Skip to main content

Fluorophores and Their Labeling Procedures for Monitoring Various Biological Signals

  • Chapter
Methods in Cellular Imaging

Part of the book series: Methods in Physiology ((METHPHYS))

Abstract

Fluorescence microscopy occupies a unique position in the biological and biomedical sciences where fluorescence probe specificity and sensitivity can provide important information regarding the biochemical, biophysical, and structural status of cells and tissues. The continuing development of fluorescent probes, or fluorophores, in conjunction with the strong emergence over the past two decades of confocal and multiphoton microscopy (and specialized applications such as fluorescene recovery after photobleaching [FRAP], fluorescence resonance energy transfer [FRET], and fluorescence lifetime imaging [FLIM]) has been a major contributor to our understanding of dynamic processes in cells and tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrade, W., T. J. Seabrook, M. G. Johnston, and J. B. Hay. The use of the lipophilic fluorochrome CM-DiI for tracking the migration of lymphocytes. J. Immunol. Methods. 194: 181–189, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Bai, J., and R. E. Pagano. Measurement of spontaneous transfer and transbilayer movement of BODIPY-labeled lipids in lipid vesicles. Biochemistry 36: 8840–8848, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Beaudet, A., D. Nouel, T. Stroh, F. Vandenbulcke, C. Dal-Farra, and J. P. Vincent. Fluorescent ligands for studying neuropeptide receptors by confocal microscopy. Braz. J. Med. Biol. Res. 31: 1479–1489, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Beavis, A. J., and K. J. Pennline. Tracking of murine spleen cells in vivo—detection of PKH26-labeled cells in the pancreas of non-obese diabetic (NOD) mice. J. Immunol. Methods 170: 57–65, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Belichenko, P. V., and A. Dahlstrom. Confocal laser scanning microscopy and 3-D recon- structions of neuronal structures in human brain cortex. Neuroimage 2: 201–207, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Blank, R. S., H. S. Silverman, O. Y. Chung, B. A. Hogue, M. D. Stern, R. G. Hansford, E. G. Lakatta, and M. C. Capogrossi. Cytosolic pH measurements in single cardiac myocytes using carboxy-seminaphthorhodafluor-1. Am. J. Physiol. 263: H276 - H284, 1992.

    PubMed  CAS  Google Scholar 

  • Bootman, M. D., K. W. Young, J. M. Young, R. B. Moreton, and M. J. Berridge. Extracellular calcium concentration controls the frequency of intracellular calcium spiking independently of inositol 1,4,5-triphsophate production in HeLa cells. Biochem. J. 314: 347–354, 1996.

    PubMed  CAS  Google Scholar 

  • Carlsson, K., and K. Mossberg. Reduction of cross-talk between fluorescent labels in scanning laser microscopy. J. Microsc. 167: 23–37, 1992.

    Article  Google Scholar 

  • Chacon, E., H. Ohata, I. S. Harper, D. R. Trollinger, B. Herman, and J. J. Lemasters. Mitochondrial free calcium transients during excitation-contraction coupling in rabbit cardiac myocytes. FEBS Lett. 382: 31–36, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Chacon, E., J. M. Reece, A.-L. Nieminen, G. Zabhrebelski, B. Herman, and J. J. Lemasters. Distribution of electrical potential, pH, free Cat, and volume inside cultured adult rabbit myocytes during chemical hypoxia: A multi-parameter digitized confocal microscopic study. Biophys. J. 66: 942–952, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C. S., O. C. Martin, and R. E. Pagano. Changes in the spectral properties of a plasma membrane analogue during the first seconds of endocytosis in living cells. Biophys. J. 72: 37–50, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Cody, S. H., P. N. Dubbin, A. D. Beischer, N. D. Duncan, J. S. Hill, A. H. Kaye, and D. A. Williams. Intracellular pH mapping with SNARF-1 and confocal microscopy. 1. A quantitative technique for living tissues and isolated cells. Micron 24: 573–580, 1993.

    Article  Google Scholar 

  • Cole, L., D. Davies, G. J. Hyde, and A. E. Ashford. ER-tracker dye and BODIPY-brefeldin A differentiate the endoplasmic reticulum and Golgi bodies from the tubular-vacuole system in living hyphae of Pisolithus tinctorius. J. Microsc. 197: 239–249, 2000.

    Article  CAS  Google Scholar 

  • Cousin, M. A., and P. J. Robinson. Mechanisms of synaptic vesicle recycling illuminated by fluorescent dyes. J. Neurochem. 73: 2227–2239, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Cullander, C. Fluorescent probes for confocal microscopy. In: Methods in Molecular Biology, edited by S. W. Paddock. Totowa, NJ: Humana Press, 1999, pp. 59–73.

    Google Scholar 

  • Decherchi, P., P. Cochard, and P. Gauthier. Dual staining assessment of Schwann cell viability within whole peripheral nerves using calcein-AM and ethidium homodimer. J. Neurosci. Methods 71: 205–213, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Delnido, P. J., P. Glynn, P. Buenaventura, G. Salama, and A. P. Koretsky. Fluorescence measurement of calcium transients in perfused rabbit heart using Rhod-2. Am. J. Physiol. 43: H728 - H741, 1998.

    Google Scholar 

  • Deng, Y. P., J. R. Bennink, H. C. Kang, R. P. Haugland, and J. W. Yewdell. Fluorescent conjugates of brefeldin A selectively stain the endoplasmic reticulum and Golgi complex of living cells. J. Histochem. Cytochem. 43: 907–915, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Di Lisa, F., P. S. Blank, R. Colonna, G. Gambassi, H. S. Silverman, M. D. Stern, and R. G. Hansford. Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition. J. Physiol. Lond. 486: 1–13, 1995.

    PubMed  Google Scholar 

  • Di Virgilio, F., T. H. Steinberg, and S. C. Silverstein. Inhibition of Fura-2 sequestration and secretion with organic anion transport blockers. Cell Calcium 11: 57–62, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Ehrenberg, B., V. Montana, M. D. Wei, J. P. Wuskell, and L. M. Loew. Membrane potential can be determined in individual cells from the nernstian distribution of cationic dyes. Biophys. J. 53: 785–794, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Farkas, D. L., M. Wei, P. Febbroriello, J. H. Carson, and L. M. Loew. Simultaneous imaging of cell and mitochondrial membrane potential. Biophys. J. 56: 1053–1069, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Ford, J. W., T. H. Welling, J. C. Stanley, and L. M. Messina. PKH26 and I-125-PKH95Characterization and efficacy as labels for in vitro and in vivo endothelial cell localization and tracking. J. Surg. Res. 62: 23–28, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths, E. J., M. D. Stern, and H. S. Silverman. Measurement of mitochondrial calcium in single living cardiomyocytes by selective removal of cytosolic Indo 1. Am. J. Physiol. 273: C37 - C44, 1997.

    PubMed  CAS  Google Scholar 

  • Harootunian, A. T., J. P. Y. Kao, B. K. Eckert, and R. Y. Tsien. Fluorescence ratio imaging of cytosolic free Na in individual fibroblasts and lymphocytes. J. Biol. Chem. 264: 19458–19467, 1989.

    PubMed  CAS  Google Scholar 

  • Harper, I. S., J. M. Bond, E. Chacon, J. M. Reece, B. Herman, and J. J. Lemasters. Inhibition of Na+/H+ exchange preserves viability, restores mechanical function, and prevents the pH paradox in reperfusion injury to rat neonatal myocytes. Basic Res. Cardiol. 88: 430–442, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Haugland, R. P. Handbook of Fluorescent Probes and Research Chemicals, 7th Ed. Eugene: Molecular Probes, Inc., 1999.

    Google Scholar 

  • Hayes, A., S. H. Cody, and D. A. Williams. Measuring cytosolic Cat+ in cells with fluorescent probes: An aid to understanding cell pathophysiology. Int. Rev. Exp. Pathol. 36: 197–212, 1996.

    PubMed  CAS  Google Scholar 

  • House, C. R. Confocal ratio-imaging of intracellular pH in unfertilized mouse oocytes. Zygote 2: 37–45, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Jung, D. W., L. M. Apel, and G. P. Brierley. Transmembrane gradients of free Na’ in isolated heart mitochondria estimated using a fluorescent probe. Am. J. Physiol. 262: C1047 - C1055, 1992.

    PubMed  CAS  Google Scholar 

  • Kasten, F. H. Introduction to fluorescent probes: Properties, history and applications. In: Fluorescent and Luminescent Probes for Biological Activity: A Practical Guide to Technology for Quantitative Real-Time Analysis, edited by W. T. Mason. Cambridge: Academic Press, 1999, pp. 17–39.

    Chapter  Google Scholar 

  • Lemasters, J. J., A. L. Nieminen, E. Chacon, J. M. Bond, I. Harper, J. M. Reece, and B. Herman. Single cell microscopic techniques for studying toxic injury. Methods Toxicol. 1: 238–455, 1994.

    Google Scholar 

  • Lipp, P., and E. Niggli. Ratiometric confocal CaZ+-measurements with visible wavelength indicators in isolated cardiac myocytes. Cell Calcium 14: 359–372, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Manders, E. M. M., H. Kimura, and P. R. Cook. Direct imaging of DNA in living cells reveals the dynamics of chromosome formation. J. Cell Biol. 144: 813–821, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Martinezzaguilan, R., M. W. Gurule, and R. M. Lynch. Simultaneous measurement of intracellular pH and CaZ+ in insulin-secreting cells by spectral imaging microscopy. Am. J. Physiol. 39: C1438 - C1446, 1996.

    Google Scholar 

  • Mathur, A., Y. Hong, B. K. Kemp, A. A. Barrientos, and J. D. Erusalimsky. Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovasc. Res. 46: 126–138, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Minamikawa, T., A. Sriratana, D. A. Williams, D. N. Bowser, J. S. Hill, and P. Nagley. Chloromethyl-X-rosamine (MitoTracker Red) photosensitizes mitochondria and induces apoptosis in intact human cells. J. Cell Sci. 112: 2419–2430, 1999.

    PubMed  CAS  Google Scholar 

  • Moore, E. D. W., R L. Becker, K. E. Fogarty, D. A. Williams, and F. S. Fay. Cat+ imaging in single living cells: Theoretical and practical issues. Cell Calcium 11: 157–179, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, A. J., and A. P. Thomas. Single cell and subcellular measurement of intracellular CaZ+ concentration ([CaZ+J(0). Calcium Signal. Protocol. 114: 93–123, 1999.

    Article  CAS  Google Scholar 

  • Oh, D. J., G. M. Lee, K. Francis, and B. O. Palsson. Phototoxicity of the fluorescent membrane dyes PKH2 and PKH26 on the human hematopoietic KG1a progenitor cell line. Cytometry 36: 312–318, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Ohata, H., E. Chacon, S. A. Tesfai, I. S. Harper, B. Herman, and J. J. Lemasters. Mitochondrial CaZ+ transients in cardiac myocytes during the excitation-contraction cycle: Effects of pacing and hormonal stimulation. J. Bioenerg. Biomembr. 30: 207–222, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Opas, M. Measurement of intracellular pH and pCa with a confocal microscope. Trends Cell Biol. 7: 75–80, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Pagano, R. E., and C. S. Chen. Use of BODIPY-labeled sphingolipids to study membrane traffic along the endocytic pathway. Ann. N. Y. Acad. Sci. 845: 152–160, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Poot, M., Y. Z. Zhang, J. A. Kramer, K. S. Wells, L. Jones, D. K. Hanzel, A. G. Lugade, V. L. Singer, and R. P. Haughland. Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J. Histochem. Cytochem. 44: 1363–1372, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Pyle, J. L., E. T. Kavalali, S. Choi, and R. W. Tsien. Visualization of synaptic activity in hippocampal slices with FM1–43 enabled by fluorescence quenching. Neuron 24: 803–808, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Reers, M., S. T. Smiley, C. Mottolahartshorn, A. Chen, M. Lin, and L. B. Chen. Mitochondrial membrane potential monitored by JC-1 dye. Methods Enzymol. 260: 406–417, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Sandell, J. H., and R. H. Masland. Photoconversion of some fluorescent markers to a diaminobenzidine product. J. Histochem. Cytochem. 36: 555–559, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Satoh, H., H. Hayashi, N. Noda, H. Terada, A. Kobayashi, Y. Yamashita, T. Kawai, M. Hirano, and N. Yamazaki. Quantification of intracellular free sodium ions by using a new fluorescent indicator, sodium-binding benzofuran isophthalate in guinea pig myocytes. Biochem. Biophys. Res. Commun. 175: 611–616, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Scanlon, M., D. A. Williams, and F. S. Fay. A Cat+-insensitive form of Fura-2 associated with polymorphonuclear leukocytes. Assessment and accurate Cat+ measurement. J. Biol. Chem. 262: 6308–6312, 1987.

    PubMed  CAS  Google Scholar 

  • Schild, D. Laser scanning microscopy and calcium imaging. Cell Calcium 19: 281–296, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Schild, D., A. Jung, and H. A. Schultens. Localization of calcium entry through calcium channels in olfactory receptor neurones using a laser scanning microscope and the calcium indicator dyes Fluo-3 and Fura-Red. Cell Calcium 15: 341–348, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Scorrano, L., V. Petronilli, R. Colonna, F. Di Lisa, and R. Bernardi. Chloromethyltetramethylrosamine (Mitotracker Orange) induces the mitochondrial permeability transition and inhibits respiratory complex I. Implications for the mechanism of cytochrome c release. J. Biol. Chem. 274: 24657–24663, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Shelby, R. D., K. M. Hahn, and K. F. Sullivan. Dynamic elastic behavior of alpha-satellite DNA domains visualized in situ in living human cells. J. Cell Biol. 135: 545–557, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Silverman, A. J., A. K. Sutherland, M. Wilhelm, and R. Silver. Mast cells migrate from blood to brain. J. Neurosci. 20: 401–408, 2000.

    PubMed  CAS  Google Scholar 

  • Simpson, A. W. M. Fluorescent measurement of [Ca2+](0—Basic practical considerations. Calcium Signal. Protocol. 114: 3–30, 1999.

    Article  CAS  Google Scholar 

  • Stricker, S. A., and M. Whitaker. Confocal laser scanning microscopy of calcium dynamics in living cells. Microsc. Res. Tech. 46: 356–369, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Swift, L. M., and N Sarvazyan. Localization of dichlorofluorescin in cardiac myocytes: Implications for assessment of oxidative stress. Am. J. Physiol. 278: H982 - H990, 2000.

    CAS  Google Scholar 

  • Terasaki, M., and T. S. Reese. Characterization of endoplasmic reticulum by co-localization of BiP and dicarbocyanine dyes. J. Cell Sci. 101: 315–322, 1992.

    PubMed  CAS  Google Scholar 

  • Tsien, R. Y. The green fluorescent protein. Annu. Rev. Biochem. 67: 509–544, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Tsien, R. Y., and A. Waggoner. Fluorophores for confocal microscopy: Photophysics and photochemistry. In: Handbook of Biological Confocal Microscopy,2nd Ed., edited by J. B. Pawley, 1995, pp. 267–279.

    Google Scholar 

  • Vercelli, A., M. Repici, D. Garbossa, and A. Grimaldi. Recent techniques for tracing pathways in the central nervous system of developing and adult mammals. Brain Res. Bull. 51: 11–28, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Weinlich, M., U. Heydasch, M. Starlinger, and R. K. Kinne. Intracellular pH-measurements in rat duodenal mucosa in vitro using confocal laserscan microscopy. Z. Gastroenterol. 35: 263–270, 1997.

    PubMed  CAS  Google Scholar 

  • Wiegmann, T. B., L. W. Welling, D. M. Beatty, D. E. Howard, S. Vamos, and S. J. Morris. Simultaneous imaging of intracellular [Ca2+] and pH in single MDCK and glomerular epithelial cells—Special communication. Am. J. Physiol. 265: C1184 - C1190, 1993.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 American Physiological Society

About this chapter

Cite this chapter

Harper, I.S. (2001). Fluorophores and Their Labeling Procedures for Monitoring Various Biological Signals. In: Periasamy, A. (eds) Methods in Cellular Imaging. Methods in Physiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7513-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7513-2_2

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7513-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics