Skip to main content

Membrane Protein Structure: Lessons from Gramicidin

  • Chapter
Membrane Protein Structure

Part of the book series: Methods in Physiology Series ((METHPHYS))

Abstract

Gramicidin is an unusual membrane protein; it has a molecular weight of less than 2,000 daltons and contains D-amino acids, whereas most membrane proteins have molecular weights on the order of 100,000 daltons or more and contain L-amino acids exclusively. This small peptide, however, has the remarkable property of forming well-defined ion channels in lipid bilayer membranes. In fact, it is perhaps the best-characterized of all membrane ion channels. As a result of the many studies on gramicidin channels, a considerable amount of information on the structural and functional aspects of this molecule is available, and this information and the methods used to derive it are generally relevant to the study of other membrane protein structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, O. S. (1984) Gramicidin channels. Annu. Rev., Physiol. 46: 531–548.

    Article  CAS  Google Scholar 

  • Arseniev, A. S., Barsukov, I. L., Bystrov, V. F., Lomize, A. L., and Ovchinnikov, Y. A. (1985) ‘H-NMR study of gramicidin A transmembrane ion channel. FEBS Lett. 186: 168–174.

    Google Scholar 

  • Bamberg, E., Apell, J. H., and Alpes, H. (1977) Structure of the gramicidin A channel: discrimination between the 7r(L,D) and the ß helix by electrical measurements with lipid bilayer membranes. Proc. Natl. Acad. Sci. USA 74: 2402–2406.

    Article  PubMed  CAS  Google Scholar 

  • Bamberg, E., and Benz, R. (1976) Voltage-induced thickness changes of lipid bilayer membranes and the effect of an electric field on gramicidin A channel formation. Biochim. Biophys. Acta 426: 570580.

    Google Scholar 

  • Bamberg, E., and Janko, K. (1977) The action of a carbonsuboxide dimerized gramicidin A on lipid bilayer membranes. Biochim. Biophys. Acta 465: 486–499.

    Article  PubMed  CAS  Google Scholar 

  • Bamberg, E., Noda, K., Gross, E., and Lauger, P. (1976) Single-channel parameters of gramicidin A, B, and C. Biochim. Biophys. Acta 419: 223–228.

    Article  PubMed  CAS  Google Scholar 

  • Bano, M. C., Braco, L., and Abad, C. (1989) HPLC study of the “history” dependence of gramicidin A conformation in phospholipid model membranes. FEBS Lett. 250: 67–71.

    Article  PubMed  CAS  Google Scholar 

  • Bano, M. C., Braco, L., and Abad, C. (1991) Conformational transitions of gramicidin A in phospholipid model membranes. A high-performance liquid chromatography assessment. Biochemistry 30: 886–894.

    Article  PubMed  CAS  Google Scholar 

  • Barrett Russell, E. W., Weiss, L. B., Navetta, F. I., Koeppe, R. E. II and Andersen, 0. S. (1986) Single-channel studies on linear gramicidins with altered amino acid side chains. Effects of altering the polarity of the side chain at position 1 in gramicidin A. Biophys. J. 49: 673–686.

    Article  Google Scholar 

  • Bohg, A., and Ristow, H. (1986) DNA-supercoiling is affected in vitro by the peptide antibiotics tyrocidine and gramicidin. Eur. J. Biochem. 160: 587–591.

    Article  PubMed  CAS  Google Scholar 

  • Boni, L. T., Connolly, A. J., and Kleinfeld, A. M. (1986) Transmembrane distribution of gramicidin by tryptophan energy transfer. Biophys. J. 49: 122–123.

    Article  PubMed  CAS  Google Scholar 

  • Brenneman, M., Chiu, S., and Jakobsson, E. (1991) Computational studies on the side chain conformations of gramicidin A. Biophys. J. 59: 320a.

    Google Scholar 

  • Bystrov, V. F., and Arseniev, A. S. (1988) Diversity of the gramicidin A spatial structure: two-dimensional ‘H NMR study in solution. Tetrahedron 44: 925–940.

    Article  CAS  Google Scholar 

  • Bystrov, V. F., Arseniev, A. S., Barsukov, I. L., Golovanov, A. P., and Maslennikov, I. V. (1990) The structure of the transmembrane channel of gramicidin A: NMR study of its conformational stability and interaction with divalent cations. Gazz. Chim. Ital 120: 485–491.

    CAS  Google Scholar 

  • Chandrasekaran, R., and Prasad, B.V.V. (1978) Conformations of polypeptides containing alternating Lamino and D-amino acids. CRC Crit. Rev. Biochem. 5: 125–161.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, D., Cornell, B. A., Eliasz, A. W., and Perry, A. (1977) Interactions of helical polypeptide segments which span the hydrocarbon region of lipid bilayers. Studies of the gramicidin A lipid-water system. J. Mol. Biol. 113: 517–538.

    Article  PubMed  CAS  Google Scholar 

  • Chiu, S.-W., Jakobsson, E., Subramaniam, S., and McCammon, J. A. (1991). Time-correlation analysis of simulated water motion in flexible and rigid gramicidin channels. Biophys. J. 60: 273–285.

    Article  PubMed  CAS  Google Scholar 

  • Classen, D. C., Larsen, R. A., Burke, J. P., Ailing, D. W., and Stevens, L. E. (1991) Daily meatal care for prevention of catheter-associated bacteriuria: results using frequent applications of polyantibiotic cream. Infect. Control Hosp. Epidemiol. 12: 157–162.

    Article  PubMed  CAS  Google Scholar 

  • Classen, J., Haest, C.W.M., Tournois, H., and Deuticke, B. (1987) Gramicidin-induced enhancement of transbilayer reorientation of lipids in the erythrocyte membrane. Biochemistry 26: 6604–6612.

    Article  PubMed  CAS  Google Scholar 

  • Cornell, B. (1987) Gramicidin A—phospholipid model systems. J. Bioenerg. Biomembràne 19: 655–676.

    Article  PubMed  CAS  Google Scholar 

  • Cornell, B. A., Separovic, F., Baldassi, A. J., and Smith, R. (1988) Conformation and orientation of gram-icidin A in oriented phospholipid bilayers measured by solid state carbon-13 NMR. Biophys. J. 53: 67–76.

    Article  PubMed  CAS  Google Scholar 

  • Davies, M. A., and Mendelsohn, R. (1991) Direct determination of the effect of gramicidin on DPPC conformational disorder by infrared spectroscopy. Biophys. J. 59: 321a.

    Google Scholar 

  • de Kruijff, B., and Killian, J. A. (1987) Gramicidin: a modulator of lipid structure. In: Ion Transport Through Membranes, edited by K. Yagi and B. Pullman., Tokyo: Academic Press, p. 315–340.

    Google Scholar 

  • de Kruijff, B., Killian, J. A., and Tournois, H. (1988) Influence of gramicidin on lipid organization and dynamics in membranes. In Transport Through Membranes: Carriers, Channels, and Pumps, edited by A. Pullman, J. Jortner, and B. Pullman, Dordrecht, Holland: Kluwer, p. 267–287.

    Google Scholar 

  • Deber, C. M., and Behnam, B. A. (1984) Role of membrane lipids in peptide hormone function: binding of enkephalin to micelles. Proc. Natl. Acad. Sci. USA 81: 61–65.

    Article  PubMed  CAS  Google Scholar 

  • Durkin, J. T., and Andersen, 0. S. (1987) Linear gramicidins can form channels that do not have the ß63 structure. Biophys. J. 51: 451a.

    Google Scholar 

  • Durkin, J. T., Koeppe, R. E. II, and Andersen, O. S. (1990) Energetics of gramicidin hybrid channel formation as a test for structural equivalence. Side-chain substitutions in the native sequence. J. Mol. Biol. 211: 221–234.

    Article  PubMed  CAS  Google Scholar 

  • Elliott, J. R., Needham, D., Dilger, J. P., and Haydon, D. A. (1983) The effects of bilayer thickness and tension on gramicidin single-channel lifetime. Biochim. Biophys. Acta 735: 95–103.

    Article  PubMed  CAS  Google Scholar 

  • Engelman, D. M., Adair, B. D., Hunt, J. F., Kahn, T. W. and Popot, J. L. (1989) Protein folding inside membrane bilayers. Biophys. J. 55: 398a.

    Google Scholar 

  • Epand, R. M., Hui, S. W., Argan, C., Gillespie, L. L., and Shore, G. C. (1986) Structural analysis and amphiphilic properties of a chemically synthesized mitochondrial signal peptide. J. Biol. Chem. 261: 10017–10020.

    PubMed  CAS  Google Scholar 

  • Etchebest, C., and Pullman, A. (1988) The gramicidin A channel: left versus right-handed helix: In: Transport Through Membranes: Carriers, Channels, and Pumps, edited by A. Pullman, J. Jortner, and B. Pullman. Dordrecht, Holland: Kluwer, p. 167–185.

    Google Scholar 

  • Fields, C. G., Fields, G. B., Noble, R. L., and Cross, T. A. (1989) Solid phase peptide synthesis of 15Ngramicidins A, B, and C and high performance liquid chromatographic purification. Int. J. Peptide Protein Res. 33: 298–303.

    Article  CAS  Google Scholar 

  • Finkelstein, A., and Andersen, O. S. (1981) The gramicidin A channel: a review of its permeability characteristics with special reference to the single-file aspect of transport. J. Membrane Biol. 59: 155171.

    Google Scholar 

  • Heitz, F., Daumas, P., van Mau, N., Lazaro, R., Trudelle, Y., Etchebest, C., and Pullman, A. (1988) Linear gramicidins: influence of the nature of the aromatic side chains on the channel conductance. In: Transport Through Membranes: Carriers, Channels, and Pumps, edited by A. Pullman, J. Jortner, and B. Pullman. Dordrecht, Holland: Kluwer, p. 147–175.

    Google Scholar 

  • Helfrich, P., and Jakobsson, E. (1990) Calculation of deformation energies and conformations in lipid membranes containing gramicidin channels. Biophys. J. 57: 1075–1084.

    Article  PubMed  CAS  Google Scholar 

  • Hing, A. W., Adams, S. P., Silbert, D. F., and Norberg, R. E. (1990a) Deuterium NMR of 2HCO-Val’gramicidin A and 2HCO-Val’-D-Leu2-gramicidin A in oriented DMPC bilayers. Biochemistry 29: 4156–4166.

    Article  PubMed  CAS  Google Scholar 

  • Hing, A. W., Adams, S. P., Silbert, D. F., and Norberg, R. E. (1990b) Deuterium NMR of Val’ -(22H)A1a3-gramicidin A in oriented DMPC bilayers. Biochemistry 29: 4144–4156.

    Article  PubMed  CAS  Google Scholar 

  • Hinton, J. F., Buster, D. C., Fernandez, J. Q., Privett, T. A., Easton, P. L., and Newkirk, D. K. (1988) Thermodynamics of cation binding and transport by gramicidin. In: Transport Through Membranes: Carriers, Channels, and Pumps, edited by A. Pullman, J. Jortner, and B. Pullman, Dordrecht: Holland: Kluwer, p. 203–218.

    Google Scholar 

  • Hladky, S. B. (1987) Models for ion transport in gramicidin channels: how many sites? In: Ion Transport Through Membranes, edited by K. Yagi and B. Pullman. Tokyo: Academic Press, p. 213–232.

    Google Scholar 

  • Hladky, S. B., and Haydon, D. A. (1972) Ion transfer across lipid membranes in the presence of grami- cidin A. I. Studies of the unit conductance channel. Biochim. Biophys. Acta 274: 294–312.

    Article  PubMed  CAS  Google Scholar 

  • Hotchkiss, R. D. (1990) From microbes to medicine: gramicidin, Rene Dubos, and the Rockefeller. In Launching the Antibiotic Era, edited by C. L. Moberg and Z. A. Cohn. New York: The Rockefeller University Press, p. 1–18.

    Google Scholar 

  • Huang, H. W. (1986) Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime. Biophys. J. 50: 1061–1070.

    Article  PubMed  CAS  Google Scholar 

  • Izumiya, N., Kato, T., Aoyagi, H., Waki, M., and Kondo, M. (1979) Synthetic Aspects of Biologically Active Cyclic Peptides—Gramicidin S and Tyrocidines. New York: Halsted Press, John Wiley Sons.

    Google Scholar 

  • Jones, D., Hayon, E., and Busath, D. (1986) Tryptophan photolysis is responsible for gramicidin-channel inactivation by ultraviolet light. Biochim. Biophys. Acta 861: 62–66.

    PubMed  CAS  Google Scholar 

  • Jordan, P. C. (1983) Electrostatic modeling of ion pores. II. Effects attributable to the membrane dipole potential. Biophys. J. 41: 189–195.

    Article  PubMed  CAS  Google Scholar 

  • Jordan, P. C. (1987) Microscopic approaches to ion transport through transmembrane channels. The model system gramicidin. J. Phys. Chem. 91: 6582–6591.

    Article  CAS  Google Scholar 

  • Jyothi, G., Mitra, C. K., and Krishnamoorthy, G. (1990) Studies on the kinetics of gramicidin channels in liposomes. Part I. Bioelectrochem. Bioenerg. 24: 297–304.

    Article  CAS  Google Scholar 

  • Killain, J. A., Timmermans, J. W., Keur, S., and de Kruijff, B. (1985) The tryptophans of gramicidin are essential for the lipid structure modulating effect of the peptide. Biochim. Biophys. Acta 820: 154–156.

    Article  Google Scholar 

  • Killian, J. A., and de Kruijff, B. (1986) The influence of proteins and peptides on the phase properties of lipids. Chem. Phys. Lipids 40: 259–284.

    Article  PubMed  CAS  Google Scholar 

  • Killian, J. A., and de Kruijff, B. (1988) Proposed mechanism for H11 phase induction by gramicidin in model membranes and its relation to channel formation. Biophys. J. 53: 111–117.

    Article  PubMed  CAS  Google Scholar 

  • Killian, J. A., de Kruijff, B., van Echteld, C.J.A., Verkleij, A. J., Leunissen-Bijvelt, J., and de Gier, J. (1983) Mixtures of gramicidin and lysophosphatidylcholine form lamellar structures. Biochim. Biophys. Acta 728: 141–144.

    Article  PubMed  CAS  Google Scholar 

  • Killian, J. A., Prasad, K. U., Hains, D., and Urry, D. W. (1988) The membrane as an environment of minimal interconversion. A circular dichroism study on the solvent dependence of the conformational behavior of gramicidin in diacylphosphatidylcholine model membranes. Biochemistry 27: 4848–4855.

    Article  PubMed  CAS  Google Scholar 

  • Killian, J. A., and Urry, D. W. (1988) Conformation of gramicidin in relation to its ability to form bilayers with lysophosphatidylcholine. Biochemistry 27: 7295–7301.

    Article  PubMed  CAS  Google Scholar 

  • Kleinkauf, H., and von Doehren, H. (1987) Biosynthesis of peptide antibiotics. Annu. Rev. Microbiol. 41: 259–289.

    Article  PubMed  CAS  Google Scholar 

  • Koeppe, R. E., II, Andersen, O. S., and Maddock, A. K. (1988) How do amino acid substitutions alter the function of gramicidin channels? In: Transport Through Membranes: Carriers, Channels, and Pumps, edited by A. Pullman, J. Jortner, and B. Pullman. Dordrecht, Holland: Kluwer, p. 133145.

    Google Scholar 

  • Koeppe, R. E., II, Greathouse, D. V., Providence, L. L., and Andersen, O. S. (1991)[L-Leu9-D-Trp10L-Leull-D-Trp12-L-Leu13-D-Trp14-L-Leu15]-gramicidin forms both single-and double-helical channels. Biophys. J. 59: 319a.

    Google Scholar 

  • Koeppe, R. E. II, and Kimura, M. (1984) Computer building of 3-helical polypeptide models. Biopolymers 23: 23–38.

    Article  CAS  Google Scholar 

  • Koeppe, R. E. II, Paczkowski, J. A., and Whaley, W. L. (1985) Gramicidin K, a new linear channel-forming gramicidin from Bacillus brevis. Biochemistry 24: 2822–2826.

    Article  PubMed  CAS  Google Scholar 

  • Krasne, S., Eisenman, G., and Szabo, G. (1971) Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin, and gramicidin. Science 174: 412–415.

    Article  PubMed  CAS  Google Scholar 

  • Langs, D. A. (1988) Three-dimensional structure at 0.86 A of the uncomplexed form of the transmembrane ion channel peptide gramicidin A. Science 241: 188–191.

    Article  PubMed  CAS  Google Scholar 

  • Langs, D. A., Smith, G. D., Courseille, C., Precigoux, G., and Hospital, M. (1991) Monoclinic uncom-plexed double-stranded, antiparallel, left-handed 35’6-helix (Ip 1135.6) structure of gramicidin A: alternate patterns of helical association and deformation. Proc. Natl. Acad. Sci. U.S.A. 88: 53455349.

    Google Scholar 

  • Lear, J. D., Wasserman, Z. R., and DeGrado, W. F. (1988) Synthetic amphiphilic peptide models for protein ion channels. Science 240: 1177–1181.

    Article  PubMed  CAS  Google Scholar 

  • Lee, D. C., Durrani, A. A., and Chapman, D. (1984) A difference IR spectroscopic study of gramicidin A, alamethicin and bacteriorhodopsin in perdeuterated dimyristoylphosphatidylcholine. Biochim. Biophys. Acta 769: 49–56.

    Article  PubMed  CAS  Google Scholar 

  • LoGrasso, P. V., Moll, F. III, and Cross, T. A. (1988) Solvent history dependence of gramicidin A conformations in hydrated lipid bilayers. Biophys. J. 54: 259–267.

    Article  PubMed  CAS  Google Scholar 

  • Lotz, B., Colonna-Cesari, F., Heitz, F., and Spach, G. (1976) A family of double helices of alternating poly(y-benzyl-D-L-glutamate), a stereochemical model for gramicidin A. J. Mol. Biol. 106: 915942.

    Google Scholar 

  • Macdonald, P. M., and Seelig, J. (1988) Dynamic properties of gramicidin A in phospholipid membranes. Biochemistry 27: 2357–2364.

    Article  PubMed  CAS  Google Scholar 

  • Mackay, D.H.J., Berens, P. H., Wilson, K. R., and Hagler, A. T. (1984) Structure and dynamics of ion transport through gramicidin A. Biophys. J. 46: 229–248.

    Article  PubMed  CAS  Google Scholar 

  • Masotti, L., Spisni, A., and Urry, D. W. (1980) Conformational studies on the gramicidin A transmembrane channel in lipid micelles and liposomes. Cell Biophys. 2: 241–251.

    PubMed  CAS  Google Scholar 

  • Mazet, J. L., Andersen, O. S., and Koeppe, R. E. II (1984) Single-channel studies on linear gramicidins with altered amino acid sequences. A comparison of phenylalanine, tryptophan, and tyrosine substitutions at positions 1 and 11. Biophys. J. 45: 263–276.

    Article  PubMed  CAS  Google Scholar 

  • Meulendijks, G.H.W.M., Sonderkamp, T., Dubois, J. E., Nielen, R. J., Kremers, J. A., and Buck, H. M. (1989) The different influences of ether and ester phospholipide on the conformation of gramicidin A. A molecular modelling study. Biochim. Biophys. Acta 979: 321–330.

    Article  PubMed  CAS  Google Scholar 

  • Montal, M. (1990) Molecular anatomy and molecular design of channel proteins. FASEB J. 4: 26232635.

    Google Scholar 

  • Morrow, J. S., Veatch, W. R., and Stryer, L. (1978) Synthetic replacement of the N-terminal amino acid of gramicidin A: effect on transmembrane channel conductance. Biophys. J.17: 26a.

    Google Scholar 

  • Morrow, J. S., Veatch, W. R., and Stryer, L. (1979) Transmembrane channel activity of gramicidin A analogs: effects of modification and deletion of the amino-terminal residue. J. Mol. Biol. 132: 733738.

    Google Scholar 

  • Myers, V. B., and Haydon, D. A. (1972) Ion transfer across lipid membranes in the presence of gramicidin A. II. The ion selectivity. Biochim. Biophys. Acta 274: 313–322.

    Article  PubMed  CAS  Google Scholar 

  • Naik, V. M., and Krimm, S. (1986) Vibrational analysis of the structure of gramicidin A. II. Vibrational spectra. Biophys. J. 49: 1147–1154.

    Article  PubMed  CAS  Google Scholar 

  • Nash, R. W., Lindquist, T. D., and Kalina, R. E. (1991) An evaluation of saline irrigation and comparison of povidone-iodine and antibiotic in the surface decontamination of donor eyes. Arch. Ophthalmol. 109: 869–872.

    Article  PubMed  CAS  Google Scholar 

  • Neher, E., and Eibl, H. (1977) The influence of phospholipid polar groups on gramicidin channels. Biochim. Biophys. Acta 464: 37–44.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, L. K., Teng, Q., and Cross, T. A. (1991) Solid-state nuclear magnetic resonance derived model for dynamics in the polypeptide backbone of the gramicidin A channel. J. Mol. Biol. 218: 621–637.

    Article  PubMed  CAS  Google Scholar 

  • Olah, G. A., Huang, H. W., Liu, W., and Wu, Y. (1991) Location of ion-binding sites in the gramicidin channel by x-ray diffraction. J. Mol. Biol. 218: 847–858.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, K. U., Alonso-Romanowski, S., Venkatachalam, C. M., Trapane, T. L., and Urry, D. W. (1986) Synthesis, characterization, and black lipid membrane studies of [7-L-alanine] gramicidin A. Biochemistry 25: 456–463.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, K. U., Trapane, T. L., Busath, D., Szabo, G., and Urry, D. W. (1982) Synthesis and characterization of 1–13C-D-Leu12,14 gramicidin A. Int. J. Peptide Prot. Res. 19: 162–171.

    Article  CAS  Google Scholar 

  • Prosser, R. S., Davis, J. H., Dahlquist, F. W., and Lindorfer, M. A. (1991) 2H nuclear magnetic reso-nance of the gramicidin A backbone in a phospholipid bilayer. Biochemistry 30: 4687–4696.

    Google Scholar 

  • Providence, L. L., Andersen, O. S., Bittman, R., and Koeppe, R. E. II (1991) Gramicidin channel function shows little dependence on phospholipid chirality. Biophys. J. 59: 321a.

    Google Scholar 

  • Ramachandran, G. N., and Chandrasekaran, R. (1972) Conformation of peptide chains containing both L- and D-residues: Part I—helical structures with alternating L- and D-residues with special reference to the LD-ribbon and the LD-helices. Ind. J. Biochem. Biophys. 9: 1–11.

    CAS  Google Scholar 

  • Ring, A. (1986) Brief closures of gramicidin A channels in lipid bilayer membranes. Biochim. Biophys. Acta 856: 646–653.

    Article  PubMed  CAS  Google Scholar 

  • Roux, B., and Karplus, M. (1991) Ion transport in a model gramicidin channel. Structure and thermodynamics. Biophys. J. 59: 961–981.

    Article  PubMed  CAS  Google Scholar 

  • Sancho, M., and Martinez, G. (1991) Electrostatic modeling of dipole-ion interactions in gramicidin-like channels. Biophys. J. 60: 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Sarges, R., and Witkop, B. (1965a) Gramicidin A. V. The structure of valine-and isoleucine-gramicidin A. J. Am. Chem. Soc. 87: 2011–2020.

    Article  PubMed  CAS  Google Scholar 

  • Sarges, R., and Witkop, B. (1965b) Gramicidin A. VI. The synthesis of valine-and isoleucine-gramicidin A. J. Am. Chem. Soc. 87: 2020–2027.

    Article  CAS  Google Scholar 

  • Sarges, R., and Witkop, B. (1965c) Gramicidin. VII. The structure of valine-and isoleucine-gramicidin B. J. Am. Chem. Soc. 87: 2027–2030.

    Article  CAS  Google Scholar 

  • Sarges, R., and Witkop, B. (1965d) Gramicidin. VIII. The structure of valine-and isoleucine-gramicidin C. Biochemistry 4: 2491–2494.

    Article  CAS  Google Scholar 

  • Sarkar, N., Langley, D., and Paulus, H. (1979) Studies on the mechanism and specificity of inhibition of ribonucleic acid polymerase by linear gramicidin. Biochemistry 18: 4536–4541.

    Article  PubMed  CAS  Google Scholar 

  • Sawyer, D. B., Williams, L. P., Whaley, W. L., Koeppe, R. E. II, and Andersen, O. S. (1990) Gramicidins A, B, and C form structurally equivalent ion channels. Biophys. J. 58: 1207–1212.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R., Thomas, D. E., Separovic, F., Atkins, A. R., and Cornell, B. A. (1989) Determination of the structure of a membrane-incorporated ion channel. Solid-state nuclear magnetic resonance studies of gramicidin A. Biophys. J. 56: 307–314.

    Article  PubMed  CAS  Google Scholar 

  • Spisni, A., Pasquali-Ronchetti, I., Casali, E., Lindner, L., Cavatorta, P., Masotti, L., and Urry, D. W. (1983) Supramolecular organization of lysophosphatidylcholine-packaged gramicidin A’. Biochem. Biophys. Acta 732: 58–68.

    Article  PubMed  CAS  Google Scholar 

  • Stankovic, C. J., Delfino, J. M., and Schreiber, S. L. (1990) Purification of gramicidin A. Anal. Biochem. 184: 100–103.

    Article  PubMed  CAS  Google Scholar 

  • Stankovic, C. J., Heinemann, S. H., Delfino, J. M., Sigworth, F. J., and Schreiber, S. L. (1989) Trans-membrane channels based on tartaric acid-gramicidin A hybrids. Science 244: 813–817.

    Article  PubMed  CAS  Google Scholar 

  • Szabo, G., and Urry, D. W. (1979) N-acetyl gramicidin: single-channel properties and implications for channel structure. Science 203: 55–57.

    Article  PubMed  CAS  Google Scholar 

  • Tank, D. W., Wu, E. S., Meers, P. R., and Webb, W. W. (1982) Lateral diffusion of gramicidin C in phospholipid multibilayers. Effects of cholesterol and high gramicidin concentration. Biophys. J. 40: 129–135.

    Article  PubMed  CAS  Google Scholar 

  • Teng, Q., Koeppe, R. E. II, and Scarlata, S. F. (1991) Effect of salt and membrane fluidity on fluorophore motions of a gramicidin C derivative. Biochemistry 30: 7984–7990.

    Article  PubMed  CAS  Google Scholar 

  • Tosteson, M. T., Auld, D. S., and Tosteson, D. C. (1989) Voltage-gated channels formed in lipid bilayers by a positively charged segment of the Na-channel polypeptide. Proc. Natl. Acad. Sci. USA 86: 707–710.

    Article  PubMed  CAS  Google Scholar 

  • Tournois, H., Fabrie, C.H.J.P., Burger, K.N.J., Mandersloot, J., Hilgers, P., van Dalen, H., de Gier, J., and de Kruijff, B. (1990) Gramicidin A induced fusion of large unilamellar dioleoylphosphatidylcholine vesicles and its relation to the induction of type II nonbilayer structures. Biochemistry 29: 8297–8307.

    Article  PubMed  CAS  Google Scholar 

  • Tournois, H., Gieles, P., Demel, R., de Gier, J., and de Kruijff, B. (1989) Interfacial properties of gramicidin and gramicidin-lipid mixtures measured with static and dynamic monolayer techniques. Biophys. J. 55: 557–569.

    Article  PubMed  CAS  Google Scholar 

  • Tournois, H., Leunissen-Bijvelt, J., Haest, C.W.M., de Gier, J., and de Kruijff, B. (1987) Gramicidin-induced hexagonal HII phase formation in erythrocyte membranes. Biochemistry 26: 6613–6621.

    Article  PubMed  CAS  Google Scholar 

  • Urban, B. W., Hladky, S. B., and Haydon, D. A. (1978) The kinetics of ion movements in the gramicidin channel. Federation Proc. 37: 2628–2632.

    CAS  Google Scholar 

  • Urry, D. W. (1971) The gramicidin A transmembrane channel: a proposed sr(L,D) helix. Proc. Natl. Acad. Sci. USA 68: 672–676.

    Article  PubMed  CAS  Google Scholar 

  • Urry, D. W., Alonso-Romanowski, S., Venkatachalam, C. M., Harris, R. D., and Prasad, K. U. (1984) Dispersity of Des-L-Val7-D-Va18-gramicidin A single channel conductances argues for different side chain orientations as basis. Biochem. Biophys. Res. Commun. 118: 885–893.

    Article  PubMed  CAS  Google Scholar 

  • Urry, D. W., Goodall, M. C., Glickson, J. D., and Mayers, D. F. (1971) The gramicidin A transmembrane channel: characteristics of head-to-head dimerized tr(L,D) helices. Proc. Natl. Acad. Sci. USA 68: 1907–1911.

    Article  PubMed  CAS  Google Scholar 

  • Urry, D. W., Trapane, T. L., and Prasad, K. U. (1983) Is the gramicidin A transmembrane channel single-stranded or double-stranded helix? A simple unequivocal determination. Science 221: 1064–1067.

    Article  PubMed  CAS  Google Scholar 

  • Veatch, W. R., and Blout, E. R. (1974) The aggregation of gramicidin A in solution. Biochemistry 13: 5257–5263.

    Article  PubMed  CAS  Google Scholar 

  • Veatch, W. R., Fossel, E. T., and Blout, E. R. (1974) The conformation of gramicidin A. Biochemistry 13: 5249–5256.

    Article  PubMed  CAS  Google Scholar 

  • Veatch, W. R., Mathies, R., Eisenberg, M., and Stryer, L. (1975) Simultaneous fluorescence and conductance studies of planar bilayer membranes containing a highly active and fluorescent analog of gramicidin A. J. Mol. Biol. 99: 75–92.

    Article  PubMed  CAS  Google Scholar 

  • Veatch, W. R., and Stryer, L. (1977) The dimeric nature of the gramicidin A transmembrane channel: conductance and fluorescence energy transfer studies of hybrid channels. J. Mol. Biol. 113: 89102.

    Article  Google Scholar 

  • Venkatachalam, C. M., and Urry, D. W. (1983) Theoretical conformational analysis of the gramicidin A transmembrane channel. I. Helix sense and energetics of head-to-head dimerization. J. Comput. Chem. 4: 461–469.

    Article  CAS  Google Scholar 

  • Wallace, B. A. (1983) Gramicidin A adopts distinctly different conformations in membranes and in organic solvents. Biopolymers 22: 397–402.

    Article  CAS  Google Scholar 

  • Wallace, B. A. (1984) Ion-bound forms of the gramicidin A transmembrane channel. Biophys. J. 45: 114116.

    Google Scholar 

  • Wallace, B. A. (1986) Structure of gramicidin A. Biophys. J. 49: 295–306.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, B. A. (1990) Gramicidin channels and pores. Annu. Rev. Biophys. Biophys. Chem. 19: 127–157.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, B. A., and Blout, E. R. (1979) Conformation of an oligopeptide in phospholipid vesicles. Proc. Natl. Acad. Sci USA 76: 1175–1779.

    Google Scholar 

  • Wallace, B. A., and Janes, R. W. (1991) Co-crystals of gramicidin A and phospholipid. A system for studying the structure of a transmembrane channel. J. Mol. Biol. 217: 625–627.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, B. A., and Ravikumar, K. (1988) The gramicidin pore: crystal structure of a cesium complex. Science 241: 182–187.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, B. A., Veatch, W. R., and Blout, E. R. (1981) Conformation of gramicidin A in phospholipid vesicles: circular dichroism studies of effects of ion binding, chemical modification, and lipid structure. Biochemistry 20: 5754–5760.

    Article  PubMed  CAS  Google Scholar 

  • Weinstein, S., Durkin, J. T., Veatch, W. R., and Blout, E. R. (1985) Conformation of the gramicidin A channel in phospholipid vesicles: a fluorine-19 nuclear magnetic resonance study. Biochemistry 24: 4374–4382.

    Article  PubMed  CAS  Google Scholar 

  • Weinstein, S., Wallace, B. A., Blout, E. R., Morrow, J. S., and Veatch, W. (1979) Conformation of the gramicidin A channel in phospholipid vesicles: A 13C and 19F nuclear magnetic resonance study. Proc. Natl. Acad. Sci. USA 76: 4230–4234.

    Article  PubMed  CAS  Google Scholar 

  • White, S. H., and Jacobs, R. E. (1989) Interfacial hydrophobicity and the insertion of transbilayer helices into lipid bilayers. Biophys. J. 55: 399a.

    Google Scholar 

  • Wu, C. C., Hachimori, A., and Yang, J. T. (1982) Lipid-induced ordered conformations of some peptide hormones and bioactive oligopeptides: predominance of helix over ß form. Biochemistry 21: 45564562.

    Google Scholar 

  • Wu, C. C., and Yang, J. T. (1981) Sequence-dependent conformations of short polypeptides in a hydrophobic environment. Mol. Cell. Biochem. 40: 109–122.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 American Physiological Society

About this chapter

Cite this chapter

Woolley, G.A., Wallace, B.A. (1994). Membrane Protein Structure: Lessons from Gramicidin. In: White, S.H. (eds) Membrane Protein Structure. Methods in Physiology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7515-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7515-6_14

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7515-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics