Skip to main content

Sodium-Potassium Pump

  • Chapter
Book cover Membrane Transport

Part of the book series: People and Ideas ((PEOPL))

Abstract

The idea of a pump in the cell membrane was introduced by R. B. Dean in 1941 in a paper entitled “Theories of Electrolyte Equilibrium in Muscle” (20). Referring to experiments by L. A. Heppel in 1938, by Heppel and C. L. A. Schmidt in 1939, and by H. B. Steinbach in 1940 (see ref. 20), Dean concluded: “the muscle can actively move potassium and sodium against concentration gradients... this requires work. Therefore there must be some sort of a pump possibly located in the fiber membrane, which can pump out the sodium or, what is equivalent, pump in the potassium.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Adam, N. K. The Physics and Chemistry of Surfaces. London: Oxford Univ. Press, 1941.

    Google Scholar 

  2. Albers, R. W. Biochemical aspects of active transport. Annu. Rev. Biochem. 36: 727–756, 1967.

    Article  PubMed  CAS  Google Scholar 

  3. Albers, R. W., S. Fahn, and G. J. KovAL. The role of sodium ions in the activation of Electrophorus electric organ adenosine triphosphatase. Proc. Natl. Acad. Sci. Usa 50: 474–481, 1963.

    Article  PubMed  CAS  Google Scholar 

  4. AsKARI, A. (editor). Properties and Function of (Na+ + K+ )-Activated Adenosinetriphosphatase. New York: NY Acad. Sci., 1974, vol. 242.

    Google Scholar 

  5. Baker, P. F., M. P. Blaustein, A. L. Hodgkin, and R. A. Steinhardt. The influence of calcium on sodium efflux in squid axons. J. Physiol. Lond. 200: 431–458, 1969.

    PubMed  CAS  Google Scholar 

  6. Blaustein, M. P., and J. M. Hamlyn. Sodium transport inhibition, cell calcium, and hypertension. The natriuretic hormone/Na+-Ca+-exchange/hypertension hypothesis. Am. J. Med. 77, Suppl. 4A: 45–59, 1984.

    PubMed  CAS  Google Scholar 

  7. Bonting, S. L., and L. L. Caravaggio. Studies on sodium-potassiumactivated Atpase. V. Correlation of enzyme activity with cation flux in six tissues. Arch. Biochem. Biophys. 101: 37–46, 1963.

    Article  PubMed  CAS  Google Scholar 

  8. Bonting, S. L., K. A. Simon, and N. M. Hawkins. Studies on sodiumpotassium-activated adenosine triphosphatase. I. Quantitative distribution in several tissues of the cat. Arch. Biochem. Biophys. 95: 416–423, 1961.

    Article  PubMed  CAS  Google Scholar 

  9. Brotherus, J. R., J. V. Moller, and P. L. Jorgensen. Soluble and active renal Na,K-Atpase with maximum protein molecular mass 170,000 ± 9,000 daltons; formation of larger units by secondary aggregation. Biochem. Biophys. Res. Commun. 100: 146–154, 1981.

    Article  PubMed  CAS  Google Scholar 

  10. Brown, T. A., B. Horowitz, R. P. Miller, A. A. McDoNough, and R. A. Farley. Molecular cloning and sequence analysis of the (Na+ + K+)Atpase ß subunit from dog kidney. Biochim. Biophys. Acta 912: 244–253, 1987.

    Article  PubMed  CAS  Google Scholar 

  11. Caldwell, P. C., and R. D. Keynes. The utilization of phosphate bond energy for sodium extrusion from giant axons (Abstract). J. Physiol. Lond. 137: 12P, 1957.

    Google Scholar 

  12. Cantley, L. C., JR., L. G. Cantley, and L. Josephson. A characterization of vanadate interactions with the (Na,K)-Atpase. Mechanistic and regulatory implications. J. Biol. Chem. 253: 7361–7368, 1978.

    PubMed  CAS  Google Scholar 

  13. Cantley, L. C., JR., L. Josephson, R. Warner, M. Yanagisawa, C. Lechene, and G. Guidotti. Vanadate is a potent (Na,K)-Atpase inhibitor found in Atp derived from muscle. J. Biol. Chem. 252: 7421–7423, 1977.

    PubMed  CAS  Google Scholar 

  14. Cantley, L. C., JR., M. D. Resh, and G. Guidotti. Vanadate inhibits the red cell (Na+,K+)Atpase from the cytoplasmic side. Nature Lond. 272: 552–554, 1978.

    Article  PubMed  CAS  Google Scholar 

  15. Clausen, T. Regulation of active Na,K-transport in skeletal muscle. Physiol. Rev. 66: 542–580, 1986.

    PubMed  CAS  Google Scholar 

  16. Cornelius, F., and J. C. SKou. Reconstitution of (Na+ + K+)-Atpase into phospholipid vesicles with full recovery of its specific activity. Biochim. Biophys. Acta 772: 357–373, 1984.

    Article  PubMed  CAS  Google Scholar 

  17. Cornelius, F., and J. C. Skou. Na+-Na+ exchange mediated by (Na+ + K+)-Atpase reconstituted into liposomes: Evaluation of pump stoichiometry and response to Atp and Adp. Biochim. Biophys. Acta 818: 211–221, 1985.

    Article  PubMed  CAS  Google Scholar 

  18. Danielli, J. F., and H. Davson. A contribution to the theory of permeability of thin films. J. Cell. Comp. Physiol. 5: 495–508, 1935.

    Article  CAS  Google Scholar 

  19. Dean, R. B. Theories of electrolyte equilibrium in muscle. Biol. Symp. 3: 331–348, 1941.

    CAS  Google Scholar 

  20. Esmann, M. The distribution of Ci2E8-solubilized oligomers of the (Na+ + K+)-Atpase. Biochim. Biophys. Acta 787: 81–89, 1984.

    Article  PubMed  CAS  Google Scholar 

  21. Esmann, M., C. Christiansen, K. A. Karlsson, G. C. Hansson, and J. C. Skou. Hydrodynamic properties of solubilized (Na+ + K+)-Atpase from rectal glands of Squalus acanthias. Biochim. Biophys. Acta 603: 1–12, 1980.

    Article  CAS  Google Scholar 

  22. Esmann, M., and J. C. Skou. Occlusion of Na+ by the Na,K-Atpase in the presence of oligomycin. Biochem. Biophys. Res. Commun. 127: 857–863, 1985.

    Article  PubMed  CAS  Google Scholar 

  23. Esmann, M., J. C. Skou, and C. Christiansen. Solubilization and molecular weight determination of Na,K-Atpase from rectal glands of Squalus acanthias. Biochim. Biophys. Acta 567: 410–420, 1979.

    Article  CAS  Google Scholar 

  24. Fahn, S., G. J. Koval, and R. W. Albers. Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. V. Phosphorylation by adenosine triphosphate-32P. J. Biol. Chem. 243: 1993–2002, 1968.

    PubMed  CAS  Google Scholar 

  25. Forgac, M., and G. Chin. K+-independent active transport of Na+ by the (Na+ + K+)-stimulated adenosine triphosphatase. J. Biol. Chem. 256: 3645–3646, 1981.

    PubMed  CAS  Google Scholar 

  26. Gardos, G. Akkumulation der Kaliumionen durch Menschliche Blutkörperchen. Acta Physiol. Scient. Hung. 6: 191–199, 1954.

    CAS  Google Scholar 

  27. Glynn, I. M. The Na++,K+-transporting adenosine triphosphatase. In: The Enzymes of Biological Membranes, edited by A. N. Martonosi. New York: Martonosi. 1985, vol. 3, 28–114.

    Google Scholar 

  28. Glynn, I. M., and J. C. Ellory (editors.). The Sodium Pump. The 4th International Conference on Na, K-Atpase. Cambridge, UK: Company of Biologists, 1985.

    Google Scholar 

  29. Glynn, I. M., and D. E. Richards. Occlusion of rubidium ions by the sodium-potassium pump: its implications for the mechanism of potassium transport. J. Physiol. Lond. 330: 17–43, 1982.

    PubMed  CAS  Google Scholar 

  30. Glynn, I. M., Y. Hara, and D. E. Richards. Trapping of sodium ions by a phosphorylated form of the sodium-potassium pump (Na,Katpase). J. Physiol. Lond. 351: 531–547, 1984.

    PubMed  CAS  Google Scholar 

  31. Guernsey, D. L., and I. S. Edelman. Regulation of thermogenesis by thyroid hormones. In: Molecular Basis of Thyroid Hormone Action, edited by J. N. Oppenheimer and H. H. Samuels. New York: Academic, 1983, p. 293–320.

    Chapter  Google Scholar 

  32. Haas, M., W. F. Schmidt, and F. J. McManus. Catecholamine-stimulated ion transport in duck red cells. J. Gen. Physiol. 80: 125–147, 1985.

    Article  Google Scholar 

  33. Hastings, D. F., and J. A. Reynolds. Molecular weight of (Na+,K+)Atpase from shark rectal gland. Biochemistry 8: 817–821, 1979.

    Article  Google Scholar 

  34. Hebert, H., P. L. Jorgensen, E. Skriver, and A. B. Maunsbach. Crystallization patterns of membrane-bound (Na+ + K+)-Atpase. Biochim. Biophys. Acta 689: 571–574, 1982.

    Article  PubMed  CAS  Google Scholar 

  35. Hebert, H., E. Skriver, and A. B. Maunsbach. Three-dimensional structure of renal N,K-Atpase determined by electron microscopy of membrane crystals. Febs Lett. 187: 182–186, 1985.

    Article  Google Scholar 

  36. Hegyvary, C., and R. L. Post. Binding of adenosine triphosphate to sodium and potassium ion-stimulated adenosine triphosphatase. J. Biol. Chem. 246: 5234–5240, 1971.

    PubMed  CAS  Google Scholar 

  37. Hess, H. H., and A. Pope. Effect of metal cations on adenosinetriphosphate activity of rat brain (Abstract). Federation Proc. 16: 196, 1957.

    Google Scholar 

  38. Hodgkin, A. L., and R. D. Keynes. Active transport of cations in giant axons from Sepia and Loligo. J. Physiol. Lond. 128: 28–60, 1955.

    PubMed  CAS  Google Scholar 

  39. Hodgkin, A. L., and R. D. Keynes. Experiments on the injection of substances into squid giant axons by means of a microsyringe. J. Physiol. Lond. 131: 592–616, 1956.

    PubMed  CAS  Google Scholar 

  40. Hoffman, J. F., and B. Forbush, Iii (editors). Current Topics in Membranes and Transport. Structure, Mechanism and Function of the Na/K Pump. London, Academic, 1982, vol. 19.

    Google Scholar 

  41. Hokin, L. E., J. L. Dahl, J. D. Deupree, J. F. Dixon, J. F. Hackney, and J. F. Perdue. Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. J. Biol. Chem. 7: 2593–2603, 1973.

    Google Scholar 

  42. HoKin, L. E., and J. F. DIxoN. Parameters of reconstituted Na+ and K+ transport in liposomes in which purified Na,K-Atpase is incorporated by “freeze-thaw-sonication. In: Na,K-Atpase. Structure and Kinetics, edited by J. C. Skou and J. G. Nérby. London: Academic, 1979, p. 47–67.

    Google Scholar 

  43. Jorgensen, P. L. Purification and characterization of (Na+ + K+)Atpase. V. Conformational changes in the enzyme. Transitions between the Na-form and the K-form studied with tryptic digestion as a tool. Biochim. Biophys. Acta 401: 399–415, 1975.

    Article  PubMed  CAS  Google Scholar 

  44. Jorgensen, P. L. Isolation and characterization of the components of the sodium pump. Q. Rev. Biophys. 7: 239–274, 1975.

    Article  Google Scholar 

  45. Jorgensen, P. L., J. C. Skou, and L. P. Solomonsen. II. Preparation by zonal centrifugation of highly active (Na+ K+)-Atpase from outer medulla of rabbit kidneys. Biochim. Biophys. Acta 233: 381–394, 1971.

    Article  PubMed  CAS  Google Scholar 

  46. Karlish, S. J. D. Characterization of conformational changes in (Na,K)Atpase labeled with fluorescein at the active site. J. Bioenerg. Biomembr. 12: 111–136, 1980.

    Article  PubMed  CAS  Google Scholar 

  47. Karlish, S. J. D., and D. W. Yates. Tryptophan fluorescence of (Na+ + K+)-Atpase as a tool for study of the enzyme mechanism. Biochim. Biophys. Acta 527: 115–130, 1978.

    Article  PubMed  CAS  Google Scholar 

  48. Karlish, S. J. D., D. W. Yates, and I. M. Glynn. Conformational transitions between Na+-bound and K+-bound forms of (Na+ K+)Atpase, studied with formycin nucleotides. Biochim. Biophys. Acta 525: 252–264, 1978.

    Article  PubMed  CAS  Google Scholar 

  49. Kawakami, K., S. Noguchi, M. Noda, H. Takahashi, T. Ohta, M. Kawamura, H. Nojima, K. Nagano, T. Hirose, S. Inayama, H. Hayashida, T. Miyata, and S. Numa. Primary structure of the a-subunit of Torpedo californica (Na+ + K+)Atpase deduced from cDna sequence. Nature Lond. 316: 733–736, 1985.

    Article  PubMed  CAS  Google Scholar 

  50. Kepner, G. R., and R. J. Macey. Membrane enzyme systems. Molecular size determinations by radiation inactivation. Biochim. Biophys. Acta 163: 188–203, 1968.

    Article  PubMed  CAS  Google Scholar 

  51. Keynes, R. D. Electrolytes and nerve activity. In: Metabolism of the Nervous System, edited by D. Richter. London: Pergamon, 1957, p. 159–173.

    Google Scholar 

  52. Klein, L. E., M. S. Bartolomei, and C. S. Lo. Corticosterone and triiodothyronine control of myocardial Na+-K+-Atpase activity in rats. Am. J. Physiol. 247 (Heart Circ. Physiol. 16 ): H570 — H575, 1984.

    PubMed  CAS  Google Scholar 

  53. Kyte, J. Purification of the sodium-and potassium-dependent adenosine triphosphatase from canine renal medulla. J. Biol. Chem. 246: 4157–4165, 1971.

    PubMed  CAS  Google Scholar 

  54. Lane, L. K., J. H. Copenhaver, JR., G. E. Lindenmayer, and A. Schwartz. Purification and characterization of and (3H)ouabain binding to the transport adenosine triphosphatase from outer medulla of canine kidney. J. Biol. Chem. 20: 7197–7200, 1973.

    Google Scholar 

  55. Libet, B. Adenosine triphosphatase (Atp-ase) in nerve (Abstract). Federation Proc. 7: 72, 1948.

    CAS  Google Scholar 

  56. Lytton, J., J. C. Lin, and G. Guidotti. Identification of two molecular forms of (Na+ K+)-Atpase in rat adipocytes. Relation to insulin stimulation of the enzyme. J. Biol. Chem. 260: 1177–1184, 1985.

    PubMed  CAS  Google Scholar 

  57. Macknight, A. D. C., and A. Leaf. Regulation of cellular volume. Physiol. Rev. 57: 510–573, 1977.

    PubMed  CAS  Google Scholar 

  58. Meyer, H. H. Zur Theorie der Alkoholnarkose. Erste Mitteilung. Arch. Exp. Path. Pharmak. 42: 109–118, 1899.

    Article  Google Scholar 

  59. Mulvany, M. J. Changes in sodium pump activity and vascular contraction. J. Hypertension 3: 429–436, 1985.

    Article  CAS  Google Scholar 

  60. Nachmansohn, D. Chemical mechanism of nerve activity. In: Modern Trends of Physiology and Biochemistry, edited by E. E. G. Barron. New York: Academic, 1952, p. 229–276.

    Google Scholar 

  61. Noguchi, S., M. Noda, H. Takahashi, K. Kawakami, T. Ohta, K. Nagano, T. Hirose, S. Inayama, M. Kawamura, and S. Numa. Primary structure of the ß-subunit of Torpedo californica (Na+ + K+)-Atpase deduced from the cDna sequence. Febs Lett. 196: 315–320, 1986.

    Article  PubMed  CAS  Google Scholar 

  62. Norby, J. G., and J. Jensen. Binding of Atp to brain microsomal Atpase. Determination of the Atp-binding capacity and the dissociation constant of the enzyme-Atp complex as a function of K+ concentration. Biochim. Biophys. Acta 233: 104–116, 1971.

    Article  PubMed  CAS  Google Scholar 

  63. Norby, J. G., I. Klodos, and N. O. Christiansen. Kinetics of Na-Atpase activity by the Na,K-pump. Interactions of the phosphorylated intermediates with Na+, Tris+, and K. J. Gen. Physiol. 82: 725–759, 1983.

    Article  PubMed  CAS  Google Scholar 

  64. Ottolenghi, P. The relipidation of delipidated Na,K-Atpase. An analysis of complex formation with dioleoylphosphatidylcholine and with dioleoylphosphatidylethanolamine. Eur. J. Biochem. 99: 113–131, 1979.

    Article  PubMed  CAS  Google Scholar 

  65. Ovchinnikov, Y. A., V. V. Demin, A. N. Barnakov, A. P. Kuzin, A. V. Lunev, N. N. Modyanov, and K. N. Dzhandzhugazyan. Three-dimensional structure of (Na+ + K+)-Atpase revealed by electron microscopy of two-dimensional crystals. Febs Lett. 190: 73–76, 1985.

    Article  PubMed  CAS  Google Scholar 

  66. Ovchinnikov, Y. A., N. N. Modyanov, N. E. Broude, K. E. Petrukhin, A. V. Grishin, N. M. Arzamazova, N. A. Aldanova, G. S. Monastyr-Skaya, and E. D. Sverlov. Pig kidney Na+,K+-Atpase. Primary structure and spatial organization. Febs Lett. 201: 237–245, 1986.

    Article  PubMed  CAS  Google Scholar 

  67. Overton, E. Studien über die Narkose zugleich ein Beitrag zut allgemeinen Pharmakologie. Jena: Fischer, 1901.

    Google Scholar 

  68. Plesner, I. W., L. Plesner, J. G. Norby, and I. Klonos. The steady-state kinetic mechanism of Atp hydrolysis catalyzed by membrane-bound (Na+ K+)-Atpase from ox brain. Iii. A minimal model. Biochim. Biophys. Acta 643: 483–494, 1981.

    Article  PubMed  CAS  Google Scholar 

  69. PosT, R. L., C. Hegyvary, and S. Kume. Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. J. Biol. Chem. 247: 6530–6540, 1972.

    PubMed  CAS  Google Scholar 

  70. PosT, R. L., and S. Kume. Evidence for an aspartyl phosphate residue at the active site of sodium and potassium ion transport adenosine triphosphatase. J. Biol. Chem. 248: 6993–7000, 1973.

    PubMed  CAS  Google Scholar 

  71. Post, R. L., S. Kume, T. Tobin, B. Orcutt, and A. K. Sen. Flexibility of an active centre in sodium-plus-potassium adenosine triphosphatase. J. Gen. Physiol. 54: 306S - 326S, 1969.

    Article  CAS  Google Scholar 

  72. PosT, R. L., C. R. Merritt, C. R. Kinsolving, and C. D. Albright. Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J. Biol. Chem. 235: 1796–1802, 1960.

    PubMed  CAS  Google Scholar 

  73. PosT, R. L., A. K. Sen, and A. S. Rosenthal. A phosphorylated intermediate in adenosine triphosphate-dependent sodium and potassium transport across kidney membranes. J. Biol. Chem. 240: 1437–1445, 1965.

    PubMed  CAS  Google Scholar 

  74. Repke, K. Metabolism of cardiac glycosides. In: New Aspects of Cardiac Glycosides,edited by W. Wilbrandt. New York: Pergamon, 1963, vol. 3, p. 47–73. (Proc. Internat. Pharmacol. Meet. Stockholm 1961.)

    Google Scholar 

  75. Schatzmann, H. J. Herzglykoside als Hemmstoffe fur der aktiven Kalium und Natrium Transport durch die Erythrocytenmembran. Hely. Physiol. Pharmacol. Acta 11: 346–354, 1953.

    CAS  Google Scholar 

  76. Schou, M., N. Juel-Nielsen, E. Stromgren, and H. Voldby. The treatment of manic psychoses by the administration of lithium salts. J. Neurol. Neurosurg. Psychiatry 17: 250–260, 1954.

    Article  PubMed  CAS  Google Scholar 

  77. Schwartz, A. Positive inotropic action of digitalis and endogenous factors: Na,K-Atpase and positive inotropy; “Endogenous Glycosides.” In: Current Topics in Membranes and Transport. Structure, Mechanism and Function of the Na/K Pump, edited by J. F. Hoffman and B. Forbush, Iii. London: Academic, 1983, vol. 19, p. 825–855.

    Google Scholar 

  78. Schwartz, A., D. E. Lindenmayer, and J. C. Allen. The sodium-potassium adenosine triphosphatase: pharmacological, physiological and biochemical aspects. Pharmacol. Rev. 27: 3–134, 1975.

    PubMed  CAS  Google Scholar 

  79. Shull, G. E., A. Schwartz, and J. B. Lingrel. Amino-acid sequence of the catalytic subunit of the (Na+ + K+)Atpase deduced from a complementary Dna. Nature Lond. 316: 691–695, 1985.

    Article  PubMed  CAS  Google Scholar 

  80. Shull, G. E., L. K. Lane, and J. B. Lingrel. Amino-acid sequence of the ß-subunit deduced from cDna. Nature Lond. 321: 429–431, 1986.

    Article  PubMed  CAS  Google Scholar 

  81. Shull, G. E., J. Greeb, and J. B. Lingrel. Molecular cloning of three distinct forms of the Na+,K+-Atpase a-subunit from rat brain. Biochemistry 25: 8125–8132, 1986.

    Article  PubMed  CAS  Google Scholar 

  82. Siegel, G. J., and R. W. Albers. Sodium-potassium activated adenosine triphosphatase of Electrophorus electric organ. IV. Modification of responses to sodium and potassium by arsenite plus 2,3-dimercaptopropanol. J. Biol. Chem. 242: 4972–4975, 1967.

    PubMed  CAS  Google Scholar 

  83. Simons, T. J. B. The interaction of Atp-analogues possessing a blocked -y-phosphate group with the sodium pump in human red cells. J. Physiol. Lond. 244: 731–739, 1975.

    PubMed  CAS  Google Scholar 

  84. Sxou, J. C. Discussion in ref. 52. In: Metabolism of the Nervous System, edited by D. Richter. London: Pergamon, 1957, p. 173.

    Google Scholar 

  85. Sxou, J. C. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta 23: 394–401, 1957.

    Article  Google Scholar 

  86. Sxou, J. C. Further investigations on a Mg++ + Na+-activated adenosine triphosphatase, possibly related to the active linked transport of Na+ and K+ across the nerve membrane. Biochim. Biophys. Acta 42: 6–23, 1960.

    Article  Google Scholar 

  87. Sxou, J. C. The effect of drugs on cell membranes with special reference to local anaesthetics. J. Pharm. Pharmacol. 13: 204–217, 1961.

    Article  Google Scholar 

  88. Sxou, J. C. Preparation from mammalian brain and kidney of the enzyme system involved in active transport of Na+ and K+. Biochim. Biophys. Acta 58: 314–325, 1962.

    Article  Google Scholar 

  89. Sxou, J. C. Enzymatic basis for active transport of Na+ and K+ across cell membrane. Physiol. Rev. 45: 596–617, 1965.

    Google Scholar 

  90. Sxou, J. C. Effects of Atp on the intermediary steps of the reaction of the (Na+ + K+)-Atpase. IV. Effect of Atp on K0.5 for Na+ and on hydrolysis at different pH and temperature. Biochim. Biophys. Acta 567: 421–435, 1979.

    Article  Google Scholar 

  91. Sxou, J. C. The effect of pH, of Atp and of modification with pyridoxal 5-phosphate on the conformational transition between the Na+-form and the K+-form of the (Nat + K+)-Atpase. Biochim. Biophys. Acta 688: 369–380, 1982.

    Article  Google Scholar 

  92. Sxou, J. C. Effect on the equilibrium between the Nat-form of the (Na+ + K+)-Atpase of modification of the enzyme with pyridoxal 5-phosphate. Biochim. Biophys. Acta 789: 44–50, 1984.

    Article  Google Scholar 

  93. Sxou, J. C. Considerations on the reaction mechanism of the Na,Katpase. In: The Sodium Pump. The 4th International Conference on Na,K-Atpase, edited by I. M. Glynn and J. C. Ellory. Cambridge, UK: Company of Biologists, 1985, p. 575–588.

    Google Scholar 

  94. Sxou, J. C. Modification of the (Na+ + K+)-Atpase with 1-ethyl-3-(3dimethylaminopropyl)carbodiimide and with diethylpyrocarbonate. Effect on the conformational transition. Biochim. Biophys. Acta 819: 119–130, 1985.

    Article  Google Scholar 

  95. Sxou, J. C., and M. Esmann. Eosin, a fluorescent probe of Atp binding to the (Na+ K+)-Atpase. Biochim. Biophys. Acta 647: 232–240, 1981.

    Article  Google Scholar 

  96. Sxou, J. C., and M. Esmann. The effects of Na+ and K+ on the conformational transitions of (Na+ K+)-Atpase. Biochim. Biophys. Acta 746: 101–113, 1983.

    Article  Google Scholar 

  97. Sxou, J. C., and J. G. NpRry (editors). Na,K-Atpase. Structure and Kinetics. London: Academic, 1979.

    Google Scholar 

  98. Smith, T. W., and W. H. Barry. Monovalent cation transport and mechanisms of digitalis-induced inotropy. In: Current Topics in Membranes and Transport. Structure, Mechanism and Function of the Na/K Pump, edited by J. F. Hoffman and B. Forbush, Iii. London: Academic, 1983, vol. 19, p. 857–884.

    Chapter  Google Scholar 

  99. Sweadner, K. J. Two molecular forms of (Nat- + K+)-stimulated Atpase in brain. Separation and difference in affinity for strophanthidin. J. Biol. Chem. 254: 6060–6067, 1979.

    PubMed  CAS  Google Scholar 

  100. Ullrich, K. J. A. Sugar, amino acid and Na+ co-transport in proximal tubule. Annu. Rev. Physiol. 41: 181–195, 1979.

    Article  PubMed  CAS  Google Scholar 

  101. Ussinc, H. H. Transport of ions across cellular membranes. Physiol. Rev. 29: 127–155, 1949.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 American Physiological Society

About this chapter

Cite this chapter

Skou, J.C. (1989). Sodium-Potassium Pump. In: Tosteson, D.C. (eds) Membrane Transport. People and Ideas. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7516-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7516-3_5

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7516-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics