From Frog Lung to Calcium Pump

  • Wilhelm Hasselbach
Part of the People and Ideas book series (PEOPL)


When I recall decisive events in my scientific career starting 1946, I must admit that most things occurred more or less spontaneously. My entry into the field of physiology, to which I had little prerogative, and also most of my scientific achievements were not purposefully designed but developed incidentally.


Sarcoplasmic Reticulum Calcium Uptake Calcium Oxalate Contractile Protein Adenylate Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bendall, J. R. Further observations on a factor (the Marsh-factor) effecting relaxation of Atp shortened muscle fibre models and the effect of Ca and Mg upon it. J. Physiol. Lond. 121: 247–260, 1953.Google Scholar
  2. 2.
    Bendall, J. R. The relaxing effect of myokinase on muscle fibres, its identity with the “Marsh”-factor. Proc. R. Soc. Lond. B Biol. Sci. 142: 409–426, 1954.PubMedCrossRefGoogle Scholar
  3. 3.
    Berne, R. M. Intracellular localization of skeletal muscle relaxing factor. J. Biochem. Tokyo 83: 364–368, 1962.Google Scholar
  4. 4.
    Brecht, K. Über die Wirkung des Acetylcholins auf die Froschlunge, ihre Beeinflussung und ihre theoretischen Grundlagen. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 246: 553–576, 1943.CrossRefGoogle Scholar
  5. 5.
    Caldwell, P. C., A. C. Hodgkin, R. P. Keynes, and T. T. Shaw. The effect of injecting “energy-rich” phosphate compounds on the active transport of ions in the giant axons of Loligo. J. Physiol. Lond. 152: 56 1590, 1960.Google Scholar
  6. 6.
    Costantin, L. L., C. Franzini-Armstrong, and R. J. Podolsky. Localization of calcium-accumulating structures in striated muscle fibers. Science Wash. DC 147: 158–160, 1965.Google Scholar
  7. 7.
    Demeis, L. The sarcoplasmic reticulum transport and energy transduction transport. In: Life Sciences, edited by E. E. Bittar. New York: Wiley, 1984, 1–163.Google Scholar
  8. 8.
    Dux, L., and A. Martonosi. Membrane crystals of Cat+-Atpase in sarcoplasmic reticulum of fast and slow skeletal and cardiac muscles. Eur. J. Biochem. 141: 43–49, 1984.PubMedCrossRefGoogle Scholar
  9. 9.
    Ebashi, S. A granule-bound relaxation factor in skeletal muscle. Arch. Biochem. Biophys. 76: 410–413, 1958.PubMedCrossRefGoogle Scholar
  10. 10.
    Ebashi, S., F. Ebashi, and A. Kodama. Troponin as the Ca++-receptor protein in the contractile system. J. Biochem. Tokyo 62: 137–138, 1967.PubMedGoogle Scholar
  11. 11.
    Ebashi, S., and F. Lipmann. Adenosine triphosphate-linked concentration of calcium ions in a particulate fraction of rabbit muscle. J. Cell Biol. 14: 389–400, 1962.PubMedCrossRefGoogle Scholar
  12. 12.
    Fiehn, W., and A. Migala. Calcium binding to sarcoplasmic membranes. Eur. J. Biochem. 20: 245–248, 1971.PubMedCrossRefGoogle Scholar
  13. 13.
    Gilbert, D. L., and W. O. Fenn. Calcium equilibrium in muscle. J. Gen. Physiol. 40: 393–408, 1957.PubMedCrossRefGoogle Scholar
  14. 14.
    Hasselbach, W. Elektronenmikroskopische Untersuchungen an Muskelmyofibrillen bei totaler und partieller Extraktion des L-Myosins. Z. Naturforsch. Teil B. Anorg. Chem. Org . Chem. Biochem. Biophys. Biol. 8b: 449–454, 1953.Google Scholar
  15. 15.
    Hasselbach, W. Relaxation and the sarcotubular calcium pump. Federation Proc. 32: 909–912, 1964.Google Scholar
  16. 16.
    Hasselbach, W. Relaxing factor and the relaxation of muscle. Prog. Biophys. Mol. Biol. 24: 167–222, 1964.CrossRefGoogle Scholar
  17. 17.
    Hasselbach, W., and M. Makinose. Die Calciumpumpe der “Erschlaffungsgrana” des Muskels und ihre Abhängigkeit von der Atp-Spaltung. Biochem. Z. 333: 518–528, 1961.Google Scholar
  18. 18.
    Hasselbach, W., and M. Makinose. Atp and active transport. Biochem. Biophys. Res. Commun. 7: 132–136, 1962.PubMedCrossRefGoogle Scholar
  19. 19.
    Hasselbach, W., and M. Makinose. Über den Mechanismus des Calcium-transportes durch die Membranen des sarkoplasmatischen Retikulums. Biochem. Z. 339: 94–111, 1963.PubMedGoogle Scholar
  20. 20.
    Hasselbach, W., and G. Schneider. Der L-Myosin-und Aktingehalt des Kaninchenmuskels. Biochem. Z. 321: 461–476, 1951.Google Scholar
  21. 21.
    Hasselbach, W., and H. H. Weber. Der Einfluss des M-B-Faktors auf die Kontraktion des Fasermodells. Biochim. Biophys. Acta 11: 160–161, 1953.PubMedCrossRefGoogle Scholar
  22. 22.
    Heilbrunn, L. V., and F. J. Wiercinski. The action of various cations on muscle protoplasma. J. Cell. Comp. Physiol. 29: 15–32, 1947.CrossRefGoogle Scholar
  23. 23.
    Hill, A. V. On the time required for diffusion and its relation processes in muscle. Proc. R. Soc. Lond. B Biol. Sci. 135: 446–453, 1948.CrossRefGoogle Scholar
  24. 24.
    Hoffman, J. F., D. C. Tosteson, and R. Whittam. Retention of potassium by human erythrocyte ghosts. Nature Lond. 185: 186–187, 1960.PubMedCrossRefGoogle Scholar
  25. 25.
    Hoffmann-Berling, H. Die Beweglichkeit der Zellen. Mikrokosmos 46: 73–77, 1957.Google Scholar
  26. 26.
    Inesi, G. Mechanism of calcium transport. Annu. Rev. Physiol. 47: 573601, 1985.Google Scholar
  27. 27.
    Kielley, W. W., and O. Meyerhof. Studies on adenosine-triphosphatase of muscle. J. Biol. Chem. 176: 591–601, 1948.PubMedGoogle Scholar
  28. 28.
    Lorand, L. Adenosine triphosphate-creatine transphosphorylase as relaxing factor of muscle. Nature Lond. 172: 1181–1183, 1953.PubMedCrossRefGoogle Scholar
  29. 29.
    Lullies, H. Reiz-und Erregungsbedingungen vegetativer Nerven. Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 38: 621–673, 1936.CrossRefGoogle Scholar
  30. 30.
    Lullies, H., and S. Meiners. Die Wirkung von Acetylcholin und Methylacetylcholin auf die Blutgefässe des Frosches bei Durchströmung mit kontinuierlich ansteigenden Konzentrationen. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 246: 525–542, 1943.CrossRefGoogle Scholar
  31. 31.
    Maclennan, D. H., C. J. Brandl, B. Korczak, and N. M. Green Amino-acid sequence of a Ca“-Mg”-dependent Atpase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary Dna sequence. Nature Lond. 316: 696–700, 1985.PubMedCrossRefGoogle Scholar
  32. Makinose, M. Phosphoprotein formation during osmochemical energy conversion in the membrane of the sarcoplasmic reticulum. Febs Lett. 25: 113–115, 1972.Google Scholar
  33. 33.
    Marsh, B. B. The effect of adenosinetriphosphatase on the fiber volume of muscle homogenate. Biochim. Biophys. Acta 9: 247–260, 1952.PubMedCrossRefGoogle Scholar
  34. 34.
    Martonosi, A., and R. Ferretos. Sarcoplasmic reticulum. II. Correlation between adenosine triphosphatase activity and Ca++ uptake. J. Biol. Chem. 239: 659–668, 1964.PubMedGoogle Scholar
  35. 35.
    Nagai, T., M. Makinose, and W. Hasselbach. Der physiologische Erschlaffungsfaktor und die Muskelgrana. Biochim. Biophys. Acta 44: 334340, 1960.Google Scholar
  36. 36.
    Porter, K. R., and G. E. Palade. Studies on the endoplasmatic reticulum. Iii. Its form and distribution in striated muscle cells. J. Biophys. Biochem. Cytol. 3: 269–300, 1957.PubMedCrossRefGoogle Scholar
  37. 37.
    Portzehl, H. Bewirkt das System Phosphokreatin-Phosphokreatinkinase die Erschlaffung des lebendigen Muskels? Biochim. Biophys. Acta 24: 477–482, 1957.CrossRefGoogle Scholar
  38. 38.
    Rossi, C. S., and A. L. Lehninger. Stoichiometry of respiratory stimulation, accumulation of Ca++ and phosphate, and oxidative phosphorylation in rat liver mitochondria. J. Biol. Chem. 239: 3971–3980, 1964.PubMedGoogle Scholar
  39. 39.
    Schatzmann, H. J., and F. F. Vincenzi. Calcium movements across the membrane of human red cells. J. Physiol. Lond. 201: 369–395, 1969.PubMedGoogle Scholar
  40. 40.
    Skou, J. C. Further investigations on a (Mg++ + Na+)-activated adenosine triphosphatase possibly related to the active, linear transport of Na+ and K+ across the nerve membrane. Biochim. Biophys. Acta 42: 6–23, 1960.CrossRefGoogle Scholar
  41. 41.
    Szent-Gyorgyi, A. Studies on muscle. Acta Physiol. Scand. 9, Suppl. 25: 7–116, 1945.Google Scholar
  42. 42.
    Ulbrecht, M. Beruht der Phophate-Austausch zwischen Adenosin-Triphosphat und Adenosin 32P diphosphat in gereinigten Fibrillen-und Actomyosin-Präparaten auf einer Verunreinigung durch Muskelgrana? Biochim. Biophys. Acta 57: 438–454, 1962.PubMedCrossRefGoogle Scholar
  43. 43.
    Weber, A. The ultracentrifugal separation of L-myosin and actin in an actomyosin gel under the influence of Atp. Biochim. Biophys. Acta 19: 345–351, 1956.PubMedCrossRefGoogle Scholar
  44. 44.
    Weber, A., and R. Herz. The binding of calcium to actomyosin systems in relation to their biological function. J. Biol. Chem. 238: 599–605, 1963.PubMedGoogle Scholar
  45. 45.
    Weber, H. H. Die Muskeleiweisskörper und der Feinbau des Skelettmuskels. Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 36: 109–150, 1934.CrossRefGoogle Scholar
  46. 46.
    Weber, H. H., and H. Portzehl. The transference of the muscle energy in the contraction cycle. Prog. Biophys. Biophys. Chem. 4: 60–111, 1954.Google Scholar
  47. 47.
    Weise, E. Untersuchung zur Frage der Verteilung des Calciums in Muskel. Arch. Exp. Pathol. Pharmakol. 176: 367–372, 1934.CrossRefGoogle Scholar

Copyright information

© American Physiological Society 1989

Authors and Affiliations

  • Wilhelm Hasselbach

There are no affiliations available

Personalised recommendations