CAS  Google Scholar 

  102. Wieth, J. O., and M. T. Tosteson. Organotin-mediated exchange diffusion of anions in human red cells. J. Gen. Physiol. 73: 765–788, 1979.

    Article  PubMed  CAS  Google Scholar 

  103. Zaki, L., and T. Julien. Anion transport in red blood cells and argininespecific reagents. Interaction between the substrate binding site and the binding site of arginine-specific reagents. Biochim. Biophys. Acta 818: 325–332, 1985.

    Article  PubMed  CAS  Google Scholar 

  104. Zanner, M. A., and W. R. Gary. Aged human erythrocytes exhibit increased anion exchange. Biochim. Biophys. Acta 818: 310–315, 1985.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 American Physiological Society

About this chapter

Cite this chapter

Rothstein, A. (1989). Anion Exchanges and Band 3 Protein. In: Tosteson, D.C. (eds) Membrane Transport. People and Ideas. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7516-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7516-3_7

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7516-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics