Experimental Determination of Membrane Protein Secondary Structure Using Vibrational and CD Spectroscopies

  • Robert W. Williams
Part of the Methods in Physiology Series book series (METHPHYS)


Experimentalists interested in obtaining spectroscopic measurements of membrane protein secondary structure must keep in mind one general critical issue: the measurements must be reliable and specific enough to help distinguish between competing models of structure or function. An example of how this issue plays itself out can be seen in a series of papers beginning with that of Jap et al. (1983), in which it was proposed that some of the images in the in-plane electron diffraction map of bacteriorhodopsin may be due to transmembrane β-sheets instead of helices. This proposal was supported by circular dichroism (CD) and infrared (IR) measurements of secondary structures. The calculated helix content was only about 50%, and β-sheet content was about 20%. The investigators carefully corrected for differential light scattering in their CD measurements, but (according to subsequent studies) did not correct for absorption flattening effects. IR spectra were clearly not consistent with the hypothesis that the protein was 80% helix. The amide I maximum was at about 1,686 cm−1, while an 80% helical protein should have an amide I maximum at about 1,652 cm−1. Other CD results by Wallace and Mao (1984) that corrected for the absorption flattening effects did not support the β-sheet hypothesis. Their calculated helix content was about 80%. However, this calculation included a normalization of the results to correct for what was assumed to be an inaccurate determination of protein concentration. The data upon which it was based was actually similar to those obtained by Jap et al. (1983). Glaeser and Jap (1985) subsequently made a convincing argument that the normalization procedure was not valid. Nevertheless, in the face of recent evidence, Glaeser et al. (1991) subsequently acknowledged that all of the transmembrane segments are clearly helical and that their β-sheet hypothesis was wrong.


Secondary Structure Circular Dichroism Circular Dichroism Spectrum Difference Spectrum Protein Secondary Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bazzi, M., and Woody, R. W. (1985) Oriented secondary structure in integral membrane proteins. Biophys. J. 48: 957–966.PubMedCrossRefGoogle Scholar
  2. Berjot, M., Marx, J., and Alix, A.J.P. (1987) The determination of the secondary structure of proteins from the Raman amide I band: the reference intensity profiles method. J. Raman Spec. 18: 289–300.CrossRefGoogle Scholar
  3. Bolotina, I. A., Chekhov, V. O., Lugauskas, V. Y., and Ptitsyn, O. B. (1980) Determination of the secondary structure of proteins from the circular dichroism spectra. II. Consideration of the contribution of 0-bends. Mol. Biol. (Mosc.) 14: 709–715.Google Scholar
  4. Bolotina, I. A., Chekhov, V. O., Lugauskas, V. Y., and Ptitsyn, O. B. (1981) Determination of the secondary structure of proteins from the circular dichroism spectra. III. Protein-derived reference spectra for antiparallel and parallel 0-structures. Mol. Biol. (Mosc.) 15: 130–137.Google Scholar
  5. Brahms, S., and Brahms, J. (1980) Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. J. Mol. Biol. 138: 149–178.PubMedCrossRefGoogle Scholar
  6. Braiman, M. S., Mogi, T., Marti, T., Stern, L. J., Hackett, N. R., Chao, B. H,. Khorana, H. G., and Rothschild, K. J. (1988a) Vibrational spectroscopy of bacteriorhodopsin mutants: I. Tyrosine-185 protonates and deprotonates during the photocycle. Proteins Struct. Funct. Genet. 3: 219–229.CrossRefGoogle Scholar
  7. Braiman, M. S., Mogi, T., Marti, T., Stern, L. J., Khorana, H. G., and Rothschild, K. J. (1988b) Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven protein transport involves protonation changes of aspartic acid residues 85, 96, and 212. Biochemistry 27: 8516–8520.PubMedCrossRefGoogle Scholar
  8. Braiman, M. S. and Rothschild, K. J. (1988) Fourier transform infrared techniques for probing membrane protein structure. Annu. Rev. Biophys. Biophys. Chem. 17: 541–570.PubMedCrossRefGoogle Scholar
  9. Bussian, B. M., and Sander, C. (1989) How to determine protein secondary structure in solution by Raman spectroscopy: practical guide and test case DNase I. Biochemistry 28: 4271–4277.CrossRefGoogle Scholar
  10. Byler, M., and Susi, H. (1986) Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25: 469–487.PubMedCrossRefGoogle Scholar
  11. Cascio, M., Gogol, E., and Wallace, B. A. (1990) The secondary structure of gap junctions. J. Biol. Chem. 265: 2358–2364.PubMedGoogle Scholar
  12. Chang, C. T., Wu, C. S., and Yang, J. T. (1978) Circular dichroic analysis of protein conformation: inclusion of the ß-turns. Anal. Biochem. 92: 13–31.CrossRefGoogle Scholar
  13. Chirgadze, Y. N., Shestopalov, B. V., and Venyaminov, S. Y. (1973) Intensities and other spectral parameters of infrared amide bands of polypeptides in the ß-and random forms. Biopolymers 12: 1337 1351.Google Scholar
  14. Chirgadze, Y. N., and Brazhnikov, E. V. (1974) Intensities and other spectral parameters of infrared amide bands of polypeptides in the a-helical form. Biopolymers 13: 1701–1712.PubMedCrossRefGoogle Scholar
  15. Compton, L. A., and Johnson, W. C. Jr. (1986) Analysis of protein circular dichroism spectra for secondary structure using a simple matrix multiplication. Anal. Biochem. 155: 155–167.PubMedCrossRefGoogle Scholar
  16. Dailey, H. A., and Strittmatter, P. (1978) Structural and functional properties of the membrane binding segment of cytochrome 6 5. J. Biol. Chem. 253: 8203–8209.PubMedGoogle Scholar
  17. Dong, A., Huang, P., and Caughey, W. S. (1990) Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry 29: 3303–3308.PubMedCrossRefGoogle Scholar
  18. Dousseau, F., and Pézolet, M. (1990) Determination of the secondary structure content of proteins in aqueous solutions from their amide I and amide II infrared bands. Comparison between classical and partial least-squares methods. Biochemistry 29: 8771–8779.PubMedCrossRefGoogle Scholar
  19. Draheim, J. E., Gibson, N. J., and Cassim, J. Y. (1991) Dramatic in situ conformational dynamics of the transmembrane protein bacteriorhodopsin. Biophys. J. 60: 89–100.PubMedCrossRefGoogle Scholar
  20. Dunker, A. K., Fodor, S., and Williams, R. W. (1982) Lipid dependent structural changes of an amphomorphic membrane protein. Biophys. J. 37: 201–203.PubMedCrossRefGoogle Scholar
  21. Eisele, J. L., and Rosenbusch, J. P. (1990) In vitro folding and oligomerization of a membrane protein. J. Biol. Chem. 265: 10217–10220.PubMedGoogle Scholar
  22. Eckert, K., Grosse, R., Malur, J., and Repke, K.R.H. (1977) Calculation and use of protein-derived conformation related spectra for the estimate of the secondary structure of proteins from their infrared spectra. Biopolymers 16: 2549–2563.PubMedCrossRefGoogle Scholar
  23. Earnest, T. N., Herzfeld, J., and Rothschild, K. J. (1990) Polarized FTIR of bacteriorhodopsin: transmembrane a-helices are resistant to hydrogen-deuterium exchange. Biophys. J. 58: 1539–1546.PubMedCrossRefGoogle Scholar
  24. Fodor, S.P.A., Dunker, A. K., Ng, Y. C., Carsten, D., and Williams, R. W. (1981) Lipid-tail group dependent structure of the fd gene 8 protein. In: Bacteriophage Assembly. New York: Alan R. Liss, Inc., pp. 441–455.Google Scholar
  25. Fogarasi, G., and Pulay, P. (1985) Ab initio calculation of force fields and vibrational spectra. In: Vibrational Spectra and Structure: a Series of Advances, edited by J. R. Durig. New York: Elsevier, vol. 14, pp. 125–219.Google Scholar
  26. Fong, T. M., and McNamee, M. G. (1987) Stabilization of acetylcholine receptor secondary structure by cholesterol and negatively charged phospholipids in membranes. Biochemistry 26: 38713880.Google Scholar
  27. Frisch, M. J., Head-Gordon, M., Schlegel, H. B. Raghavachari, K., Binkley, J. S., Gonzalez, C., Defrees, D. J., Fox, D. J., Whiteside, R. A., Seeger, R. C., Melius, F., Baker, J., Martin, R. L., Kahn, L. R., Stewart, J.J.P., Fluder, E. M., Topiol, S., and Pople, J. A. (1989) Gaussian 90. Pittsburgh: Gaussian, Inc.Google Scholar
  28. Glaeser, R. M., Downing, K. H., and Jap, B. K. (1991) What spectroscopy can still tell us about the secondary structure of bacteriorhodopsin. Biophys. J. 59: 934–938.PubMedCrossRefGoogle Scholar
  29. Glaeser, R. M., and Jap, B. K. (1985) Absorption flattening in the circular dichroism spectra of small membrane fragments. Biochemistry 24: 6398–6401.PubMedCrossRefGoogle Scholar
  30. Goormaghtigh, E., Cabiaux, V., and Ruysschaert, J. M. (1990) Secondary structure and dosage of soluble and membrane proteins by attenuated total reflection Fourier-transform infrared spectroscopy on hydrated films. Eur. J. Biochem. 193: 409–420.PubMedCrossRefGoogle Scholar
  31. Grosse, R., Malur, J., and Repke, K.R.H. (1972) Determination of secondary structures in isolated or membrane proteins by computer curve-fitting analysis of infrared and circular dichroic spectra. FEBS Lett. 25: 313–315.PubMedCrossRefGoogle Scholar
  32. Han, S., Ching, Y., Hammes, S. L., and Rousseau, D. L. (1991) Vibrational structure of the formyl group on heme A. Biophys. J. 60: 45–52.PubMedCrossRefGoogle Scholar
  33. He, W.-Z., Newell, W. R., Haris, P. I., Chapman, D. and Barber, J. (1991) Protein secondary structure of the isolated photosystem II reaction center and conformational changes studied by Fourier transform infrared spectroscopy. Biochemistry 30: 4552–4559.PubMedCrossRefGoogle Scholar
  34. Hennessey, J. P., Jr., and Johnson, W. C., Jr. (1981) Information content in the circular dichroism of proteins. Biochemistry 20: 1085–1094.PubMedCrossRefGoogle Scholar
  35. Hennessey, J. P., Jr., and Johnson, W. C., Jr. (1982) Experimental errors and their effect on analyzing circular dichroism spectra of proteins. Anal. Biochem. 125: 177–188.PubMedCrossRefGoogle Scholar
  36. Herzyk, E., Owen, J. S., and Chapman, D. (1988) The secondary structure of apolipoproteins in human HDL3 particles after chemical modification of their tyrosine, lysine, cysteine or arginine residues. A Fourier transform infrared spectroscopy study. Biochim. Biophys. Acta 962: 131–142.PubMedCrossRefGoogle Scholar
  37. Heyn, M. P. (1989) Circular dichroism for determining secondary structure and state of aggregation of membrane proteins. Methods Enzymol. 172: 575–584.PubMedCrossRefGoogle Scholar
  38. Horwitz, J., and Bok, D. (1987) Conformational properties of the main intrinsic polypeptide (MIP26) isolated from lens plasma membranes. Biochemistry 26: 8092–8098.PubMedCrossRefGoogle Scholar
  39. Hunt, J. F., Earnest, T. N., Bousche, O., Engelman, D. M., and Rothschild, K. J. (1993) The origin of the anomalous amide I vibrational frequency of purple membrane. Biophys. J. 64: A293.Google Scholar
  40. Jap, B. K., Maestre, M. F., Hayward, S. B., and Glaeser, R. M. (1983) Peptide-chain secondary structure of bacteriorhodopsin. Biophys. J. 43: 81–89.PubMedCrossRefGoogle Scholar
  41. Kahan, I., Epand, R. M., and Moscarello, M. A. (1988) The secondary structure of a membrane-embedded peptide from the carboxy terminus of lipophilin as revealed by circular dichroism. Biochim. Biophys. Acta 952: 230–237.PubMedCrossRefGoogle Scholar
  42. Kalnin, N. N., Baikalov, I. A., and Venyaminov, S. Y. (1990) Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. III. Estimation of the protein secondary structure. Bio-polymers 30: 1273–1280.Google Scholar
  43. Khan, M. Y., Villanueva, G., and Newman, S. A. (1989) On the origin of the positive band in the farultraviolet circular dichroic spectrum of fibronectin. J. Biol. Chem. 264: 2139–2142.PubMedGoogle Scholar
  44. Kleffel, B., Garavito, R. M., and Baumeister, W. (1985) Secondary structure of a channel-forming protein: porin from E. coli outer membranes. EMBO J. 4: 1589–1592.PubMedGoogle Scholar
  45. Krimm, S., and Bandekar, J. (1986) Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. in Ada. Protein Chem. 38: 183–364.Google Scholar
  46. Krimm, S., and Dwivedi, A. M. (1982) Infrared spectrum of the purple membrane: clue to a proton conduction mechanism? Science 216: 407–408.PubMedCrossRefGoogle Scholar
  47. Lawson, C. L., and Hanson, F. J. (1974) Solving Least Squares Problems. Englewood Cliffs, NJ: Prentice-Hall, Inc.Google Scholar
  48. Lee, D. C., Haris, P. I., Chapman, D., and Mitchell, R. C. (1990) Determination of protein secondary structure using factor analysis of infrared spectra. Biochemistry 29: 9185–9193.PubMedCrossRefGoogle Scholar
  49. Levitt, M., and Greer, J. (1977) Automatic identification of secondary structure in globular proteins. J. Mol. Biol. 114: 181–293.PubMedCrossRefGoogle Scholar
  50. Lippert, J. L., Tyminski, D., and Desmeules, P. J. (1976) Determination of the secondary structure of proteins by laser Raman spectroscopy. J. Am. Chem. Soc. 98: 7075–7080.PubMedCrossRefGoogle Scholar
  51. Manavalan, P., and Johnson, W. C. Jr. (1987) Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Anal. Biochem. 167: 76–85.PubMedCrossRefGoogle Scholar
  52. Mao, D., and Wallace, B. A. (1984) Differential light scattering and absorption flattening optical effects are minimal in the circular dichroism spectra of small unilamellar vesicles. Biochemistry 23: 2667 2673.Google Scholar
  53. Mao, D., Wachter, E., and Wallace, B. A. (1982) Folding of the mitochondrial proton adenosinetriphos-phatase proteolipid channel in phospholipid vesicles. Biochemistry 21: 4960–4968.PubMedCrossRefGoogle Scholar
  54. Mielke, D. L., and Wallace, B. A. (1988) Secondary structural analyses of the nicotinic acetylcholine receptor as a test of molecular models. J. Biol. Chem. 263: 3177–3182.PubMedGoogle Scholar
  55. Mims, M. P., Soma, M. R., and Morrisett, J. D. (1990) Effect of particle size and temperature on the conformation and physiological behavior of apolipoprotein E bound to model lipoprotein particles. Biochemistry 29: 6639–6647.Google Scholar
  56. Mitchell, R. C., Haris, P. I., Fallowfield, C., Keeling, D. J., and Chapman, D. (1988) Fourier transform infrared spectroscopic studies on gastric H+/K+-ATPase. Biochim. Biophys. Acta 941: 31–38.PubMedCrossRefGoogle Scholar
  57. Nabedryk, E., Garavito, R. M., and Breton, J. (1988) The orientation of 0-sheets in porin. A polarized Fourier transform infrared spectroscopic investigation. Biophys. J. 53: 671–676.PubMedCrossRefGoogle Scholar
  58. Palmö, K., Pietilä, L.-O, and Krimm, S. (1991) Construction of molecular mechanics energy functions by mathematical transformation of ab initio force fields and structures. J. Comp. Chem. 12: 385–390.CrossRefGoogle Scholar
  59. Pemberton, J. E., Sobocinski, R. L., Bryant, M. A., and Carter, D. A. (1990) Raman spectroscopy using charge-coupled device detection. Spectroscopy 5: 26–36.Google Scholar
  60. Peterson, G. L. (1977) A simplification of the protein assay method of Lowry et al which is more generally applicable. Anal. Biochem. 83: 346–356.PubMedCrossRefGoogle Scholar
  61. Pézolet, M., Pigeon-Gosselin, M., and Coulombe, L. (1976) Laser Raman investigation of the conformation of human immunoglobulin G. Biochim. Biophys. Acta 453: 502–512.PubMedCrossRefGoogle Scholar
  62. Provencher, S. W., and Glöckner, J. (1981) Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20: 33–37.PubMedCrossRefGoogle Scholar
  63. Rath, P., Bousché, O., Merril, A. R., Cramer, W. A., and Rothschild, K. J. (1991) Fourier transform infrared evidence for a predominantly alpha-helical structure of the membrane bound channel forming COOH-terminal peptide of colicin EI. Biophys. J. 59: 516–522.PubMedCrossRefGoogle Scholar
  64. Reich, C., Maestre, M. F., Edmondson, S., and Gray, D. M. (1980) Circular dichroism and fluorescence-detected circular dichroism of deoxyribonucleic acid and poly[d(A — C) d(G — T)] in ethanolic solutions: a new method for estimating circular intensity differential scattering. Biochemistry 19: 5208–5213.PubMedCrossRefGoogle Scholar
  65. Rial, E., Muga, A., Valpuesta, J. M., Arrondo, J.L.R., and Goni, F. M. (1990) Infrared spectroscopic studies of detergent-solubilized uncoupling protein from brown-adipose-tissue mitochondria. Eur. J. Biochem. 188: 83–89.PubMedCrossRefGoogle Scholar
  66. Rodriguez-Vico, R., Martinez-Cayuela, M., Garcia-Peregrin, E., and Ramirez, H. (1989) A procedure for eliminating interferences in the Lowry method of protein determination. Anal. Biochem. 183: 275–278.PubMedCrossRefGoogle Scholar
  67. Rolka, K., Erne, D., and Schwyzer, R. (1986) Membrane structure of substance P II. Secondary structure of substance P, [9-leucine]substance P, and shorter segments in 2,2,2-trifluoroethanol, methanol, and on liposomes studied by circular dichroism. Hela. Chim. Acta 69: 1798–1806.CrossRefGoogle Scholar
  68. Sarver Jr., R. W., and Krueger, W. C. (1991) Protein secondary structure from Fourier transform infrared spectroscopy: a data base analysis. Anal. Biochem. 194: 89–100.PubMedCrossRefGoogle Scholar
  69. Surewicz, W. K., and Mantsch, H. H. (1988) New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochim. Biophys. Acta 952: 115–130.PubMedCrossRefGoogle Scholar
  70. Surewicz, W. K., Moscarello, M. A., and Mantsch, H. H. (1987) Fourier transform infrared spectroscopic investigation of the interaction between myelin basic protein and dimyristoylphosphatidylglycerol bilayers. Biochemistry 26: 3881–3886.PubMedCrossRefGoogle Scholar
  71. Susi, H., and Byler, M. (1983) Protein structure by Fourier transform infrared spectroscopy: second derivative spectra. Biochem. Biophys. Res. Commun. 115: 391–397.PubMedCrossRefGoogle Scholar
  72. Susi, H., and Byler, M. (1986) Resolution-enhanced Fourier transform infrared spectroscopy of enzymes. Methods Enzymol. 130: 290–311.PubMedCrossRefGoogle Scholar
  73. Susi, H., and Byler, M. (1987) Fourier transform infrared study of proteins with parallel ß-chains. Arch. Biochem. Biophys. 258: 465–469.PubMedCrossRefGoogle Scholar
  74. Susi, H., and Byler, M. (1988) Fourier deconvolution of the amide I Raman band of proteins as related to conformation. Appl. Spec. 42: 819–826.CrossRefGoogle Scholar
  75. Thomas, G. J., Jr., and Agard, D. A. (1984) Quantitative analysis of nucleic acids, proteins, and viruses by Raman band deconvolution. Biophys. J. 46: 763–768.PubMedCrossRefGoogle Scholar
  76. Tinoco, I., Jr., Maestre, M. F., and Bustamante, C. (1983) Circular dichroism in samples which scatter light. Trends Biochem. Sci. 8: 41–44.CrossRefGoogle Scholar
  77. Torii, H., and Tasumi, M. (1992) Model calculations on the amide-I infrared bands of globular proteins. J. Chem. Phys. 96: 3379–3387.CrossRefGoogle Scholar
  78. van Stokkum, I.H.M., Spoelder, H.J.W., Bloemendal, M., van Grondelle, R., and Groen, F.C.A. (1990) Estimation of protein secondary structure and error analysis from circular dichroism spectra. Anal. Biochem. 191: 110–118.PubMedCrossRefGoogle Scholar
  79. Venyaminov, S. Y., Baikalov, I. A., Wu, C.-S.C., and Yang, J. T. (1991) Some problems of CD analyses of protein conformation. Anal. Biochem. 198: 250–255.PubMedCrossRefGoogle Scholar
  80. Venyaminov, S. Y., and Kalnin, N. N. (1990a) Quantitative IR spectrophotometry of peptide compounds in water (H20) solutions. I. Spectral parameters of amino acid residue absorption bands. Bio-polymers 30: 1243–1257.Google Scholar
  81. Venyaminov, S. Y., and Kalnin, N. N. (1990b) Quantitative IR spectrophotometry of peptide compounds in water (H20) solutions. II. Amide absorption bands of polypeptides and fibrous proteins in alpha-, beta-, and random coil conformations. Biopolymers 30: 1259–1271.PubMedCrossRefGoogle Scholar
  82. Vogel, H., and Jähnig, F. (1986a) Models for the structure of outer-membrane proteins of Esche chia coli derived from Raman spectroscopy and prediction methods. J. Mol. Biol. 190: 191–199.PubMedCrossRefGoogle Scholar
  83. Vogel, H., and Jähnig, F. (1986b) The structure of mellitin in membranes. Biophys. J. 50: 573–582.PubMedCrossRefGoogle Scholar
  84. Vogel, H., Wright, J. K., and Jähnig, F. (1985) The structure of the lactose permease derived from Raman spectroscopy and prediction methods. EMBO J. 4: 3625–3631.PubMedGoogle Scholar
  85. Wallace, B. A., and Mao, D. (1984) Circular dichroism analyses of membrane proteins: an examination of differential light scattering and absorption flattening effects in large membrane vesicles and membrane sheets. Anal. Biochem. 142: 317–328.PubMedCrossRefGoogle Scholar
  86. Weaver, J., and Williams, R. W. (1990) Amide III frequencies for Ala-X peptides depend on the X amino acid size. Biopolymers 30: 593–598.PubMedCrossRefGoogle Scholar
  87. Werner, P. K., and Reithmeier, R.A.F. (1985) Molecular characterization of the human erythrocyte anion transport protein in octyl glucoside. Biochemistry 24: 6375–6381.PubMedCrossRefGoogle Scholar
  88. Williams, R. W., Cutrera, T., Dunker, A. K., and Peticolas, W. L. (1980a) The estimation of protein secondary structure by laser Raman spectroscopy from the amide III intensity distribution. FEBS Lett. 115: 306–308.PubMedCrossRefGoogle Scholar
  89. Williams, R. W., Dunker, A. K., and Peticolas, W. L. (19806) A new method for determining protein secondary structure by laser Raman spectroscopy applied to fd phage. Biophys. J. 32: 232–234.Google Scholar
  90. Williams, R. W., and Dunker, A. K. (1981) Determination of the secondary structure of proteins from the amide I band of the laser Raman spectrum. J. Mol. Biol. 152: 783–813.PubMedCrossRefGoogle Scholar
  91. Williams, R. W. (1983) Estimation of protein secondary structure from the laser Raman amide I spectrum. J. Mol. Biol. 166: 581–603.PubMedCrossRefGoogle Scholar
  92. Williams, R. W. (1986) Protein secondary structure analysis using Raman amide I and amide III spectra. Methods Enzymol. 130: 311–331.PubMedCrossRefGoogle Scholar
  93. Williams, R. W., Lowrey, A. H., and Weaver, J. (1990) Relation between calculated amide frequencies and solution structure in Ala-X peptides. Biopolymers 30: 599–608.PubMedCrossRefGoogle Scholar
  94. Williams, R. W., McIntyre, J. O., Gaber, B. P., and Fleischer, S. (1986) The secondary structure of calcium pump protein in light sarcoplasmic reticulum and reconstituted in a single lipid component as determined by Raman spectroscopy. J. Biol. Chem. 261: 14520–14524.PubMedGoogle Scholar
  95. Williams, R. W., and Weaver, J. (1990) Secondary structure of substance P bound to liposomes, in organic solvents, and in solution from Raman and CD spectroscopy. J. Biol. Chem. 265: 2505–2513.PubMedGoogle Scholar
  96. Williams, R. W., Starman, R., Taylor, K.M.P., Gable, K., Beeler, T. Zasloff, M., and Covell, D. (1990) Raman spectroscopy of synthetic antimicrobial frog peptides magainin 2a and PGLa. Biochemistry 29: 4490–4496.PubMedCrossRefGoogle Scholar
  97. Wu, C.-S.C., and Chen, G. C. (1989) Adsorption of proteins onto glass surfaces and its effect on the intensity of circular dichroism spectra. Anal. Biochem. 177: 178–182.PubMedCrossRefGoogle Scholar
  98. Wu, J. R., and Lentz, B. R. (1991) Fourier transform infrared spectroscopic study of Cat+ and membrane-induced secondary structural changes in bovine prothrombin fragment 1. Biophys. J. 60: 70–80.PubMedCrossRefGoogle Scholar
  99. Yager, P., Chang, E. L., Williams, R. W., and Dalziel, A. W. (1984) The secondary structure of acetylcholine receptor reconstituted in a single lipid component as determined by Raman spectroscopy. Biophys. J. 45: 26–28.PubMedCrossRefGoogle Scholar
  100. Yang, J. T., Wu, C.S.C., and Martinez, H. M. (1986) Calculation of protein conformation from circulation dichroism. Methods Enzymol. 130: 208–269.PubMedCrossRefGoogle Scholar
  101. Yu, N.-T. (1977) Raman spectroscopy: a conformational probe in biochemistry. CRC Crit. Rev. Biochem. 4: 229–280.PubMedCrossRefGoogle Scholar

Copyright information

© American Physiological Society 1994

Authors and Affiliations

  • Robert W. Williams

There are no affiliations available

Personalised recommendations