Measurement of Fluorescence Resonance Energy Transfer in the Optical Microscope

  • Brian Herman
  • Gerald Gordon
  • Nupam Mahajan
  • Victoria Centonze
Part of the Methods in Physiology book series (METHPHYS)


Fluorescence resonance energy transfer (FRET) can be used as a spectroscopic ruler to study and quantify the interactions of cellular components with each other, as well as the conformational changes within individual molecules at the molecular level (Herman, 1998). FRET is a process by which a fluorophore (donor) in an excited state may transfer its excitation energy to a neighboring chromophore (acceptor) nonradiatively through dipole—dipole interactions. This energy transfer manifests itself as both quenching of donor fluorescence intensity and lifetime (in the presence of acceptor) as well as an increase in the emission of acceptor fluorescence (sensitized emission). Because FRET decreases in proportion to the inverse sixth power of the distance between the donor and acceptor, this phenomenon is effective at measuring separation of the donor- and acceptor-labeled molecules when they are within 10–100 Å of each other.


Fluorescence Resonance Energy Transfer Forster Resonance Energy Transfer Fluorescence Lifetime Imaging Microscopy Donor Emission Bioluminescence Resonance Energy Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, S. R., A. T. Harootunian, Y. J. Buechler, S. S. Taylor, and R. Y. Tsien. Fluorescence ratio imaging of cyclic AMP in single cells. Nature 349: 694–697, 1991.PubMedCrossRefGoogle Scholar
  2. Bacso, Z., L. Bene, A. Bodnar, J. Matko, and S. A. Damjanovich. Photobleaching energy transfer analysis of CD8/MHC-I and LFA 1/ICAM-1 interactions in CTL-target cell conjugates. Immunol. Lett. 54: 151–156, 1996.PubMedCrossRefGoogle Scholar
  3. Baird, G. S., D. A. Zacharias, and R. Y. Tsien. Circular permutation and receptor insertion within green fluorescent proteins. Proc. Natl. Acad. Sci. U.S.A. 96: 11241–11246, 1999.PubMedCrossRefGoogle Scholar
  4. Bodnar, A., A. Jenei, L. Bene, S. Damjanovich, and J. Matko. Modification of membrane cholesterol level affects expression and clustering of class I HLA molecules at the surface of JY human lymphoblasts. Immunol. Lett. 54: 221–226, 1996.PubMedCrossRefGoogle Scholar
  5. Cacciatore, T. W., P. D. Brodfuehrer, J. E. Gonzalez, T. Jiang, S. R. Adams, R. Y. Tsien, W. B. Kristan, Jr., and D. Kleinfeld. Identification of neural circuits by imaging coherent electrical activity with FRET-based dyes. Neuron 123: 449–459, 1999.CrossRefGoogle Scholar
  6. Chalfie, M. Green fluorescent protein. Photochem. Photobiol. 62: 651–656, 1995.PubMedCrossRefGoogle Scholar
  7. Diliberto, P. A., X. F. Wang, and B. Herman. Confocal imaging of Cat+ in cells. Methods Cell Biol. 40: 244–262, 1994.Google Scholar
  8. Gadella, T. W., Jr., and T. M. Jovin. Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy. A stereo-chemical model for tyrosine kinase receptor activation. J. Cell. Biol. 129: 1543–1558, 1995.PubMedCrossRefGoogle Scholar
  9. Gadella, T. W. Jr., T. M. Jovin, and R. M. Clegg. Fluorescence lifetime imaging microscopy (FLIM)—Spatial resolution of microstructures on the nanosecond time scale. Biophys. Chem. 48: 221–239, 1993.CrossRefGoogle Scholar
  10. Gonzalez, J. E., K. Oades, Y. Leychkis, A. Harootunian, and P. A. Negulescu. Cell-based assays and instrumentation for screening ion-channel targets. Drug Discovery Today 4: 431–439, 1999.PubMedCrossRefGoogle Scholar
  11. Gordon, G. W., G. Berry, N. P. Mahajan, X. H. Liang, B. Levine, and B. Herman. Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys. J. 74: 2702–2713, 1998.PubMedCrossRefGoogle Scholar
  12. Herman, B. Fluorescence Microscopy. Oxford, England: Bios Scientific Publishers, 1998, 170 pp. Herman, B., R. Wodnicki, S. Kwon, A. Periasamy, G. W. Gordon, N. R. Mahajan, and X. F.Google Scholar
  13. Wang. Recent developments in monitoring calcium and protein interactions in cells using florescence lifetime microscopy. J. Fluorescence 7: 85–91, 1997.CrossRefGoogle Scholar
  14. Jovin, T. M., D. J. Arndt-Jovin, G. Marriott, R. M. Clegg, M. Robert Nicoud, and T. Schormann. Distance, wavelength and time: The versatile 3rd dimensions in light emission microscopy. In: Optical Microscopy for Biology, edited by B. Herman and K. Jacobson. New York: Wiley, 1990, pp. 575–602.Google Scholar
  15. Jurgens, L., D. J. Arndt-Jovin, I. Pecht, and T. M. Jovin. Proximity relationships between the type I receptor for Fc epsilon (Fc epsilon RI) and the mast cell function-associated antigen (MAFA) studied by donor photobleaching fluorescence resonance energy transfer microscopy. Eur. J. Immunol. 26: 84–91, 1996.PubMedCrossRefGoogle Scholar
  16. Lakowicz, J. R., and K. Berndt. Lifetime-selective fluorescence imaging using an rf phase-sensitive camera. Rev. Sci. Instrum. 62: 1727–1734, 1991.CrossRefGoogle Scholar
  17. Liang, X. H., M. Volkmann, R. Klein, B. Herman, and S. J. Lockett. Co-localization of the tumor suppressor protein p53 and human papillomavirus E6 protein in human cervical carcinoma cell lines. Oncogene 8: 2645–2652, 1993.PubMedGoogle Scholar
  18. Mahajan, N. P., K. Linder, G. Berry, G. W. Gordon, R. Tsien, R. Heim, and B. Herman. Bc12 and Bax interactions in mitochondria probed with fluorescent protein and fluorescence resonance energy transfer. Nat. Biotechnol. 16: 547–552, 1998.PubMedCrossRefGoogle Scholar
  19. Mahajan, N. R, D. C. Harrison-Shostak, J. Michaux, and B. Herman. Novel mutant green fluorescent protein protease substrates reveal the activation of specific caspases during apoptosis. Chem. Biol. 6: 401–409, 1999.PubMedCrossRefGoogle Scholar
  20. Mere, L., T. Bennet, P. Cassin, P. England, B. Hamman, T. Rink, S. Zimermean, and P. Negulescu. Miniaturized FRET assays and microfluidics: Key components for ultrahigh-throughput screening. Drug Discovery Today 4: 363–369, 1999.PubMedCrossRefGoogle Scholar
  21. Miyawaki, A., O. Griesbeck, R. Heim, and R. Y. Tsien. Dynamic and quantitative Cat+ measurements using improved cameleons. Proc. Natl. Acad. Sci. U.S.A. 96: 2135–2140, 1999.PubMedCrossRefGoogle Scholar
  22. Miyawaki, A., J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, and R. Y. Tsien. Fluorescent indicators for Cat+ based on green fluorescent proteins and calmodulins. Nature 388: 882–887, 1998.Google Scholar
  23. Oida, T., Y. Sako, and A. Kusumi. Fluorescence lifetime imaging microscopy (flimscopy). Methodology development and application to studies of endosome fusion in single cells. Biophys. J. 64: 676–685, 1993.PubMedCrossRefGoogle Scholar
  24. Periasamy, A., X. F. Wang, P. Wodnicki, G. W. Gordon, S. Kwon, P. A. Diliberto, and B. Herman. High speed fluorescence microscopy: Lifetime imaging in the biomedical sciences. J. Microsc. Soc. Am. 1: 13–23, 1995.Google Scholar
  25. Periasamy, A., P. Wodnicki, X. F. Wang, S. Kwon, G. W. Gordon, and B. Herman. Time resolved fluorescence lifetime imaging microscopy (TRFLIM) using a picosecond pulsed tunable dye laser system. Rev. Sci. Instrum. 67: 3722–3731, 1996.CrossRefGoogle Scholar
  26. Wang, X. F., A. Periasamy, D. M. Coleman, and B. Herman. Fluorescence lifetime imaging microscopy: Instrumentation and application. CRC Crit. Rev. Anal. Chem. 23 (5): 1–26, 1992.CrossRefGoogle Scholar
  27. Wouters, F. S., and P. I. H. Bastiaens. Fluorescence lifetime imaging of receptor tyrosine kinase activity in cells. Curr. Biol. 9: 1127–1130, 1999.PubMedCrossRefGoogle Scholar
  28. Xu, Y., D. W. Piston, and C. H. Johnson. A bioluminescence resonance energy transfer (BRET) system: Application to interacting circadian clock proteins. Proc. Natl. Acad. Sci. U.S.A. 96: 151–156, 1999.PubMedCrossRefGoogle Scholar
  29. Zlokarnik, G., P. A. Negulescu, T. E. Knapp, L. Mere, N. Burres, L. Feng, M. Whitney, K. Roemer, and R. Y. Tsien. Quantification of transcription and clonal selection of single living cells with beta-lactamase as reporter. Science 279: 84–88, 1998.PubMedCrossRefGoogle Scholar

Copyright information

© American Physiological Society 2001

Authors and Affiliations

  • Brian Herman
  • Gerald Gordon
  • Nupam Mahajan
  • Victoria Centonze

There are no affiliations available

Personalised recommendations