Bioluminescence Imaging of Gene Expression in Living Cells and Tissues

  • Michael E. Geusz
Part of the Methods in Physiology book series (METHPHYS)


Biomedical research requires a better understanding of how genes are regulated. Unfortunately, most assays of gene expression disrupt cell integrity and provide information only at specific points in time. Numerous replicates are needed at each time point to show the temporal pattern of gene activity. Rapidly changing patterns in the induction of immediate-early genes and other cell responses following cell stimulation are not easily described by current methods. Recent studies have shown, however, that continuous monitoring of gene activity is possible by imaging bioluminescent reporter gene expression in live cells. Temporal data acquired in this way are being used to answer questions concerning development, signal transduction, hormone secretion, infection, circadian rhythms, and other processes. This chapter will describe current imaging using bioluminescent gene products, particularly those in live mammalian cells.


Circadian Rhythm Fluorescence Resonance Energy Transfer Circadian Clock Renilla Luciferase Firefly Luciferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aflalo, C. Biologically localized firefly luciferase: A tool to study cellular processes. Int. Rev. Cytol. 130: 269–323, 1991.PubMedCrossRefGoogle Scholar
  2. Billard, P., and M. S. DuBow. Bioluminescence-based assays for detection and characterization of bacteria and chemicals in clinical laboratories. Clin. Biochem. 31: 1–14, 1998.PubMedCrossRefGoogle Scholar
  3. Brandes, C., J. D. Plautz, R. Stanewsky, C. F. Jamison, M. Straume, K. V. Wood, S. A. Kay, and J. C. Hall. Novel features of Drosophila period transcription revealed by real-time luciferase reporting. Neuron 16: 687–692, 1996.PubMedCrossRefGoogle Scholar
  4. Brasier, A. R., J. E. Tate, and J. F. Habener. Optimized use of the firefly luciferase assay as a reporter gene in mammalian cell lines. Biotechniques 7: 1116–1122, 1989.PubMedGoogle Scholar
  5. Broda, H., V. D. Gooch, W. Taylor, N. Aiuto, and J. W. Hastings. Acquisition of circadian bioluminescence data in Gonyaulax and an effect of the measurement procedure on the period of the rhythm. J. Biol. Rhythms 1: 251–263, 1986.PubMedCrossRefGoogle Scholar
  6. Brolin, S. E., and G. Wetermark. Bioluminescence Analysis. New York: VCH Publishers, Inc., 1992, pp. 47–56.Google Scholar
  7. Chandler, T. R., L. A. Sigworth, and M. E. Geusz. A luciferase reporter gene reveals expression in cells of the dorsal suprachiasmatic nucleus. Soc. Neurosci. Abstr. 25: 1371, 1999.Google Scholar
  8. Contag, C. H., S. D. Spilman, P. R. Contag, M. Oshiro, B. Eames, R. Dennery, D. K. Stevenson, and D. A. Benaron. Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem. Photobiol. 66: 523–531, 1997.PubMedCrossRefGoogle Scholar
  9. Crenshaw, E. B. D., K. Kalla, D. M. Simmons, L. W. Swanson, and M. G. Rosenfeld. Cell-specific expression of the prolactin gene in transgenic mice is controlled by synergistic interactions between promoter and enhancer elements. Genes Dev. 3: 959–972, 1989.PubMedCrossRefGoogle Scholar
  10. Day, R. N., M. Kawecki, and D. Berry. Dual-function reporter protein for analysis of gene expression in living cells. Biotechniques 25: 848–850, 852–844, 856, 1998.Google Scholar
  11. DeLuca, M., and W. D. McElroy. Purification and properties of firefly luciferase. Methods Enzymol. 57: 3–15, 1978.CrossRefGoogle Scholar
  12. DeLuca, M., J. Wannlund, and W. D. McElroy. Factors affecting the kinetics of light emission from crude and purified firefly luciferase. Anal. Biochem. 95: 194–198, 1979.PubMedCrossRefGoogle Scholar
  13. de Wet, J. R., K. V. Wood, M. DeLuca, D. R. Helinski, and S. Subramani. Firefly luciferase gene: Structure and expression in mammalian cells. Mol. Cell. Biol. 7: 725–737, 1987.PubMedGoogle Scholar
  14. DiLella, A. G., D. A. Hope, H. Chen, M. Trumbauer, R. J. Schwartz, and R. G. Smith. Utility of firefly luciferase as a reporter gene for promoter activity in transgenic mice. Nucleic Acids Res. 16: 4159, 1988.PubMedCrossRefGoogle Scholar
  15. Dunlap, J. C. Molecular bases for circadian clocks. Cell 96: 271–290, 1999.PubMedCrossRefGoogle Scholar
  16. Gandelman, O., I. Allue, K. Bowers, and P. Cobbold. Cytoplasmic factors that affect the intensity and stability of bioluminescence from firefly luciferase in living mammalian cells. J. Biolumin. Chemilumin. 9: 363–371, 1994.PubMedCrossRefGoogle Scholar
  17. Geusz, M. E., C. Fletcher, G. D. Block, M. Straume, N. G. Copeland, N. A. Jenkins, S. A. Kay, and R. N. Day. Long-term monitoring of circadian rhythms in c-fos gene expression from suprachiasmatic nucleus cultures. Curr. Biol. 7: 758–766, 1997.PubMedCrossRefGoogle Scholar
  18. Gould, S. J., and S. Subramani. Firefly luciferase as a tool in molecular and cell biology. Anal. Biochem. 175: 5–13, 1988.PubMedCrossRefGoogle Scholar
  19. Inoué, S., and K. R. Spring. Video Microscopy: The Fundamentals. New York: Plenum Press, 1997, 741 pp.CrossRefGoogle Scholar
  20. Johnson, C. H., M. R. Knight, T. Kondo, P. Masson, J. Sedbrook, A. Haley, and A. Trewavas. Circadian oscillations of cytosolic and chloroplastic free calcium in plants. Science 269: 1863–1865, 1995.PubMedCrossRefGoogle Scholar
  21. Jones, D. R, Sherf, B. A., Wood, K. V. Luciferase Assay System Vendor Comparison. Promega Notes Magazine 54: 20, 1995.Google Scholar
  22. Jones, K., F. Hibbert, and M. Keenan. Glowing jellyfish, luminescence and a molecule called coelenterazine. Trends Biotechnol. 17: 477–481, 1999.PubMedCrossRefGoogle Scholar
  23. Kajiyama, N., and E. Nakano. Thermostabilization of firefly luciferase by a single aminoGoogle Scholar
  24. acid substitution at position 217. Biochemistry 32: 13795–13799, 1993.Google Scholar
  25. Kennedy, H. J., A. E. Pouli, E. K. Ainscow, L. S. Jouaville, R. Rizzuto, and G. A. Rutter. Glucose generates sub-plasma membrane ATP microdomains in single islet beta-cells. Potential role for strategically located mitochondria. J. Biol. Chem. 274: 13281–13291, 1999.PubMedCrossRefGoogle Scholar
  26. Kennedy, H. J., B. Viollet, I. Rafiq, A. Kahn, and G. A. Rutter. Upstream stimulatory factor-2 (USF2) activity is required for glucose stimulation of L-pyruvate kinase promoter activity in single living islet beta-cells. J. Biol. Chem. 272: 20636–20640, 1997.PubMedCrossRefGoogle Scholar
  27. Kondo, T., and M. Ishiura. Circadian rhythms of cyanobacteria: Monitoring the biological clocks of individual colonies by bioluminescence. J. Bacteriol. 176: 1881–1885, 1994.PubMedGoogle Scholar
  28. Koop, A., and R H. Cobbold. Continuous bioluminescent monitoring of cytoplasmic ATP in single isolated rat hepatocytes during metabolic poisoning. Biochem. J. 295: 165–170, 1993.PubMedGoogle Scholar
  29. Leach, F. R., and J. J. Webster. Commercially available firefly luciferase reagents. Methods Enzymol. 133: 51–70, 1986.PubMedCrossRefGoogle Scholar
  30. Lemasters, J. J., and C. R. Hackenbrock. Kinetics of product inhibition during firefly luciferase luminescence. Biochemistry 16: 445–447, 1977.PubMedCrossRefGoogle Scholar
  31. Lembert, N., and L. A. Idahl. Regulatory effects of ATP and luciferin on firefly luciferase activity. Biochem. J. 305: 929–933, 1995.PubMedGoogle Scholar
  32. Lorenz, W. W., R. O. McCann, M. Longiaru, and M. J. Cormier. Isolation and expression of a cDNA encoding Renilla renformis luciferase. Proc. Natl. Acad. Sci. U.S.A. 88: 4438–4442, 1991.PubMedCrossRefGoogle Scholar
  33. Masuda, T., H. Tatsumi, and E. Nakano. Cloning and sequence analysis of cDNA for luciferase of a Japanese firefly, Luciola cruciata. Gene 77: 265–270, 1989.Google Scholar
  34. Millar, A. J., I. A. Carre, C. A. Strayer, N. H. Chua, and S. A. Kay. Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267: 1161–1163, 1995.PubMedCrossRefGoogle Scholar
  35. Millar, A. J., and S. A. Kay. Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 93: 15491–15496, 1996.CrossRefGoogle Scholar
  36. Nunez, L., W. J. Faught, and L. S. Frawley. Episodic gonadotropin-releasing hormone gene expression revealed by dynamic monitoring of luciferase reporter activity in single, living neurons. Proc Natl Acad Sci U. S. A. 95: 9648–9653, 1998.PubMedCrossRefGoogle Scholar
  37. Pazzagli, M., J. H. Devine, D. O. Peterson, and T. O. Baldwin. Use of bacterial and firefly luciferases as reporter genes in DEAE—dextran—mediated transfection of mammalian cells. Anal. Biochem. 204: 315–323, 1992.PubMedCrossRefGoogle Scholar
  38. Plautz, J. D., M. Kaneko, J. C. Hall, and S. A. Kay. Independent photoreceptive circadian clocks throughout Drosophila. Science 278: 1632–1635, 1997a.Google Scholar
  39. Plautz, J. D., M. Straume, R. Stanewsky, C. F. Jamison, C. Brandes, H. B. Dowse, J. C. Hall, and S. A. Kay. Quantitative analysis of Drosophila period gene transcription in living animals. J. Biol. Rhythms 12: 204–217, 1997b.PubMedCrossRefGoogle Scholar
  40. Shimomura, O., and F. H. Johnson. Chemical nature of bioluminescence systems in coelenterates. Proc. Natl. Acad. Sci. U.S.A. 72: 1546–1549, 1975.PubMedCrossRefGoogle Scholar
  41. Shimomura, O., B. Musicki, and Y. Kishi. Semi-synthetic aequorin. An improved tool for the measurement of calcium ion concentration. Biochem. J. 251: 405–410, 1988.PubMedGoogle Scholar
  42. Stoppini, L., P. A. Buchs, and D. Muller. A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37: 173–182, 1991.PubMedCrossRefGoogle Scholar
  43. Takasuka, N., M. R. White, C. D. Wood, W. R. Robertson, and J. R. Davis. Dynamic changes in prolactin promoter activation in individual living lactotrophic cells. Endocrinology 139: 1361–1368, 1998.PubMedCrossRefGoogle Scholar
  44. White, M. R., M. Masuko, L. Amet, G. Elliott, M. Braddock, A. J. Kingsman, and S. M. Kingsman. Real-time analysis of the transcriptional regulation of HIV and hCMV promoters in single mammalian cells. J. Cell. Sci. 108: 441–455, 1995.PubMedGoogle Scholar
  45. White, P. J., D. J. Squirrell, P. Arnaud, C. R. Lowe, and J. A. Murray. Improved thermostability of the North American firefly luciferase: Saturation mutagenesis at position 354. Biochem. J. 319: 343–350, 1996.PubMedGoogle Scholar
  46. Williams, T. M., J. E. Burlein, S. Ogden, L. J. Kricka, and J. A. Kant. Advantages of firefly luciferase as a reporter gene: Application to the interleukin-2 gene promoter. Anal. Biochem. 176: 28–32, 1989.PubMedCrossRefGoogle Scholar
  47. Xu, Y., D. W. Piston, and C. H. Johnson. A bioluminescence resonance energy transfer (BRET) system: Application to interacting circadian clock proteins. Proc. Natl. Acad. Sci. U.S.A. 96: 151–156, 1999.PubMedCrossRefGoogle Scholar
  48. Yamazaki, S. et al. Resetting central and peripheral oscillators in transgenic rats. Science 288: 682–685, 2000.PubMedCrossRefGoogle Scholar
  49. Zhuravlev, A. I. Spontaneous superlow chemiluminescence and creation of quantum biology. In: Biological Luminescence, edited by B. Jezowska-Trzebiatowska, B. Kochel, J. Slawinski, and W. Strek. Teaneck, NJ: World Scientific, 1990, pp. 19–48.Google Scholar

Copyright information

© American Physiological Society 2001

Authors and Affiliations

  • Michael E. Geusz

There are no affiliations available

Personalised recommendations