Skip to main content

Biological Membranes as Selective Barriers to Diffusion of Molecules

  • Chapter
Membrane Transport

Part of the book series: People and Ideas ((PEOPL))

  • 378 Accesses

Abstract

The initial concept of the membrane as a structure or interface that separates the cell from its environment—be it some sort of interstitium, as in the case of a tissue, or a suspension mediumsuch as seawater or blood plasma—was, of necessity, a consequence of the primary generalization, usually attributed to Schwann, that the behavior of a tissue, be it plant or animal, is governed by the coordinated activities of the individual cells of which it is composed. Thus the cell, being the unit of tissue structure, must be limited by some layer that preserves its identity and prevents its fusion with adjacent cells. The history of the development of the concept of the cell membrane depended mostly on studies of the plant cell because it lent itself so much more readily to microscopical examination than the animal cell, especially under experimental conditions. The plant cell differs from the animal cell by the presence of a well-defined and microscopically resolvable cellulose wall that separates it from its neighbors in a tissue or from its fluid environment, as in single-celled organisms such as algae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Anselmino, K. J., and E. Hoenig. Weitere Untersuchungen über Permeabilität und Narkose. Pfuegers Arch. Gesamte Physiol. Menschen Tiere 225: 56–68, 1930.

    Article  Google Scholar 

  2. Askew, F. A., and J. F. Danielli Discussion on surface phenomena. Proc. R. Soc. Lond. A Math. Phys. Sci. 155: 695–696, 1936.

    CAS  Google Scholar 

  3. Barlund, H. Einfluss des Athyläthers auf die Permeabilität der Chara Zellen. Protoplasma 30: 70–78, 1938.

    Article  CAS  Google Scholar 

  4. BAruss, L. E. Reversible haemolysis. J. Physiol. Lond. 59: 48–60, 1924.

    Google Scholar 

  5. Blum, H. F., N. Pace, and R. L. Garrett. Photodynamic hemolysis. I. The effect of dye concentration and temperature. J. Cell. Comp. Physiol. 9: 217–228, 1937.

    Article  CAS  Google Scholar 

  6. Chambers, R. The nature of the living cell. Harvey Lect. 22: 41–58, 1926–1927.

    Google Scholar 

  7. Chambers, R. The physical state of protoplasm with special reference to its surface. Am. Naturalist 72: 141–159, 1938.

    Article  Google Scholar 

  8. ClowES, G. H. A. On the role played by electrolytes in determining the permeability of protoplasm. Proc. Am. Soc. Biol. Chem. xiv, 1916.

    Google Scholar 

  9. Cohen, G. N., and J. Monod. Bacterial permeases. Bacteriol. Rev. 21: 169–194, 1957.

    PubMed  CAS  Google Scholar 

  10. Cole, K. S. Surface forces of the Arbacia egg. J. Cell. Comp. Physiol. 1: 1–9, 1932.

    Article  Google Scholar 

  11. Collander, R., and H. Barlund. Permeabilitätsstudien an Chara ceratophylla. Acta Bot. Fenn. 11: 1–14, 1933.

    Google Scholar 

  12. Curtis, H. J., and K. S. Cole. Membrane resting and action potentials of squid nerve. J. Cell. Comp. Physiol. 19: 135–144, 1942.

    Article  CAS  Google Scholar 

  13. Danielli, j. F. The thickness of the wall of the red blood corpuscle. J. Gen. Physiol. 19: 19–22, 1935.

    Article  PubMed  CAS  Google Scholar 

  14. Danielli, J. F. Structure of the cell surface. Circulation 26: 1163–1166, 1962.

    Article  PubMed  CAS  Google Scholar 

  15. Danielli, J. F., and H. Davson. A contribution to the theory of permeability of thin films. J. Cell. Comp. Physiol. 5: 495–508, 1934.

    Article  Google Scholar 

  16. Danielli, J. F., and E. N. Harvey. The tension at the surface of mackerel egg oil, with remarks on the nature of the cell surface. J. Cell. Comp. Physiol. 5: 483–494, 1935.

    Article  CAS  Google Scholar 

  17. Davson, H. Studies on the permeability of erythrocytes. Iii. The cation content of erythrocytes of rabbit’s blood in hyper-and hypo-tonic sera. Biochem. J. 30: 391–393, 1936.

    PubMed  CAS  Google Scholar 

  18. Davson, H. Studies on the permeability of erythrocytes. VI. The effect of reducing the salt content of the medium surrounding the cell. Biochem. J. 33: 389–401, 1939.

    PubMed  CAS  Google Scholar 

  19. Davson, H. Ionic permeability. The comparative effects of environmental changes on the permeability of the cat erythrocyte membrane to sodium and potassium. J. Cell. Comp. Physiol. 15: 317–330, 1940.

    Article  CAS  Google Scholar 

  20. Davson, H. The influence of the lyotropic series of anions on cation permeability. Biochem. J. 34: 917–925, 1940.

    PubMed  CAS  Google Scholar 

  21. Davson, H. The effect of some metabolic poisons on the permeability of the rabbit erythrocyte to potassium. J. Cell. Comp. Physiol. 18: 173–185, 1941.

    Article  CAS  Google Scholar 

  22. Davson, H. The haemolytic action of potassium salts. J. Physiol. Lond. 101: 265–283, 1942.

    PubMed  CAS  Google Scholar 

  23. DAvsoN, H. Growth of the concept of the paucimolecular membrane. Circ. Res. 26: 1023, 1962.

    Google Scholar 

  24. b.DAvsoN, H. General Physiology ( 3rd ed. ). New York: Little, Brown, 1964.

    Google Scholar 

  25. Davson, H., and J. F. Danielli. Studies on the permeability of erythrocytes. V. Factors in cation permeability. Biochem. J. 32: 991–1001, 1938.

    PubMed  CAS  Google Scholar 

  26. Davson, H., and J. F. Danielli. The Permeability of Natural Membranes. Cambridge, UK: Cambridge Univ. Press, 1943.

    Google Scholar 

  27. Davson, H., and E. Ponder. Studies on the permeability of erythrocytes. IV. The permeability of “ghosts” to cations. Biochem. J. 32: 756–762, 1938.

    PubMed  CAS  Google Scholar 

  28. Davson, H., and E. Ponder. Photodynamically induced cation permeability and its relation to hemolysis. J. Cell. Comp. Physiol. 15: 67–74, 1940.

    Article  CAS  Google Scholar 

  29. Davson, H., and J. M. Reiner. Ionic permeability: an enzyme-like factor concerned in the migration of sodium through the cat erythrocyte membrane. J. Cell. Comp. Physiol. 20: 325–342, 1942.

    Article  CAS  Google Scholar 

  30. Dirken, M. N. J, and H. W. MooK. The rate of gas exchange between blood cells and serum. J. Physiol. Lond. 73: 349–360, 1931.

    PubMed  CAS  Google Scholar 

  31. Dutrochet, R. J. H. Nouvelles observations sur l’endosmose et l’exosmose, et sur la cause de ce double phénomène. Ann. Chim. Phys. 35: 393, 1827. [Quoted by Smith (63).]

    Google Scholar 

  32. Finean, J. B. The nature and stability of nerve myelin. Int. Rev. Cytol. 12: 303–361, 1961.

    Article  PubMed  CAS  Google Scholar 

  33. Fischer, M. H. Oedema and Nephritis. New York: Wiley, 1921.

    Google Scholar 

  34. Fricke, H. The electric impedance of suspensions of biological cells. Cold Spring Harbor Symp. Quant. Biol. 1: 117–124, 1933.

    Article  CAS  Google Scholar 

  35. Geren, B. B. The formation from the Schwann cell surface of myelin in the peripheral nerves of chick embryos. Exp. Cell Res. 7: 558–562, 1954.

    Article  Google Scholar 

  36. Gorter, E., and F. Grendel. On bimolecular layers of lipoids on the chromocytes of blood. J. Exp. Med. 41: 439–443, 1925.

    Article  PubMed  CAS  Google Scholar 

  37. Grendel, F. Über die Lipoidschicht der Chromocyten beim Schaf. Biochem. Z. 214: 231–241, 1929.

    CAS  Google Scholar 

  38. Gryns, G. Über den Einfluss gelöster Stoffe auf die rothen Blutzellen mit den Erscheinungen der Osmose und Diffusion. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 63: 86–119, 1896.

    Article  Google Scholar 

  39. Hamburger, H. J. Osmotischer Druck und Zonenlehre in den medizinischen Wissenschaften. Wiesbaden, Germany: Bergmann, 1902, vol. 1.

    Google Scholar 

  40. Harris, J. E. The reversible nature of the potassium loss from erythrocytes during storage of blood at 2–5°C. Biol. Bull. Woods Hole 79: 373, 1940.

    Google Scholar 

  41. Hedin, S. G. Über die Permeabilität der Blutkörperchen. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 68: 229–338, 1897.

    Article  Google Scholar 

  42. Henderson, L. J. Blood: A Study in General Physiology. New Haven, CT: Yale Univ. Press, 1928, p. xix.

    Google Scholar 

  43. HöBer, R. Eine Methode, die elektrische Leitfähigkeit im Innern von Zellen zu messen. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 133: 237–253, 1910.

    Article  Google Scholar 

  44. HöBer, R. Ein zweites Verfahren die Leitfähigkeit im Innern von Zellen zu messen. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 148: 189–221, 1912.

    Article  Google Scholar 

  45. HöBer, R. The permeability of red blood corpuscles to organic anions. J. Cell. Comp. Physiol. 7: 367–391, 1936.

    Article  Google Scholar 

  46. Hoffman, J. F. The link between metabolism and active transport of Na in human red cell ghosts. Federation Proc. 19: 127, 1960.

    Google Scholar 

  47. Hoffman, J. F. The active transport of sodium of ghosts of human red blood cells. J. Gen. Physiol. 45: 837–859, 1962.

    Article  PubMed  CAS  Google Scholar 

  48. Hoffman, J. F., and F. M. Kregenow. The characterization of new energy dependent cation transport processes in red blood cells. Ann. Nyacad. Sci. 137: 566–576, 1966.

    Article  CAS  Google Scholar 

  49. JAcoss, M. H. Early osmotic history of the plasma membrane. Circulation 26: 1013–1021, 1962.

    Article  Google Scholar 

  50. JAcoss, M. H,, and A. K. Parpart. Osmotic properties of the erythrocyte. II. The influence of pH, temperature and oxygen tension on hemolysis by hypotonic solutions. Biol. Bull. Woods Hole 60: 95–119, 1932.

    Google Scholar 

  51. a.JAcoss, M. H., and A. K. Parpart. Is erythrocyte permeable to hydrogen? Biol. Bull. Woods Hole 62: 63–76, 1933.

    Google Scholar 

  52. Jacobs, M, IL, and A. K. Parpart. The influence of certain alcohols on the permeability of the erythrocyte. Biol. Bull. Woods Hole 73: 380, 1937.

    Google Scholar 

  53. Kerr, S. E., and V. H. Kirkorian. Effect of insulin on distribution of non-protein nitrogen in blood. J. Biol. Chem. 81: 421–424, 1929.

    CAS  Google Scholar 

  54. Koeppe, H. Der osmotische Druck als ursache des Stoffaustausches zwischen rothen Blutkörperchen und Salzlosungen. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 67: 189–206, 1897.

    Article  CAS  Google Scholar 

  55. Lefevre, P. G. Evidence of active transfer of certain non-electrolytes across the human red cell membrane. J. Gen. Physiol. 31: 505–527, 1948.

    Article  PubMed  CAS  Google Scholar 

  56. Makowski, L., W. L. D. Caspar, W. C. Phillips, and D. A. Goodenough. Analysis of the X-ray diffraction data. J. Cell Biol. 74: 629–645, 1977.

    Article  PubMed  CAS  Google Scholar 

  57. Nageli, C., and C. Cramer. Pflanzenphysiologische Untersuchungen. Zurich, Switzerland: Schultess, 1855, pt. 1. [Quoted by Smith (63).]

    Google Scholar 

  58. Irskov, S. L. Untersuchungen über den Einfluss von Kohlensäure und Blei auf die Permeabilität der Blutkörperchen für Kalium und Rubidium. Biochem. Z. 279: 250–261, 1935.

    Google Scholar 

  59. Osterhout, W. J. V. Permeability in large plant cells and in models. Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 35: 967–1021, 1933.

    Article  Google Scholar 

  60. Osterhout, W. J. V., and S. E. Hill. Salt bridges and negative variations. J. Gen. Physiol. 13: 547–552, 1930.

    Article  PubMed  CAS  Google Scholar 

  61. Ostwald, W. Z. Phys. Chem. 17: 189, 1895. [Quoted by Hamburger (36).]

    Google Scholar 

  62. Overton, E. Ăśber die allgemeinen osmotischen Eigenschaften der Zelle, ihre vermutlichen Ursachen und ihre Bedeutung fur die Physiologie. Vierteljahrsschr. Naturforsch. Ges. Zuer. 44: 88, 1899. [Quoted by Jacobs (45).]

    Google Scholar 

  63. Overton, E. Studien über die Aufnahme der Anilinfarben durch die lebende Zelle. Jahro. Wiss. Botanik 34: 669–701, 1900.

    Google Scholar 

  64. Pfeffer, W. Pflanzenphysiologie. Leipzig, Germany: Engelmann, 1890.

    Google Scholar 

  65. Robertson, J. D. The ultrastructure of adult vertebrate myelinated fibres in relation to myelinogenesis. J. Biophys. Biochem. Cytol. 1: 275–278, 1955.

    Article  Google Scholar 

  66. Rothstein, A., and M. Ramjessingh. The functional arrangement of the anion channel of red blood cells. Ann. NYAcad. Sci. 358: 1–12, 1980.

    Article  CAS  Google Scholar 

  67. ScHmitt, F. O., R. S. Bear, and K. J. Palmer. X-ray diffraction studies on structures of nerve myelin sheath. J. Cell. Comp. Physiol. 18: 31–42, 1941.

    Article  CAS  Google Scholar 

  68. ScHMirr, F. O., and K. J. Palmer. X-ray diffraction studies of lipide and lipide-protein systems. Cold Spring Harbor Symp. Quant. Biol. 8: 94101, 1940.

    Google Scholar 

  69. Smith, H. W. A knowledge of the laws of solution. Circulation 21: 808–817, 1960.

    Article  PubMed  CAS  Google Scholar 

  70. Smith, H. W. The plasma membrane, with notes on the history of botany. Circulation 26: 987–1012, 1962.

    Article  PubMed  CAS  Google Scholar 

  71. Starling, E. H. On the absorption of fluids from the connective tissue spaces. J. Physiol. Lond. 19: 312–326, 1895–96.

    Google Scholar 

  72. Teorell, T. Permeability properties of erythrocyte ghosts. J. Gen. Physiol. 35: 669–701, 1952.

    Article  PubMed  CAS  Google Scholar 

  73. Traube, M. Experimente zur Theorie der Zellenbildung und Endosmose. Arch. Anat. Physiol. Physiol. Abt. p. 87–165, 1867.

    Google Scholar 

  74. Van’T Hoff, J. H. Die Rolle des osmotischen Druckes in der Analogie zwischen Losungen und Gases. Z. Phys. Chem. 1: 481–508, 1877.

    Google Scholar 

  75. Whittam, X. X. Nature Lond. 219: 610, 1968.

    Article  PubMed  CAS  Google Scholar 

  76. Widdas, W. F. Facilitated transfer of hexoses across the human erythrocyte membrane. J. Physiol. Lond. 127: 318–327, 1954.

    Google Scholar 

  77. Wilbrandt, W. Die Permeabilität der roten Blutkörperchen für einfacher Zucker. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 241: 302–309, 1938.

    Article  Google Scholar 

  78. Wilbrandt, W. Die Permeabilität der Zelle. Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 40: 204–291, 1938.

    Article  CAS  Google Scholar 

  79. Wilbrandt, W., S. Frei, and T. Rosenberg. The kinetics of glucose transport through the human red cell. Exp. Cell Res. 11: 59–66, 1956.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 American Physiological Society

About this chapter

Cite this chapter

Davson, H. (1989). Biological Membranes as Selective Barriers to Diffusion of Molecules. In: Tosteson, D.C. (eds) Membrane Transport. People and Ideas. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7516-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7516-3_2

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7516-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics