Skip to main content

Flow and Diffusion Through Biological Membranes

  • Chapter
Membrane Transport

Part of the book series: People and Ideas ((PEOPL))

Abstract

The centennial of the American Physiological Society coincides with the 100th anniversary of the publication of Jacobus van’t Hoff’s theorem relating the osmotic pressure of solutions to the gas laws (69). It is fitting to call attention to this coincidence of anniversaries in a volume devoted to the people and ideas of membrane-transport research because van’t Hoff’s brilliant generalization provided the theoretical basis for innumerable subsequent papers on the osmotic behavior and permeability of biological membranes. This chapter is no exception: it is concerned largely with the application of van’t Hoff’s theorem to fluid movement and effective osmotic pressures across organized biological membranes such as capillary endothelium, glomerular membranes, or leaky epithelia. It is also a personal account of my contributions to this field from 1946 to 1954, including the people who influenced my thinking and the twists of fortune that shaped the course of my research. Ideas generated during this period have since been modified, expanded, and supplemented by new methods and new concepts, including the development of irreversible thermodynamics as applied to membrane transport (23). The recent American Physiological Society Handbook of Physiology volume Microcirculation (54b) is gratifying testimony to the advances that have been made during the last thirty years. Nevertheless many features of the 1946–1954 era remain unchanged, and my purpose, indeed my charge, in this chapter is to provide a personal account of how these earlier ideas came about. I mention only a few of the subsequent advances that pertain most directly to the original concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Barcroft, J. Researches on Pre-natal Life. Oxford, UK: Blackwell, 1946.

    Google Scholar 

  2. Bassingthwaighte, J. B., and C. A. Goresky. Modeling in the analysis of solute and water exchange in the microvasculature. In: Handbook of Physiology. The Cardiovascular System, Microcirculation, edited by E. M. Renkin and C. C. Michel. Bethesda, MD: Am. Physiol. Soc., 1984, sect. 2, vol. IV, chapt. 13, p. 549–626.

    Google Scholar 

  3. Bayliss, W. M., and E. H. Starling. Observations on venous pressures and their relationship to capillary pressures. J. Physiol. Lond. 16: 159202, 1984.

    Google Scholar 

  4. Boulpaep, E. L. Permeability changes of the proximal tubule of Necturus during saline loading. Am. J. Physiol. 222: 517–531, 1972.

    PubMed  CAS  Google Scholar 

  5. Crone, C. The permeability of capillaries in various organs as determined by the indicator diffusion method. Acta Physiol. Scand. 58: 29 2305, 1963.

    Google Scholar 

  6. Crone, C., and O. Christensen. Transcapillary transport of small solutes and water. Int. Rev. Physiol. 18: 149–213, 1979.

    PubMed  CAS  Google Scholar 

  7. Crone, C., and D. G. Levitt. Capillary permeability to small solutes. In: Handbook of Physiology. The Cardiovascular System. Microcirculation, edited by E. M. Renkin and C. C. Michel. Bethesda, MD: Am. Physiol. Soc., 1984, sect. 2, vol. IV, chapt. 10, p. 411–466.

    Google Scholar 

  8. Curry, F.-R. E. Mechanics and thermodynamics of transcapillary exchange. In: Handbook of Physiology. The Cardiovascular System. Micro-circulation, edited by E. M. Renkin and C. C. Michel. Bethesda, MD: Am. Physiol. Soc., 1984, sect. 2, vol. IV, chapt. 8, p. 309–374.

    Google Scholar 

  9. Curry, F.-R. E., J. C. Mason, and C. C. Michel. Osmotic reflection coefficients of capillary walls to low molecular weight hydrophilic solutes measured in single perfused capillaries of the frog mesentery. J. Physiol. Lond. 261: 319–336, 1968.

    Google Scholar 

  10. Deen, W. M., C. R. Bulger, and B. M. Brenner. Biophysical basis of glomerular permeability. J. Membr. Biol. 71: 1–10, 1983.

    Article  PubMed  CAS  Google Scholar 

  11. Deen, W. M., B. Satvat, and J. M. Jamieson. Theoretical model for glomerular filtration of charged solutes. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F126 - F139, 1980.

    CAS  Google Scholar 

  12. Eggleton, M. G., J. R. Pappenheimer, and F. R. Winton. The influence of diuretics on the osmotic work done and on the efficiency of the isolated kidney of the dog. J. Physiol. Lond. 97: 363–382, 1940.

    PubMed  CAS  Google Scholar 

  13. Eggleton, M. G., J. R. Pappenheimer, and F. R. Winton. The relation between ureter, venous, and arterial pressures in the isolated kidney of the dog. J. Physiol. Lond. 99: 135–152, 1940.

    PubMed  CAS  Google Scholar 

  14. Elford, W. J., and J. D. Ferry. The calibration of graded collodion membranes. Br. J. Exp. Pathol. 16: 1–14, 1935.

    Google Scholar 

  15. Ferguson, J. K. W., S. M. Horvath, and J. R. Pappenheimer. The transport of carbon dioxide by erythrocytes and plasma in dogfish blood. Biol. Bull. Woods Hole 75: 381–388, 1938.

    Article  CAS  Google Scholar 

  16. Ferry, J. D. Ultrafilter membranes and ultrafiltration. Chem. Rev. 18: 373–455, 1936.

    CAS  Google Scholar 

  17. Friedman, L., and E. O. Kraemer. The structure of gelatin gels from studies of diffusion. J. Am. Chem. Soc. 52: 1295–1304, 1930.

    Article  CAS  Google Scholar 

  18. GuÉRot, A. Sur les dimensions des intervalles poreux des membranes. C. R. Acad. Sci. Paris 75: 1809–1812, 1872.

    Google Scholar 

  19. Hahn, L., and G. Hevesy. Rate of penetration of ions through the capillary wall. Acta Physiol. Scand. 1: 347–361, 1940.

    Article  Google Scholar 

  20. Hevesy, G. E., E. Hofer, and A. Krogh. The permeability of the skin of frogs to water as determined by D20 and H2O. Scand. Arch. Physiol. 72: 199–214, 1935.

    Article  Google Scholar 

  21. Hevesy, G., and C. F. Jacobsen. Passage of water through capillary and cell walls. Acta Physiol. Scand. 1: 11–18, 1940.

    CAS  Google Scholar 

  22. Hitchcock, D. I. The size of pores in collodion membranes. J. Gen. Physiol. 9: 745–762, 1926.

    Article  Google Scholar 

  23. Katchalsky, A., and P. F. Curran. Nonequilibrium Thermodynamics in Biophysics. Cambridge, MA: Harvard Univ. Press, 1965.

    Google Scholar 

  24. Koefoed-Johnsen, V., and H. H. Us5Ing. The contribution of diffusion and flow to passage of D20 through living membranes. Acta Physiol. Scand. 28: 60–76, 1953.

    Google Scholar 

  25. Kramer, K., and F. R. Winton. The influence of urea and of change in arterial pressure on the oxygen consumption of the isolated kidney of the dog. J. Physiol. Lond. 96: 87–103, 1939.

    PubMed  CAS  Google Scholar 

  26. Krogh, A. Anatomy and Physiology of Capillaries. New Haven, CT: Yale Univ. Press, 1929, p. 348–350.

    Google Scholar 

  27. Krogh, A., E. M. Landis, and A. H. Turner. The movement of fluid through the human capillary wall in relation to venous pressure and to the colloid osmotic pressure of the blood. J. Clin. Invest. 11: 63–95, 1932.

    Article  PubMed  CAS  Google Scholar 

  28. Ladenburg, R. Über den Einfluss von Wänden auf die Bewegung einer Kugel in einer Reibenden Flussigkeit. Ann. Physik. 22: 287–309, 1907.

    Google Scholar 

  29. Landis, E. M. Microinjection studies of capillary permeability. The relation between capillary pressure and the rate at which fluid passes through the walls of single capillaries. Am. J. Physiol. 82: 217–238, 1927.

    Google Scholar 

  30. Landis, E. M. Capillary pressure and capillary permeability. Physiol. Rev. 14: 404–481, 1934.

    Google Scholar 

  31. Landis, E. M., and J. H. Gibbon, JR. The effects of temperature and of tissue pressure on the movement of fluid through the human capillary wall. J. Clin. Invest. 12: 105–138, 1933.

    Article  PubMed  CAS  Google Scholar 

  32. Landis, E. M., L. JoNAs, M. Angevine, and W. Erb. The passage of fluid and protein through the human capillary wall during venous congestion. J. Clin. Invest. 12: 105–138, 1932.

    Article  Google Scholar 

  33. Landis, E. M., and J. R. Pappenheimer. Exchange of substances through capillary walls. In: Handbook of Physiology. Circulation, edited by W. F. Hamilton. Washington, DC: Am. Physiol. Soc., 1963, sect. 2, vol. II, chapt. 29, p. 961–1034.

    Google Scholar 

  34. LucKÉ, B., and M. Mccutcheon. The living cell as an osmotic system and its permeability to water. Physiol. Rev. 12: 68–139, 1932.

    Google Scholar 

  35. Manegold, E. Die Dialyse durch Kollodiummembranen und der Zusammenhang zwischen Dialyse, Diffusion und Membranstruktur. Kolloid-Z. 49: 372–395, 1929.

    Article  CAS  Google Scholar 

  36. Manegold, E., and K. Sole. Das elektroosmotische Verhalten von Kollodium membranen abgestufte Porosität. Kolloid-Z. 55: 273–310, 1931.

    Article  CAS  Google Scholar 

  37. Millikan, G. A., J. R. Pappenheimer, A. J. Rawson, and J. Hervey. The continuous measurement of arterial saturation in man. Am. J. Physiol. 133: P390, 1941.

    Google Scholar 

  38. Millikan, G. A., and J. R. Pappenheimer. Development of chemical oxygen generators for use in aircraft (Abstract). J. Aviat. Med. 19: 118, 1947.

    Google Scholar 

  39. Monod, J., J. Wyman, JR., and P. Changeaux. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12: 88–118, 1965.

    Article  PubMed  CAS  Google Scholar 

  40. Navar, L. G., P. D. Bell, R. W. White, R. L. Watts, and R. H. Williams. Evaluation of single nephron glomerular coefficient in the dog. Kidney Int. 12: 137–149, 1977.

    Article  PubMed  CAS  Google Scholar 

  41. Olesen, S., and C. Crone. Electrical resistance of capillary endothelium. Biophys. J. 42: 31–41, 1983.

    Article  PubMed  CAS  Google Scholar 

  42. Orr, C. E., G. R. Marchand, J. A. Diaz-Buxo, and F. G. Knox. Determinants of glomerular filtration rate in the dog. Am. J. Physiol. 231: 235–239, 1976.

    Google Scholar 

  43. Pappenheimer, J. R. Vasoconstrictor nerves and oxygen consumption in the isolated perfused hindlimb muscles of the dog. J. Physiol. Lond. 99: 182–200, 1941.

    PubMed  CAS  Google Scholar 

  44. Pappenheimer, J. R. Passage of molecules through capillary walls. Physiol. Rev. 33: 387–423, 1953.

    PubMed  CAS  Google Scholar 

  45. Pappenheimer, J. R. Über die Permeabilität der Glomerlulummembranen in der Niere. Klin. Wochenschr. 33: 362–365, 1955.

    Article  PubMed  CAS  Google Scholar 

  46. Pappenheimer, J. R. Osmotic reflection coefficients in capillary membranes. In: Capillary Permeability: Transfer of Molecules and Ions Between Capillary Blood and Tissue,edited by C. Crone and N. A. Lassen Copenhagen: Munksgaard, 1970, p. 278–286. Alfred Benzon Symp. 2.

    Google Scholar 

  47. Pappenheimer, J. R., M. P. Lepie, and J. Wyman, JR. The surface tension of aqueous solutions of dipolar ions. J. Am. Chem. Soc. 58: 1851–1855, 1936.

    Article  CAS  Google Scholar 

  48. Pappenheimer, J. R., E. M. Renkin, and L. M. Borrero. Filtration, diffusion and molecular sieving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability. Am. J. Physiol. 167: 13–46, 1951.

    PubMed  CAS  Google Scholar 

  49. Pappenheimer, J. R., and A. Soto-Rivera. Effective osmotic pressures of the plasma proteins and the quantities associated with the capillary circulation in the hindlimbs of cats and dogs. Am. J. Physiol. 152: 47 1491, 1948.

    Google Scholar 

  50. Pappenheimer, J. R., and K. Z. Reiss. Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine. J. Membr. Biol. In press.

    Google Scholar 

  51. Renkin, E. M. Filtration, diffusion and molecular sieving through cellulose membranes. J. Gen. Physiol. 38: 225–243, 1954.

    PubMed  CAS  Google Scholar 

  52. Renkin, E. M. Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am. J. Physiol. 197: 1205–1210, 1959.

    Google Scholar 

  53. Renkin, E. M. Capillary transport of macromolecules: pores and other endothelial pathways. J. Appl. Physiol. 58: 315–325, 1985.

    PubMed  CAS  Google Scholar 

  54. Renkin, E. M., and F. E. Curry. Transport of water and solutes across capillary endothelium. In: Membrane Transport in Biology, edited by G. Giebisch, D. C. Toteson, and H. H. Ussing. New York: Springer-Verlag, 1978, chapt. I, p. 1–45.

    Google Scholar 

  55. Renkin, E. M., and J. P. Gilmore. Glomerular filtration. In: Handbook of Physiology. Renal Physiology,edited by J. Orloff and R. W. Berliner. Washington, DC: Am. Physiol. Soc., 1973, sect. 8, chapt. 9, p. 185248.

    Google Scholar 

  56. RenxIN, E. M., and C. C. Michel (editors). Handbook of Physiology. The Cardiovascular System. Microcirculation. Bethesda, MD: Am. Physiol. Soc., 1984, sect. 2, vol. IV.

    Google Scholar 

  57. Richards, A. N. Processes of urine formation. Proc. R. Soc. Lond. B. Biol. Sci. 126: 398–432, 1938.

    Article  CAS  Google Scholar 

  58. Richards, A. N., and O. H. Plant. Urine formation in the perfused kidney. The influence of adrenaline on the volume of the perfused kidney. Am. J. Physiol. 59: 184–190, 1922.

    Google Scholar 

  59. Schechter, W. H., R. R. Miller, R. M. Boyard, C. B. Jackson, and J. R. Pappenheimer. Chlorate candles as a source of oxygen. Ind. Eng. Chem. 42: 2348–2353, 1950.

    Article  CAS  Google Scholar 

  60. Schultz, S. G. The role of paracellular pathways in isotonic fluid transport. Yale J. Biol. Med. 50: 99–113, 1977.

    PubMed  CAS  Google Scholar 

  61. Shannon, J. A., and F. R. Winton. The renal excretion of inulin and creatinine by the anesthetized dog and the pump-lung-kidney preparation. J. Physiol. Lond. 96: 87–103, 1939.

    Google Scholar 

  62. Smith, H. W. Lectures on the Kidney. Lawrence: Univ. of Kansas Extension Div., 1943.

    Google Scholar 

  63. Smith, H. W. The Kidney. New York: Oxford Univ. Press, 1951, chapt. 14.

    Google Scholar 

  64. Solomon, A. K. Characterization of membranes by equivalent pores. J. Gen. Physiol. 51: 335–364, 1968.

    PubMed  CAS  Google Scholar 

  65. Starling, E. H. On the absorption of fluid from the connective tissue spaces. J. Physiol. Lond. 19: 312–326, 1896.

    PubMed  CAS  Google Scholar 

  66. Starling, E. H. Physiological factors involved in the causation of dropsy. Lancet, 1896.

    Google Scholar 

  67. Starling, E. H. The Fluids of the Body. Chicago, IL: Univ. of Chicago Press, 1909, p. 67–68.

    Google Scholar 

  68. Starling, E. H., and E. B. Verney. The secretion of urine as studied on the isolated kidney. Proc. R. Soc. Lond. B. Biol. Sci. 97: 321–363, 1925.

    Article  CAS  Google Scholar 

  69. Staverman, A. J. The theory of measurement of osmotic pressure. Recl. Tray. Chim. Pays-Bas Belg. 70: 344–352, 1951.

    Article  CAS  Google Scholar 

  70. TosTeson, D. C. In: Capillary Permeability,edited by C. Crone and N. A. Lassen. Copenhagen: Munksgaard, 1970, p. 658–663. Alfred Benzon Symp. II.

    Google Scholar 

  71. Van’T Hoff, J. H. Die Rolle des Osmotische Druckes in der Analogie zwischen Lösungen und Gasen. Z. Phys. Chem. 1: 481–508, 1887.

    Google Scholar 

  72. Visscher, M. B., E. S. Fetcher, JR., C. W. Carr, H. P. Gregor, M. S. Bushey, and D. E. Barker. Isotopic tracer studies on the movement of water and ions between intestinal fluid and blood. Am. J. Physiol. 142: 550–575, 1944.

    CAS  Google Scholar 

  73. White, J. C., M E Field, and C. K. Drinker. On the protein content and normal flow of lymph from the foot of the dog. Am. J. Physiol. 103: 34–44, 1933.

    CAS  Google Scholar 

  74. Winton, F. R. The glomerular pressure in the isolated mammalian kidney. J. Physiol. Lond. 72: 361–375, 1931.

    PubMed  CAS  Google Scholar 

  75. Winton, F. R. The control of the glomerular pressure by vascular changes within the isolated mammalian kidney demonstrated by the actions of adrenaline. J. Physiol. Lond. 73: 151–162, 1931.

    PubMed  CAS  Google Scholar 

  76. Winton, F. R. Physical factors involved in the activities of the mammalian kidney. Physiol. Rev. 17: 408–435, 1937.

    Google Scholar 

  77. Wyman, J., JR. Linked functions and reciprocal effects in proteins. Adv. Protein Chem. 19: 224–286, 1964.

    Google Scholar 

  78. Yudilevich, D. L., and O. A. Alvarez. Water, sodium, and thiourea transcapillary diffusion in the dog heart. Am. J. Physiol. 213: 308–314, 1967.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 American Physiological Society

About this chapter

Cite this chapter

Pappenheimer, J.R. (1989). Flow and Diffusion Through Biological Membranes. In: Tosteson, D.C. (eds) Membrane Transport. People and Ideas. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7516-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7516-3_15

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7516-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics