Skip to main content

Diffraction Studies of Model and Natural Helical Peptides

  • Chapter
Membrane Protein Structure

Part of the book series: Methods in Physiology Series ((METHPHYS))

Abstract

The discovery of naturally occurring peptides that form voltage-gated ion channels in bilayer membranes has provided an impetus for the study of structural characteristics of this class of peptides (Mueller and Rudin, 1968; Mathew and Balaram, 1983). The relative difficulty of obtaining crystals of the natural peptides and determining their structure has led to the synthesis of many apolar peptides that are fragments or analogs of the natural peptides. The naturally occurring peptides contain a number of a-aminoisobutyric acid (Aib) residues, (Fig. 16.1) which have proven to be strong helix formers (Marshall and Bosshard, 1972; Burgess and Leach, 1973; Balaram, 1984). A review of crystal structures of small linear peptides, containing up to five residues including at least one Aib residue, demonstrated that 28 out of 29 structures have an incipient 310-helix (Toniolo et al., 1983). Thirty-three crystal structures of 7–16 residue apolar peptides containing one or more Aib residues have shown completely helical conformations with a 310-helix, an α-helix, or a mixed 310/ α-helix, depending mostly upon the length of the peptide and the number of Aib residues (Karle and Balaram, 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Argoudelis, A. D., and Johnson, L. E. (1974) Emerimicins II, III and IV, produced by Emericellopsis microspora in media supplemented with trans-4-n-propyl-L-proline. J. Antibiot. 27: 274–282.

    Article  PubMed  CAS  Google Scholar 

  • Balaram, P. (1984) Peptides as bioorganic models. Proc. Indian Acad. Sci. 93: 703–717.

    CAS  Google Scholar 

  • Balaram, P., Krishna, K., Sukumar, M., Mellor, I. R., and Sansom, M.S.P. (1992) The properties of ion channels formed by zervamicins. Eur. Biophys. J. 21: 117–128.

    Article  PubMed  CAS  Google Scholar 

  • Ballesteros, J. A., and Weinstein, H. (1992) The role of Pro/Hyp-kinks in determining the transmembrane helix length and gating mechanism of a [Leu]zervamicin channel. Biophys. Discussions (submitted).

    Google Scholar 

  • Brunger, A. T., Kuriyan, J., and Karplus, M. (1987) Crystallographic R factor refinement by molecular dynamics. Science 235: 458–460.

    Article  PubMed  CAS  Google Scholar 

  • Brunger, A. T. (1988) Crystallographic refinement by simulated annealing. J. Mol. Biol. 203: 803–816. Burgess, A. W., and Leach, S. J. (1973) An obligatory a-helical amino acid residue. Biopolymers 12: 2599–2605.

    Google Scholar 

  • Butters, T., Hutter, P., Jung, G., Pauls, N., Schmitt, H., Sheldrick, G. M., and Winter, W. (1981) On the structure of the helical N-terminus in alamethicin: a-helix or 310-helix? Angew. Chem. Int. Ed. Engl. 20: 889–890.

    Article  Google Scholar 

  • Cerrini, S., Lamba, D., Scatturin, A., and Ughetto, G. (1989) The crystal and molecular structure of the a-helical nonapeptide antibiotic leucinostatin A. Biopolymers 28: 409–420.

    Article  PubMed  CAS  Google Scholar 

  • Chou, P. Y., and Fasman, G. D. (1974) Prediction of protein conformation. Biochemistry 13: 222–245. Fox, R. O., and Richards, F. M. (1982) A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5 A resolution. Nature 300: 325–330.

    Google Scholar 

  • Francis, A. K., Iqbal, M., Balaram, P., and Vijayan, M. (1983). The crystal structure of a 310 helical decapeptide containing a-aminoisobutyric acid. FEBS Lett. 155: 230–232.

    Article  CAS  Google Scholar 

  • Furois-Corbin, S., and Pullman, A. (1987) Theoretical study of potential ion-channels formed by a bundle of a-helices: effect of the presence of polar residues along the channel inner wall. J. Biocool. Struct. Dyn. 4: 589–597.

    Article  CAS  Google Scholar 

  • Gilson, M. K., and Honig, B. (1989) Destabilization of an a-helix-bundle protein by helix dipoles. Proc. Natl. Acad. Sci. USA 86: 1524–1528.

    Article  PubMed  CAS  Google Scholar 

  • Hall, J. E., Vodyanoy, I., Balasubramanian,T. M., and Marshall, G. R. (1984) Alamethicin: a rich model for channel behavior. Biophys. J. 45: 233–247.

    CAS  Google Scholar 

  • Hendrickson, W. A., and Konnert, J. H. (1980) Incorporation of stereochemical information into crystallographic refinement. In:Computing in Crystallography, edited by R. Diamond, S. Ramaseshan, and K. Venkatesan. Bangalore, India: Indian Academy of Sciences, p. 9–13.

    Google Scholar 

  • Hendrickson, W. A. (1985) Stereochemically restrained refinement of macromolecular structures. Methods Enzymol. 115: 252–270.

    Article  PubMed  CAS  Google Scholar 

  • Hol, W.G.J., Halie, L. M., and Sander, C. (1981) Dipoles of the a-helix and ß-sheet. Their role in protein folding. Nature 294: 532–536.

    Article  PubMed  CAS  Google Scholar 

  • Hynes, T. R., and Fox, R. O. (1991) The crystal structure of staphylococcal nuclease refined at 1.7 A resolution. Prot. Struct. Funct. Genet. 10: 92–105.

    Article  CAS  Google Scholar 

  • Karle, I. L., Flippen-Anderson, J. L., Sukumar, M., and Balaram, P. (1987) Conformation of a 16-residue zervamicin IIA analog peptide containing three different structural features: 310-helix, alpha helix and ß-bend ribbon. Proc. Natl. Acad. Sci. USA 84: 5087–5091.

    Article  PubMed  CAS  Google Scholar 

  • Karle, I. L., Flippen-Anderson, J. L., Sukumar, M., and Balaram, P. (1988a) Monoclinic polymorph of Boc-Trp-Ile-Ala-Aib-Ile-Val-Aib-Leu-Aib-Pro-OMe(anhydrous). Int. J. Peptide Prot. Res. 31: 567–576.

    Article  CAS  Google Scholar 

  • Karle, I. L., Flippen-Anderson, J. L., Uma, K., and Balaram, P. (1988b) Aqueous channels within apolar peptide aggregates: solvated helix of the a-aminoisobutyric acid (Aib)-containing peptide Boc(Aib-Ala-Leu)3-Aib-OMe 2H2O CH3OH in crystals. Proc. Natl. Acad. Sci. USA 85: 299303.

    Google Scholar 

  • Karle, I. L., Flippen-Anderson, J. L., Uma, K., and Balaram, H., and Balaram, P. (1989a) a-Helix and mixed 310/a-helix in cocrystallized conformers of Boc-Aib-Val-Aib-Aib-Val-Val-Val-Aib-ValAib-OMe. Proc. Natl. Acad. Sci. USA 86: 765–769.

    Google Scholar 

  • Karle, I. L., Flippen-Anderson, J. L., Uma, K., and Balaram, P. (1989b) Solvated helical backbones: x-ray diffraction study of Boc-Ala-Leu-Aib-Ala-Leu-Aib-OMe H2O. Biopolymers 28: 773–781.

    Article  PubMed  CAS  Google Scholar 

  • Karle, I. L., and Balaram, P. (1990) Structural characteristics of a-helical peptide molecules containing Aib residues. Biochemistry 29: 6747–6756.

    Article  PubMed  CAS  Google Scholar 

  • Karle, I. L., Flippen-Anderson, J. L., Urna, K., and Balaram, P. (1990a) Apolar peptide models for conformational heterogeneity, hydration and packing of polypeptide helices: crystal structure of heptaand octa-peptides containing a-aminoisobutyric acid. Prot. Struct. Funct. Genet. 7: 62–73.

    Article  CAS  Google Scholar 

  • Karle, I. L., Flippen-Anderson, J. L., Sukumar, M., and Balaram, P. (1990b) Parallel and antiparallel aggregation of a-helices. Crystal structures of two apolar decapeptides X-Trp-Ile-Ala-Aib-IleVal-Aib-Leu-Aib-Pro-OMe (X = Boc,Ac). Int. J. Peptide Prot. Res. 35: 518–526.

    Article  CAS  Google Scholar 

  • Karle, I. L., Flippen-Anderson, J. L., Urna, K., and Balaram, P. (1990c) Helix aggregation in peptide crystals: occurrence of either all parallel or antiparallel packing motifs for a-helices in polymorphs of Boc-Aib-Ala-Leu-Ala-Leu-Aib-Leu-Ala-Leu-Aib-OMe. Biopolymers 29: 1835–1845.

    Article  PubMed  CAS  Google Scholar 

  • Karle, I. L., Flippen-Anderson, J. L., Urna, K., Sukumar, M., and Balaram, P. (1990d) Modular design of synthetic protein mimics. Crystal structures, assembly, and hydration of two 15- and 16-residue apolar, leucyl-rich helical peptides. J. Am. Chem. Soc. 112: 9350–9356.

    Article  CAS  Google Scholar 

  • Karle, I. L., Flippen-Anderson, J. L., Agarwalla, S., and Balaram, P. (1991a) Crystal structure of Leuzervamicin, a membrane ion channel peptide. Implications for gating mechanisms. Proc. Natl. Acad. Sci. USA 88: 5307–5311.

    Article  PubMed  CAS  Google Scholar 

  • Karle, I. L., Flippen-Anderson, J. L., Sukumar, M., Uma, K., and Balaram, P. (1991b) Modular design of synthetic protein mimics. Crystal structure of two seven-residue helical peptide segments linked by 5-aminocaproic acid. J. Am. Chem. Soc. 113: 3952–3956.

    Article  CAS  Google Scholar 

  • Karle, I. L., Flippen-Anderson, J. L., Sukumar, M., and Balaram, P. (1992a) Helix packing of leucine-rich peptides: a parallel leucine ladder in the structure of Boc-Aib-Leu-Aib-Aib-Leu-Leu-LeuAib-Leu-Aib-OMe. Prot. Struct. Funct. Genet. 12: 324–330.

    Article  CAS  Google Scholar 

  • Karle, I. L., Flippen-Anderson, J. L., Sukumar, M., and Balaram, P. (1992b) Differences in hydration and association of helical Boc-Val-Ala-Leu-Aib-Val-Ala-Leu-(Val-Ala-Leu-Aib)2-OMe H2O in two crystalline polymorphs. J. Med. Chem. 35: 3885–3889.

    Article  PubMed  CAS  Google Scholar 

  • Karle, I. L., Flippen-Anderson, J. L., Agarwalla, S., and Balaram, P. (1992e) Implications for an ion channel in Leu-zervamicin: crystal structure of polymorph B. In Structure and Function: Proceedings of the 7th Conversation in Biomolecular Stereodynamics, edited by R. H. Sarma and M. H. Sarma. New York: Adenine Press, vol. 2, p. 97–111.

    Google Scholar 

  • Karle, I. L., Flippen-Anderson, J. L., Uma, K., and Balaram, P. (1993a) Accommodation of a D-Phe residue into a right-handed 3m-helix: structure of Boc-D-Phe-(Aib)4-Gly-L-Leu-(Aib)2-OMe, an anlogue to the amino terminal segment of antiamoebins and emerimicins. Biopolymers 33: 401407.

    Google Scholar 

  • Karle, I. L., Flippen-Anderson, J. L., Uma, K., and Balaram, P. (1993b) Unfolding of an a-helix in peptide crystals by solvation: conformational fragility in a heptapeptide. Biopolymers 33: 827–837.

    Article  PubMed  CAS  Google Scholar 

  • Konnert, J. H., Hendrickson, W. A., and Karle, J. (1975) Proceedings of the Third East Coast Protein Crystallography Workshop. Eastover, MA.

    Google Scholar 

  • Marshall, G. R., and Bosshard, H. E. (1972) Angiotensin II. Biologically active conformation. Circ. Res. 30/31(Suppl II): 143–150.

    Google Scholar 

  • Mathew, M. K., and Balaram, P. (1983) Alamethicin and related membrane channel forming polypeptides. Mol. Cell Biochem. 50: 47–64.

    Article  PubMed  CAS  Google Scholar 

  • Menestrina, G., Voges, K.-P., Jung, G., and Boheim, G. (1986) Voltage dependent channel formation by rods of helical polypeptides. J. Membrane Biol. 93: 111–132.

    Article  CAS  Google Scholar 

  • Mueller, P., and Rudin, D. O. (1968) Action potentials induced in bomolecular lipid membranes. Nature 217: 713–719.

    Article  PubMed  CAS  Google Scholar 

  • Okuyama, K, Saga, Y., Nakayama, M., and Narita, M. (1991) Molecular and crystal structures of Aibcontaining oligopeptides Boc-Leu4-Aib-Leu4-OBzl and Boc-(Leu4-Aib)2-OBzl. Biopolymers 31: 975–985.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, B.V.V., and Balaram, P. (1984) The stereochemistry of peptides containing alpha-aminoisobutyric acid. CRC Crit. Rev. Biochem. 16: 307–348.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, J. S. (1981) The anatomy and toxonomy of protein structure. Adv. Prot. Struct. 34: 167–339.

    CAS  Google Scholar 

  • Rinehart, K. L. Jr., Gaudioso, L. A., Moore, M. L., Pandey, R. C., Cook, J. C., Jr., Barber, M., Sedgwick, R. D., Bordoli, R. S., Tyler, A. N., and Green, B. N. (1981) Structures of eleven zervamicin and two emerimicin peptide antibiotics studied by fast atom bombardment mass spectroscopy. J. Am. Chem. Soc. 103: 6517–6520.

    Article  CAS  Google Scholar 

  • Sundaralingam, M., and Sekharudu, Y. C. (1989) Water-inserted a-helical segments implicate reverse turns as folding intermediates. Science 244: 1333–1337.

    Article  PubMed  CAS  Google Scholar 

  • Sansom, M.S.P. (1991) The biophysics of peptide models of ion channels. Prog. Biophys. Mol. Biol. 55: 139–235.

    Article  PubMed  CAS  Google Scholar 

  • Terwilliger, T. C., and Eisenberg, D. (1982): The structure of melittin. II. Interpretation of the structure. J. Biol. Chem. 257: 6016–6022.

    PubMed  CAS  Google Scholar 

  • Toniolo, C., Bonora, G. M., Bavoso, A., Benedetti, E., di Blasio, B., Pavone, V., and Pedone, C. (1983) Preferred conformations of peptides containing a,a-disubstituted a-amino acids. Biopolymers 22: 205–215.

    Article  CAS  Google Scholar 

  • Toniolo, C., Crisma, M., Sonora, G. M., Benedetti, E., di Blasio, B., Pavone, V., Pedone, C., and Santini, A. (1991) Preferred conformation of the terminally blocked (Aib)io homo-oligopeptide: a long regular 310-helix. Biopolymers 31: 129–138.

    Article  CAS  Google Scholar 

  • Wada, A. (1976) The alpha-helix as an electric macro-dipole. Adv. Biophys. 9: 1–63.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 American Physiological Society

About this chapter

Cite this chapter

Karle, I.L. (1994). Diffraction Studies of Model and Natural Helical Peptides. In: White, S.H. (eds) Membrane Protein Structure. Methods in Physiology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7515-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7515-6_16

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7515-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics