Advertisement

Propagation of Electrical Impulses

  • Lorin J. Mullins
Part of the People and Ideas book series (PEOPL)

Abstract

When he asked me to write this chapter, our editor, Daniel Tosteson, also asked that I try to convey some impression of the scientists with whom I interacted. This necessarily involves discussing topics that have interested me for many years and that have in large measure circumscribed the nature of this review.

Keywords

Phospholipid Bilayer Hydration Energy Excitable Membrane Squid Giant Axon Squid Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Baker, P. F., and P. A. Mcnaughton. Calcium-dependent calcium efflux from intact squid axons: Ca-Ca exchange or net extrusion? J. Physiol. Lond. 258: 97P - 98P, 1976.PubMedGoogle Scholar
  2. 2.
    Baker, P. F., A. L. Hodgkin, and T. I. Shaw. Replacement of the axoplasm of giant nerve fibres with artificial solutions. J. Physiol. Lond. 164: 330–354, 1962.PubMedGoogle Scholar
  3. 3.
    Brink, F. J., and J. M. Posternak. Thermodynamic analysis of the relative effectiveness of narcotics. J. Cell. Comp. Physiol. 32: 387–396, 1948.CrossRefGoogle Scholar
  4. 4.
    Brinley, F. J., JR., and, L. J. MuLlins. Sodium extrusion by internally dialyzed squid axons. J. Gen. Physiol. 50: 2303, 1967.Google Scholar
  5. 5.
    Diamond, J. M., and E. M. Wright. Biological membranes: the physical basis of ion and nonelectrolyte selectivity. Annu. Rev. Physiol. 31: 58 1646, 1969.Google Scholar
  6. 6.
    DipoLo, R. Calcium efflux from internally dialyzed squid giant axons. J. Gen. Physiol. 62: 575–589, 1973.PubMedCrossRefGoogle Scholar
  7. 7.
    Dipolo, R. Ca pump driven by Atp in squid axons. Nature Lond. 274: 390–392, 1978.PubMedCrossRefGoogle Scholar
  8. 8.
    Dipolo, R. Ca influx in internally dialyzed squid axons. J. Gen. Physiol. 73: 91–113, 1979.PubMedCrossRefGoogle Scholar
  9. 9.
    Dipolo, R., and L. BeaugÉ. Physiological role of Atp-driven calcium pump in squid axon. Nature Lond. 278: 271–273, 1979.PubMedCrossRefGoogle Scholar
  10. 10.
    DipoI.o, R., and L. BeaugÉ. The effect of pH on Ca extrusion mechanisms in dialyzed squid axons. Biochim. Biophys. Acta 688: 237–245, 1982.Google Scholar
  11. 11.
    DipoLo, R., and H. RoJAs. Effect of internal and external K+ on Nat Ca“ exchange in dialyzed squid axons under voltage clamp. Biochim. Biophys. Acta 776: 313–316, 1984.CrossRefGoogle Scholar
  12. 12.
    DipoLO, R., F. Bezanilla, C. Caputo, and H. RoJAs. Voltage dependence of the Na/Ca exchange in voltage clamped dialyzed squid axons. J. Gen. Physiol. 86: 457–478, 1985.Google Scholar
  13. 13.
    Eisenman, G. Cation selective glass electrodes and their mode of operation. Biophys. J. 2: 259–323, 1962.PubMedCrossRefGoogle Scholar
  14. 14.
    Ferguson, J. The use of chemical potentials as indices of toxicity. Proc. R. Soc. Lond. Ser. B 127: 387–404, 1939.CrossRefGoogle Scholar
  15. 15.
    Findlay, G. P. Voltage clamp experiments with Nitella. Nature Lond. 191: 813–814, 1961.Google Scholar
  16. 16.
    Gaffey, C. T., and L. J. Mullins. Ion fluxes during the action potential of Chara. J. Physiol. Lond. 144: 505, 1958.Google Scholar
  17. 17.
    Haydon, D. A., J. Requena, and B. W. Urban. Some effects of aliphatic hydrocarbons on electrical capacity and ionic currents of the squid axon membrane. J. Physiol. Lond. 309: 229–245, 1980.PubMedGoogle Scholar
  18. 18.
    Haydon, D. A., and B. W. Urban. The action of alcohols and other nonionic surface-active substances on the Na current of the squid axon. J. Physiol. Lond. 341: 411–428, 1983.PubMedGoogle Scholar
  19. 19.
    Hille, B. The permeability of the Na channel to organic cations in myelinated nerve. J. Gen. Physiol. 58: 599–619, 1971.PubMedCrossRefGoogle Scholar
  20. 20.
    Hille, B. K channels in myelinated nerve. J. Gen. Physiol. 61: 669–686, 1973.PubMedCrossRefGoogle Scholar
  21. 21.
    Hille, B. Ionic Channels of Excitable Membranes. Sunderland, MA: Sinauer, 1984.Google Scholar
  22. 22.
    Hodgkin, A. L., and A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. Lond. 117: 500–544, 1952.PubMedGoogle Scholar
  23. 23.
    Hodgkin, A. L., and R. D. Keynes. Movements of labelled calcium in squid giant axons. J. Physiol. Lond. 138: 253–281, 1957.PubMedGoogle Scholar
  24. 24.
    Hope, A. B. The action potential in cells of Chara. Nature Lond. 191: 811–812, 1961.CrossRefGoogle Scholar
  25. 25.
    Kendig, J. J., J. R. Trudell, and E. N. Cohen. Effects of pressure and anesthetics on conduction and synaptic transmission. J. Pharmacol. Exp. Ther. 195: 216–224, 1975.PubMedGoogle Scholar
  26. 26.
    Mueller, P., and D. O. Rudin. Translocators in biomolecular lipid membranes. Curr. Top. Bioenerg. 3: 157–249, 1969.Google Scholar
  27. 27.
    Mullins, L. J. Some physical mechanisms in narcosis. Chem. Rev. 54: 289, 1954.CrossRefGoogle Scholar
  28. 28.
    Mullins, L. J. The Structure of Nerve Cell Membranes, Molecular Structure and Functional Activity of Nerve Cells. Pub. 1, American Institute of Biological Sciences, 1956, p. 123.Google Scholar
  29. 29.
    Mullins, L. J. The penetration of cations into muscle. J. Gen. Physiol. 42: 817–829, 1959.PubMedCrossRefGoogle Scholar
  30. 30.
    Mullins, L. J. An analysis of conductance changes in squid axon. J. Gen. Physiol. 42: 1013, 1959.PubMedCrossRefGoogle Scholar
  31. 31.
    Mullins; L. J. The macromolecular properties of excitable membranes. Ann. NY Acad. Sci. 94: 390, 1961.Google Scholar
  32. 32.
    Mullins, L. J., and F. J. Brinley, JR. Potassium fluxes in dialyzed squid axons. J. Gen. Physiol. 53: 704–740, 1969.PubMedCrossRefGoogle Scholar
  33. 33.
    Mullins, L. J., and R. D. Moore. The movement of thallium ions in muscle. J. Gen. Physiol. 43: 759, 1960.PubMedCrossRefGoogle Scholar
  34. 34.
    Mullins, L. J., and J. Requena. The “late” Ca channel in squid axons. J. Gen. Physiol. 78: 683–700, 1981.PubMedCrossRefGoogle Scholar
  35. 35.
    Mullins, L. J., T. Tiffert, G. Vassort, and J. Whittembury. Effects of internal sodium and hydrogen ions and of external calcium ions and membrane potential on calcium entry in squid axons. J. Physiol. Lond. 338: 295–319, 1983.PubMedGoogle Scholar
  36. 36.
    Swenson, R. P., G. S. Oxford, and T. Narahashi. Enhancement of Na channel inactivation by octanol and decanol. Biophys. J. 21: 41a, 1978.Google Scholar

Copyright information

© American Physiological Society 1989

Authors and Affiliations

  • Lorin J. Mullins

There are no affiliations available

Personalised recommendations