Skip to main content

Frequency-Domain Fluorescence Lifetime Imaging Microscopy: A Window on the Biochemical Landscape of the Cell

  • Chapter

Part of the book series: Methods in Physiology ((METHPHYS))

Abstract

Fluorescence microscopy is an established technique for determining the localization and properties of molecules in biological specimens. Obvious advantages of fluorescence are sensitivity, specificity, and spectral characteristics that depend on the environment of the probe. In addition, the low energy content of fluorescence photons in the visible part of the spectrum permits nondestructive measurements in living cells. Imaging the spatial distribution of a molecule using its fluorescence intensity has been complemented with (micro) spectroscopic techniques for studying the physical and chemical properties of the molecular environment of the fluorophore, which allow the observation of biochemical activity in cells. This has typically been achieved by exploiting the steady-state spectral characteristics of fluorescent probes that change their emission energy upon reaction with the environment. With such techniques, an image that is related to the physiological parameter of interest can be calculated from the ratio of intensities obtained at two excitation or emission wavelengths, eliminating the concentration and light path dependence of the fluorescence intensity. To quantify these images, the ratio as a function of the physiological parameter of interest has to be calibrated separately.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcala, J. R., E. Gratton, and D. M. Jameson. A multifrequency phase fluorometer using the harmonic content of a mode-locked laser. Anal. Instrum. 14: 225–250, 1985.

    Article  CAS  Google Scholar 

  • Bastiaens, P. I. H., and T. M. Jovin. Microspectroscopic imaging tracks the intracellular processing of a signal transduction protein: Fluorescent labeled protein kinase C bI. Proc. Natl. Acad. Sci. U.S.A. 93: 8407–8412, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Bastiaens, P. I. H. and A. Squire. Fluorescence lifetime imaging microscopy: Spatial resolution of biochemical processes in the cell. Trends Cell Biol. 9: 48–52, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Beechem, J. M. Global analysis of biochemical and biophysical data. Methods Enzymol. 210: 37–54, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, K., and A. Liljeborg. Confocal fluorescence microscopy using spectral and lifetime information to simultaneously record four fluorophores with high channel separation. J. Microsc. 185: 37–46, 1997.

    Article  CAS  Google Scholar 

  • Clegg, R. M. Fluorescence resonance energy transfer spectroscopy and microscopy. In: Fluorescence Imaging Spectroscopy and Microscopy, edited by X. F. Wang and B. Herman. New York: Wiley, 1996, pp. 179–251.

    Google Scholar 

  • Clegg, R. M., and P. C. Schneider. Fluorescence lifetime resolved imaging microscopy: A general description of lifetime-resolved imaging measurements. In: Fluorescence Microscopy and Fluorescence Probes, edited by J. Slavik. New York: Plenum Press, 1996, pp. 15–33.

    Google Scholar 

  • Draaijer, A., R. Sanders, and H. C. Gerritsen. Fluorescence lifetime imaging, a new tool in confocal microscopy. In: Handbook of Biological Confocal Microscopy, edited by J. B. Pawley. New York: Plenum Press, 1995, pp. 491–505.

    Chapter  Google Scholar 

  • French, T., P. T. C. So, D. J. Weaver, T. Coelho-Sampaio, E. Gratton, E. W. Voss, and J. Carrero. Two-photon fluorescence lifetime imaging microscopy of macrophage-mediated antigen processing. J. Microsc. 185: 339–353, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Gadella, T. W. J., Jr., R. M. Clegg, and T. M. Jovin. Fluorescence lifetime imaging microscopy: Pixel-by-pixel analysis of phase modulation data. Bioimaging 2: 139–159, 1994.

    Article  CAS  Google Scholar 

  • Gadella, T. W. J., Jr., and T. M. Jovin. Oligomerization of epidermal growth-factor receptors on A431 cells studied by time resolved fluorescence imaging microscopy—A stereo-chemical model for tyrosine kinase receptor activation. J. Cell Biol. 129: 1543–1558, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Gadella, T. W. J., Jr., T. M. Jovin, and R. M. Clegg. Fluorescence lifetime imaging microscopy (FLIM)—Spatial-resolution of microstructures on the nanosecond time-scale. Biophys. Chem. 48: 221–239, 1993.

    Article  CAS  Google Scholar 

  • Gratton, E., and M. Limkeman. A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution. Biophys. J. 44: 315–324, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Gratton, E., M. Limkeman, J. R. Lakowicz, B. P. Maliwa, H. Cherek, and G. Laczko. Resolution of mixtures of fluorophores using variable-frequency phase and modulation data. Biophys. J. 4: 479–486, 1984.

    Article  Google Scholar 

  • Kume, H., K. Koyama, K. Nakatsugawa, S. Suzuki, and D. Fatlowitz. Ultrafast microchannel plate photomultipliers. Appl. Opt. 27: 1170–1178, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz, J. R., and K. Berndt. Lifetime-selective fluorescence imaging using an rf phase sensitive camera. Rev. Sci. Instrum. 62: 1727–1734, 1991.

    Article  CAS  Google Scholar 

  • Lakowicz, J. R., G. Laczko, H. Cherec, E. Gratton, and M. Limkeman. Analysis of fluorescence decay kinetics from variable-frequency phase shift and modulation data. Biophys. J. 46: 463–477, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz, J. R., H. Szmacinski, W. J. Lederer, M. S. Kirby, M. L. Johnson, and K. Nowaczyk. Fluorescence lifetime imaging of intracellular calcium in COS cells using Quin-2. Cell Calcium 15: 7–27, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Ng, T., A. Squire, G. Hansra, E Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker. Imaging protein kinase Ca activation in cells. Science 283: 2085–2089, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Periasamy, A., P. Wodnicki, X. F. Wang, S. Kwon, G. W. Gordon, and B. Herman. Time resolved fluorescence lifetime imaging microscopy using a picosecond pulsed tunable dye-laser system. Rev. Sci. Instrum. 67: 3722–3731, 1996.

    Article  CAS  Google Scholar 

  • Piston, D. W., G. Marriott, T. Radivoyevich, R. M. Clegg, T. M. Jovin, and E. Gratton. Wideband acoustooptic light-modulator for frequency-domain fluorometry and phosphorimetry. Rev. Sci. Instrum. 60: 2596–2600, 1989.

    Article  CAS  Google Scholar 

  • Press, W. H., S. A. Teukolky, and W. T. Vetterling. Numerical Recipes in C—The Art of Scientific Computing, 2nd ed. Cambridge: Cambridge University Press, 1992.

    Google Scholar 

  • Sanders, R., A. Draaijer, H. C. Gerritsen, P. M. Houpt, and Y. K. Levine. Quantitative Ph imaging in cells using confocal fluorescence lifetime imaging microscopy. Anal. Biochem. 227: 302–308, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Schlick, T., and A. Fogelson. TNPACK—A truncated Newton minimization package for large scale problems: I. Algorithm and usage. ACM Trans. Math. Soft. 18: 46–70, 1992.

    Article  Google Scholar 

  • Schneider, P. C., and R. M. Clegg. Rapid acquisition, analysis, and display of fluorescence lifetime—resolved images for real-time applications. Rev. Sci. Instrum. 68: 4107–4119, 1997.

    Article  CAS  Google Scholar 

  • Scully, A. D., A. J. MacRobert, S. Botchway, P. O’Neill, A. W. Parker, R. B. Ostler, and D. Phillips Development of a laser-based fluorescence microscope with subnanosecond time resolution. J. Fluoresc. 6: 119–125, 1996.

    Article  CAS  Google Scholar 

  • Squire, A., and P. I. H. Bastiaens. Three dimensional image restoration in fluorescence lifetime imaging microscopy. J. Microsc. 193: 36–49, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Squire, A., R. J. Verveer, and P. I. H. Bastiaens. Multiple frequency fluorescence lifetime imaging microscopy. J. Microsc. 197: 136–149, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Straume, M., S. G. Frasier-Cadore, and M. L. Johnson. Least-squares analysis of fluorescence data. In: Topics in Fluorescence Spectroscopy, edited by J. R. Lakowicz. New York: Plenum Press, 1991.

    Google Scholar 

  • Sytsma, J., J. M. Vroom, C. J. Degrauw, and H. C. Gerritsen. Time gated fluorescence lifetime imaging and microvolume spectroscopy using two-photon excitation. J. Microsc. 191: 39–51, 1998.

    Article  CAS  Google Scholar 

  • Szmancinski, H., and J. R. Lakowicz. Possibility of simultaneously measuring low and high calcium concentrations using Fura-2 and lifetime-based sensing. Cell Calcium 18: 64–75, 1995.

    Article  Google Scholar 

  • Tsien, R. Y. The green fluorescent protein. Annu. Rev. Biochem. 76: 509–538, 1998.

    Article  Google Scholar 

  • Tsien, R. Y., B. J. Bacskai, and S. R. Adams. FRET for studying intracellular signaling. Trends Cell Biol. 3: 242–245, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Verkman, A. S., M. Armijo, and K. Fushimi. Construction and evaluation of a frequency domain epifluorescence microscope for lifetime and anisotropy decay measurements in subcellular domains. Biophys. Chem. 40: 117–125, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Verveer, P. J., A. Squire, and P. I. H. Bastiaens. Global analysis of fluorescence lifetime imaging microscopy data. Biophys. J. 78: 2127–2137, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Watkins, A. N., C. M. Ingersoll, G. A. Baker, and F. V. Bright. A parallel multiharmonic frequency-domain fluorometer for measuring excited-state decay kinetics following one-, two-, or three-photon excitation. Anal. Chem. 70: 3384–3396, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Wouters, F. S., P. I. H. Bastiaens. Fluorescence lifetime imaging of receptor tyrosine kinase activity in cells. Curr. Biol. 9: 1127–1130, 1999.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 American Physiological Society

About this chapter

Cite this chapter

Verveer, P.J., Squire, A., Bastiaens, P.I.H. (2001). Frequency-Domain Fluorescence Lifetime Imaging Microscopy: A Window on the Biochemical Landscape of the Cell. In: Periasamy, A. (eds) Methods in Cellular Imaging. Methods in Physiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7513-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7513-2_16

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7513-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics