Leukocyte Recruitment as Seen by Intravital Microscopy

  • Klaus Ley
Part of the Methods in Physiology Series book series (METHPHYS)


The term leukocyte recruitment encompasses all events that bring circulating leukocytes into inflamed tissues. Recruitment is thought to proceed in a cascade-like fashion (Ley, 1989; Butcher, 1991; Springer, 1995; Fig. 16.1). This cascade has many rocks, nooks, and dead-water zones because there are parallel pathways and many decision points along the way. In inflammation, neutrophils, eosinophils, monocytes, T-lymphocytes, and even basophils and B-lymphocytes can be recruited. Intravital microscopy is limited in its ability to distinguish leukocyte subpopulations. In most tissues and most models of inflammation, the neutrophil is the most prevalent cell. Therefore, this chapter uses neutrophil recruitment as an example to illustrate the determinants, parameters, models, and physiology of leukocyte recruitment.


Wall Shear Stress Blood Flow Velocity Leukocyte Adhesion Leukocyte Recruitment Intravital Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aigner, S., Ramos, C. L., Hafezi-Moghadam, A., Lawrence, M. B., Altevogt, P., and Ley, K. (1998) CD24 mediates rolling of breast carcinoma cells on P-selectin. FASEB J. 12: 1241–1251.PubMedGoogle Scholar
  2. Allport, J. R., Ding, H., Collins, T., Gerritsen, M. E., and Luscinskas, F. W. (1997) Endothelial-dependent mechanisms regulate leukocyte transmigration—a process involving the proteasome and disruption of the vascular endothelial–cadherin complex at endothelial cell-to-cell junctions. J. Exp. Med. 186: 517–527.PubMedCrossRefGoogle Scholar
  3. Alon, R., Feizi, T., Yuen, C.-T., Fuhlbrigge, R. C., and Springer, T. A. (1995a) Glycolipid ligands for selectins support leukocyte tethering and rolling under physiologic flow conditions. J. Immunol. 154: 5356–5366.PubMedGoogle Scholar
  4. Alon, R., Kassner, P. D., Carr, M. W., Finger, E. B., Hemler, M. E., and Springer, T. A. (1995b) The integrin VLA 4 supports tethering and rolling in flow on VCAM-1. J Cell Biol. 128: 1243–1254.PubMedCrossRefGoogle Scholar
  5. Alon, R., Fuhlbrigge, R. C., Finger, E. B., and Springer, T. A. (1996) Interactions through Lselectin between leukocytes and adherent leukocytes nucleate rolling adhesions on selectins and VCAM-1 in shear flow. J Cell Biol. 135: 849–865.PubMedCrossRefGoogle Scholar
  6. Anderson, D. C., and Springer, T. A. (1987) Leukocyte adhesion deficiency: An inherited defect in the Mac-1, LFA-1 and p150,95 glycoproteins. Annu. Rev. Med. 38: 175–194.PubMedCrossRefGoogle Scholar
  7. Arbones, M. L., Ord, D. C., Ley, K., Ratech, H., Maynard-Curry, C., Otten, G., Capon, D. J., and Tedder, T. F. (1994) Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immun. 1: 247–260.CrossRefGoogle Scholar
  8. Arfors, K.-E., Lundberg, C., Lindbom, L., Lundberg, K., Beatty, P. G., and Harlan, J. M. (1987) A monoclonal antibody to the membrane glycoprotein complex CD18 inhibits polymorphonuclear leukocyte accumulation and plasma leakage in vivo. Blood 69: 338–340.PubMedGoogle Scholar
  9. Argenbright, L. W., Letts, L. G., and Rothlein, R. (1991) Monoclonal antibodies to the leukocyte membrane CD18 glycoprotein complex and to Intercellular Adhesion Molecule-1 inhibit leukocyte-endothelial adhesion in rabbits. J. Leukoc. Biol 49: 253–257.PubMedGoogle Scholar
  10. Armstead, V. E., Minchenko, A. G., Schuhl, R. A., Hayward, R., Nossull, T. O., and Lefer, A. M. (1997) Regulation of P-selectin expression in human endothelial cells by nitric oxide. Am. J. Physiol. 273: H740 - H746.PubMedGoogle Scholar
  11. Asa, D., Raycroft, L., Ma, L., Aeed, P. A., Kaytes, P. S., Elhammer, A. P., and Geng, J.-G (1995) The P-selectin glycoprotein ligand functions as a common human leukocyte ligand for P- and E-selectins. J Biol. Chem. 270: 11662–11670.PubMedCrossRefGoogle Scholar
  12. Atherton, A., and Born, G.V.R. (1972) Quantitative investigations of the adhesiveness of circulating polymorphonuclear leukocytes to blood vessels. J. Physiol. (Lond.) 222: 447–474.Google Scholar
  13. Atherton, A., and Born, G.V.R. (1973) Relationship between the velocity of rolling granulocytes and that of the blood flow in venules. J. Physiol. (Lond.) 233: 157–165.Google Scholar
  14. Baez, S. (1973) An open cremaster muscle preparation for the study of blood vessels by in vivo microscopy. Microvasc. Res. 5: 384–394.PubMedCrossRefGoogle Scholar
  15. Bagge, U., Amundson, B., and Lauritzen, C. (1980) White blood cell deformability and plugging of skeletal muscle capillaries in hemorrhagic shock. Acta Physiol. Scand. 180: 159–163.CrossRefGoogle Scholar
  16. Bagge, U., Blixt, A., and Strid, K. G. (1983) The initiation of post-capillary margination of leukocytes: Studies in vitro on the influence of erythrocyte concentration and flow velocity. Int. J. Microcirc: Clin. Exp. 2: 215–227.Google Scholar
  17. Baker, M., and Wayland, H. (1974) On-line volume flow rate and velocity profile measurement for blood in microvessels. Microvasc. Res. 7: 131–143.PubMedCrossRefGoogle Scholar
  18. Bargatze, R. F., and Butcher, E. C. (1993) Rapid G-protein-regulated activation event involved in lymphocyte binding to high endothelial venules. J. Exp. Med. 178: 367–372.PubMedCrossRefGoogle Scholar
  19. Bargatze, R. F., Kurk, S., Butcher, E. C., and Jutila, M. A. (1994) Neutrophils roll on adherent neutrophils bound to cytokine-induced endothelial cells via L-selectin on the rolling cells. J. Exp. Med. 180: 1785–1792.PubMedCrossRefGoogle Scholar
  20. Berlin, C., Bargatze, R. F., Campbell, J. J., von Andrian, U. H., Szabo, M. C., Hasslen, S. R., Nelson, R. D., Berg, E. L., Eriandsen, S. L., and Butcher, E. C. (1995) a, Integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell 80: 413–422.Google Scholar
  21. Bevilacqua, M. P., Stengelin, S., Gimbrone, M. A., Jr., and Seed, B. (1989) Endothelial leukocyte adhesion molecule-1: An inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science 243: 1160–1165.PubMedCrossRefGoogle Scholar
  22. Bienvenu, K., and Granger, D. N. (1993) Molecular determinants of shear rate-dependent leukocyte adhesion in postcapillary venules. Am. J. Physiol 264, H1504 - H1508.PubMedGoogle Scholar
  23. Björk, J., Hedqvist, P., and Arfors, K.-E. (1982) Increase in vascular permeability induced by leukotriene B4 and the role of polymorphonuclear leukocytes. Inflamm. 6: 189–200.CrossRefGoogle Scholar
  24. Bollinger, A., Herrig, I., Fischer, M., Hoffmann, U., and Franzeck, U. K. (1995) Intravital capillaroscopy in patients with chronic venous insufficiency and lymphoedema—relevance to daflon 500 mg. Int. J. Microcirc. Clini. Exp. 15 (1): 41–44.CrossRefGoogle Scholar
  25. Borges, E., Eytner, R., Moll, T., Steegmaler, M., Campbell, M. A., Ley, K., Mossmann, H., and Vestweber, D. (1997) The P-selectin glycoprotein ligand-1 is important for recruitment of neutrophils into inflamed mouse peritoneum. Blood 90: 1934–1942.PubMedGoogle Scholar
  26. Buhrie, C. P., Hackenthal, E., Helmchen, U., Lackner, K., Nobiling, R., Steinhausen, M., and Taugner, R. (1986) The hydronephrotic kidney of the mouse as a tool for intravital microscopy and in vitro electrophysiological studies of renin-containing cells. Lab. Invest. 54: 462472.Google Scholar
  27. Bullard, D. C., Kunkel, E. J., Kubo, H., Hicks, M. J., Lorenzo, I., Doyle, N. A., Doerschuk, C. M., Ley, K., and Beaudet, A. L. (1996) Infectious susceptibility and severe deficiency of leukocyte rolling and recruitment in E-selectin and P-selectin double mutant mice. J. Exp. Med. 183: 2329–2336.PubMedCrossRefGoogle Scholar
  28. Butcher, E. C. (1991) Leukocyte-endothelial cell recognition—three (or more) steps to specificity and diversity. Cell 67: 1033–1036.PubMedCrossRefGoogle Scholar
  29. Buttrum, S. M., Hatton, R., and Nash, G. B. (1993) Selectin-mediated rolling of neutrophils on immoblized platelets. Blood 82: 1165–1174.PubMedGoogle Scholar
  30. Cacalano, G., Lee, J., Kikly, K., Ryan, A. M., Pitts-Meek, S., Hultgren, B., Wood, W. I., and Moore, M. W. (1994) Neutrophil and B-cell expansion in mice that lack the murine IL-8 receptor homolog. Science 265: 682–684.PubMedCrossRefGoogle Scholar
  31. Chien, S., Usami, S., and Skalak, R. (1984) Blood flow in small tubes. In: Handbook of Physiology: The Cardiovascular System: Microcirculation. E. M. Renkin and C. C. Michel, eds. Bethesda, MD: American Physiological Society, pp. 217–249.Google Scholar
  32. Collins, R. G., Velji, R., Guevara, N. V., Hicks, M. J., Chan, L., and Beaudet, A. L. (2000) P-selectin or ICAM-1 deficiency substantially protects against atherosclerosis in apo E-deficient mice. J Exp. Med. 191: 189–194.PubMedCrossRefGoogle Scholar
  33. Cybulsky, M. I., McComb, D. J., and Movat, H. Z. (1989) Protein synthesis dependent and independent mechanisms of neutrophil emigration. Am. J. Pathol. 135: 227–237.PubMedGoogle Scholar
  34. Damiano, E. R., Westheider, J., Tözeren, A., and Ley, K. (1996) Variation in the velocity, deformation, and adhesion energy density of leukocytes rolling within venules. Circ. Res. 79: 1122–1130.PubMedCrossRefGoogle Scholar
  35. Diacovo, T. G., Puri, K. D., Warnock, R. A., Springer, T. A., and von Andrian, U. H. (1996) Platelet-mediated lymphocyte delivery to high endothelial venules. Science 273: 252–255.PubMedCrossRefGoogle Scholar
  36. Diamond, M. S., Staunton, D. E., de Fougerolles, A. R., Stacker, S. A., Garcia-Aguilar, J., Hibbs, M. L., and Springer, T. A. (1990) ICAM-1 (CD54): A counter-receptor for Mac-1 (CD11b/ CD18). J. Cell Biol. 111: 3129–3139.PubMedCrossRefGoogle Scholar
  37. Doré, M., Korthuis, R. J., Granger, D. N., Entman, M. L., and Smith, C. W. (1993) P-selectin mediates spontaneous leukocyte rolling in vivo. Blood 82: 1308–1316.PubMedGoogle Scholar
  38. Duling, B. R. (1973) The preparation and use of the hamster cheek pouch for studies of the microcirculation. Microvasc. Res. 5: 423–429.PubMedCrossRefGoogle Scholar
  39. Duncan, G. S., Andrew, D. P., Takimoto, H., Kaufman, S. A., Yoshida, H., Spellberg, J., de la Pompa, J. L., Elia, A., Wakeham, A., Karan-Tamir, B., et al. (1999) Genetic evidence for functional redundancy of platelet/endothelial cell adhesion molecule-1 (PECAM-1): CD31deficient mice reveal PECAM-1-dependent and PECAM-1-independent functions. J Immunol. 162: 3022–3030.PubMedGoogle Scholar
  40. Dustin, M. L., and Springer, T. A. (1988) Lymphocyte function-associated antigen-1 (LFA-1) interaction with intercellular adhesion molecule-1 (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells. J. Cell Biol. 107: 321–331.PubMedCrossRefGoogle Scholar
  41. Fiebig, E., Ley, K., and Arfors, K.-E. (1991) Rapid leukocyte accumulation by “spontaneous” rolling and adhesion in the exteriorized rabbit mesentery. Int. J. Microcirc: Clin. Exp. 10: 127–144.Google Scholar
  42. Finger, E. B., Puri, K. D., Mon, R., Lawrence, M. B., von Andrian, U. H., and Springer, T. A. (1996) Adhesion through L-selectin requires a threshold hydrodynamic shear. Nature 379: 266–269.PubMedCrossRefGoogle Scholar
  43. Finkenauer, V., Bissinger, T., Funk, R.H.W., Karbowski, A., and Seiffge, D. (1999) Confocal laser scanning microscopy of leukocyte adhesion in the microcirculation of the inflamed rat knee joint capsule. Microcirc. 6: 141–152.Google Scholar
  44. Firrell, J. C., and Lipowsky, H. H. (1989) Leukocyte margination and deformation in mesenteric venules of rat. Am. J. Physiol. 256: H1667 - H1674.PubMedGoogle Scholar
  45. Forlow, S. B., Bullard, D. C., Lu, H. F., Beaudet, A. L., and Ley, K. (1999) Absence of slow leukocyte rolling and severe leukocyte recruitment defect in mice lacking E-selectin and CD18. FASEBJ 13: A311 (Abs).Google Scholar
  46. Foxman, E. F., Campbell, J. J., and Butcher, E. C. (1997) Multistep navigation and the combinatorial control of leukocyte chemotaxis. J. Cell Biol. 139: 1349–1360.PubMedCrossRefGoogle Scholar
  47. Frenette, P. S., Johnson, R. C., Hynes, M. R., and Wagner, D. D. (1995) Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin. Proc. Natl. Acad. Sci. USA 92: 7450–7454.PubMedCrossRefGoogle Scholar
  48. Frenette, P. S., Mayadas, T. N., Rayburn, H., Hynes, R. O., and Wagner, D. D. (1996) Susceptibility to infection and altered hematopoiesis in mice deficient in both P- and E-selectins. Cell 84: 563–574.PubMedCrossRefGoogle Scholar
  49. Fries, J.W.U., Williams, A. J., Atkins, R. C., Newman, W., Lipscomb, M. F., and Collins, T. (1993) Expression of VCAM-1 and E-selectin in an in vivo model of endothelial activation. Am. J. Pathol. 143: 725–737.PubMedGoogle Scholar
  50. Furie, M. B., Tancinco, M. C., and Smith, C. W. (1991) Monoclonal antibodies to leukocyte integrin CD11a/CD18 and integrin CD1 lb/CD18 or intercellular adhesion molecule-1 inhibit chemoattractant-stimulated neutrophil transendothelial migration in vitro. Blood 78: 2089–2097.PubMedGoogle Scholar
  51. Gaboury, J. P., Anderson, D. C., and Kubes, P. (1994) Molecular mechanisms involved in superoxide-induced leukocyte-endothelial cell interactions in vivo. Am. J. Physiol. 266: H637 - H642.PubMedGoogle Scholar
  52. Gaboury, J. P., Johnston, B., Niu, X.-F., and Kubes, P. (1995) Mechanisms underlying acute mast cell-induced leukocyte rolling and adhesion in vivo. J Immunol. 154: 804–813.PubMedGoogle Scholar
  53. Gaehtgens, P., Pries, A. R., and Nobis, U. (1984) Flow behaviour of white cells in capillaries. In: White Cell Mechanics: Basic Science and Clinical Aspects. H. J. Meiselman, M. A. Lichtman, and P. L. LaCelle, eds. New York: A. R. Liss, pp. 147–157.Google Scholar
  54. Gaehtgens, P., Ley, K., Pries, A. R., and Müller, R. (1985) Mutual interaction between leukocytes and microvascular blood flow. In: White Cell Rheology and Inflammation, K. Messmer and F. Hammersen, eds. Basel: Karger (Progress in Applied Microcirculation Series), volume 7, pp. 15–28.Google Scholar
  55. Gerritsen, M. E. (1987) Functional heterogeneity of vascular endothelial cells. Biochem. Pharmacol. 36: 2701–2711.PubMedCrossRefGoogle Scholar
  56. Gerwin, N., Gonzalo, J. A., Lloyd, C., Coyle, A. J., Reiss, Y., Banu, N., Wang, B. P., Xu, H., Avraham, H., Engelhardt, B., et al. (1999) Prolonged eosinophil accumulation in allergic lung interstitium of ICAM-2-deficient mice results in extended hyperresponsiveness. Immun 10: 919.CrossRefGoogle Scholar
  57. Goldman, A. J., Cox, R. G., and Brenner, H. (1967) Slow viscous motion of a sphere parallel to a plane wall. II. Couette flow. Chem. Eng. Sci. 22: 653–660.CrossRefGoogle Scholar
  58. Gotsch, U., Jager, U., Dominis, M., and Vestweber, D. (1994) Expression of P-selectin on endothelial cells is upregulated by LPS and TNF-a in vivo. Cell Adhesion and Commun. 2: 7–14.CrossRefGoogle Scholar
  59. Gotsch, U., Borges, E., Bosse, R., Boggemeyer, E., Simon, M., Mossmann, H., and Vestweber, D. (1997) VE-cadherin antibody accelerates neutrophil recruitment in vivo. J. Cell Sci. 110: 583–588.PubMedGoogle Scholar
  60. Grabowski, E. F., Jaffe, E. A., and Weksler, B. B. (1985) Prostacyclin production by cultured endothelial cell monolayers exposed to step increases in shear stress. J. Lab. Clin. Med. 105: 3643.Google Scholar
  61. Guan, J.-L., and Hynes, R. O. (1990) Lymphoid cells recognize an alternatively spliced segment of fibronectin via the integrin receptor a4ß,. Cell 60: 53–61.PubMedCrossRefGoogle Scholar
  62. Gurtner, G. C., Davis, V., Li, H., McCoy, M. J., Sharpe, A., and Cybulsky, M. I. (1995) Targeted disruption of the murine VCAM-1 gene: essential role of VCAM-1 in chorioallantoic fusion and placentation. Genes Dev. 9: 1–14.PubMedCrossRefGoogle Scholar
  63. Hafezi-Moghadam, A., and Ley, K. (1999) Relevance of L-selectin shedding for leukocyte rolling in vivo. J. Exp. Med. 189: 939–948.PubMedCrossRefGoogle Scholar
  64. Hammer, D. A., and Apte, S. M. (1992) Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion. Biophys. J 63: 35–57.PubMedCrossRefGoogle Scholar
  65. Hickey, M. J., Kanwar, S., McCafferty, D. M., Granger, D. N., Eppihimer, M. J., and Kubes, P. (1999) Varying roles of E-selectin and P-selectin in different microvascular beds in response to antigen. J. Immunol. 162: 1137–1143.PubMedGoogle Scholar
  66. House, S. D., and Lipowsky, H. H. (1987) Leukocyte—endothelium adhesion: Microhemodynamics in mesentery of the cat. Microvaso. Res. 34: 363–379.CrossRefGoogle Scholar
  67. House, S. D., and Lipowsky, H. H. (1988) In vivo determination of the force of leukocyte—endothelium adhesion in the mesenteric microvasculature of the cat. Circ. Res. 63: 658–668.PubMedCrossRefGoogle Scholar
  68. Huber, A. R., Kunkel, S. L., Todd, R. F., and Weiss, S. J. (1991) Regulation of transendothelial neutrophil migration by endogenous interleukin-8. Science 254: 99–102.PubMedCrossRefGoogle Scholar
  69. Hynes, R. O. (1992) Integrins: Versatility, modulation, and signaling in cell adhesion. Cell 69: 1125.CrossRefGoogle Scholar
  70. Ignarro, L.J. (1990) Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu. Rev. Pharmacol. Toxicof 30: 535–560.CrossRefGoogle Scholar
  71. Intaglietta, M., Tompkins, W. R., and Richardson, D. R. (1970) Velocity measurements in the microvasculature of the cat omentum by on-line method. Microvasc. Res. 2: 462–473.PubMedCrossRefGoogle Scholar
  72. Janssen, G.H.G.W., Tangelder, G. J., oude Egbrink, M.G.A., and Reneman, R. S. (1994) Spontaneous leukocyte rolling in venules in untraumatized skin of conscious and anesthetized animals. Am. J. Physiol. 267: H1199 - H1204.PubMedGoogle Scholar
  73. Johnson, R. C., Mayadas, T. N., Frenette, P. S., Mebius, R. E., Subramaniam, M., Lacasce, A., Hynes, R. O., and Wagner, D. D. (1995) Blood cell dynamics in P-selectin deficient mice. Blood 86: 1106–1114.PubMedGoogle Scholar
  74. Johnson, R. C., Chapman, S. M., Dong, Z. M., Ordovas, J. M., Mayadas, T. N., Herz, J., Hynes, R. O., Schaefer, E. J., and Wagner, D. D. (1997) Absence of P-selectin delays fatty streak formation in mice. J. Clin. Invest. 99: 1037–1043.PubMedCrossRefGoogle Scholar
  75. Johnson-Tidey, R. R., McGregor, J. L., Taylor, P. R., and Poston, R. N. (1994) Increase in the adhesion molecule P-selectin in endothelium overlying atherosclerotic plaques: Coexpression with intercellular adhesion molecule-1. Am. J. Pathol. 144: 952–961.PubMedGoogle Scholar
  76. Jones, D. A., McIntire, L. V., Smith, C. W., and Picker, L. J. (1994) A two-step adhesion cascade for T-cell/endothelial cell interactions under flow conditions. J. Clin. Invest. 94: 2443–2450.PubMedCrossRefGoogle Scholar
  77. Jung, U., Bullard, D. C., Tedder, T. F., and Ley, K. (1996) Velocity difference between L-selectin and P-selectin dependent neutrophil rolling in venules of the mouse cremaster muscle in vivo. Am. J. Physiol. 271: H2740 - H2747.PubMedGoogle Scholar
  78. Jung, U., and Ley, K. (1997) Regulation of E-selectin, P-selectin and ICAM-1 expression in mouse cremaster muscle vasculature. Microcirc. 4: 311–319.CrossRefGoogle Scholar
  79. Jung, U., Norman, K. E., Ramos, C. L., Scharffetter-Kochanek, K., Beaudet, A. L., and Ley, K. (1998a) Transit time of leukocytes rolling through venules controls cytokine-induced inflammatory cell recruitment in vivo. J Clin. Invest. 102: 1526–1533.PubMedCrossRefGoogle Scholar
  80. Jung, U., Ramos, C. L., Bullard, D. C., and Ley, K. (1998b) Gene-targeted mice reveal the importance of L-selectin—dependent rolling for neutrophil adhesion. Am. J. Physiol. 274: H1785 - H1791.PubMedGoogle Scholar
  81. Jung, U., and Ley, K. (1999) Mice lacking two or all three selectins demonstrate overlapping and distinct functions of each selectin. J. Immunol. 162: 6755–6762.PubMedGoogle Scholar
  82. Kaminski, P. M., and Proctor, K. G. (1989) Attenuation of no-reflow phenomenon, neutrophil activation, and reperfusion injury in intestinal microcirculation by topical adenosine. Circ. Res. 65: 426–435.PubMedCrossRefGoogle Scholar
  83. Kansas, G. S. (1996) Selectins and their ligands: current concepts and controversies. Blood 88: 3259–3287.PubMedGoogle Scholar
  84. Kanwar, S., Johnston, B., and Kubes, P. (1995) Leukotriene C4/D4 induces P-selectin and sialyl Lewis“-dependent alterations in leukocyte kinetics in vivo. Circ. Res. 77: 879–887.PubMedCrossRefGoogle Scholar
  85. Kanwar, S., Bullard, D. C., Hickey, M. J., Smith, C. W., Beaudet, A. L., Wolitzky, B. A., and Kubes, P. (1997) The association between a4 integrin, P-selectin, and E-selectin in an allergic model of inflammation. J. Exp. Med. 185: 1077–1087.PubMedCrossRefGoogle Scholar
  86. Kanwar, S., Steeber, D. A., Tedder, T. F., Hickey, M. J., and Kubes, P. (1999) Overlapping roles for L-selectin and P-selectin in antigen-induced immune responses in the microvasculature. J. Immunol. 162: 2709–2716.PubMedGoogle Scholar
  87. Kaplanski, G., Farnarier, C., Benoliel, A.-M., Foa, C., Kaplanski, S., and Bongrand, P. (1994) A novel role for E- and P-selectins: Shape control of endothelial cell monolayers. J. Cell Sci. 107: 2449–2457.PubMedGoogle Scholar
  88. Karasek, M. A. (1989) Microvascular endothelial cell culture. J. Invest. Dermatol. 93 (Suppl.): 33S - 38S.PubMedCrossRefGoogle Scholar
  89. Keelan, E. T., Licence, S. T., Peters, A. M., Binns, R. M., and Haskard, D. O. (1994) Characterization of E-selectin expression in vivo with use of a radiolabeled monoclonal antibody. Am. J. Physiol. 266: H278 - H290.PubMedGoogle Scholar
  90. King, P. D., Sandberg, E. T., Selvakumar, A., Fang, P., Beaudet, A. L., and Dupont, B. (1995) Novel isoforms of murine intercellular adhesion molecule-1 generated by alternative RNA splicing. J. Immunol. 154: 6080–6093.PubMedGoogle Scholar
  91. Klein, L. M., Lavker, R. M., Matis, W. L., and Murphy, G. F. (1989) Degranulation of human mast cells induces an endothelial antigen central to leukocyte adhesion. Proc. Natl. Acad. Sci. USA 86: 8972–8976.PubMedCrossRefGoogle Scholar
  92. Koh, D. R., Fung-Leung, W. P., Ho, A., Gray, D., Acha-Orbea, H., and Mak, T. W. (1992) Less mortality but more relapses in experimental allergic encephalomyelitis in CD8 mice. Science 256: 1210–1213.PubMedCrossRefGoogle Scholar
  93. Kubes, P., Ibbotson, G., Russell, J. M., Wallace, J. L., and Granger, D. N. (1990) Role of platelet-activating factor in ischemia/reperfusion-induced leukocyte adherence. Am. J. Physiol. 259: G300 - G305.PubMedGoogle Scholar
  94. Kubes, P. (1993) Ischemia-reperfusion in feline small intestine: a role for nitric oxide. Am. J. Physiol. 264: G143 - G149.PubMedGoogle Scholar
  95. Kubes, P., Kurose, I., and Granger, D. N. (1994) NO donors prevent integrin-induced leukocyte adhesion but not P-selectin-dependent rolling in postischemic venules. Am. J. Physiol. 267: H931 - H937.PubMedGoogle Scholar
  96. Kubes, P., Niu, K., Smith, C. W., Kehrli, M. E., Reinhardt, P. H., and Woodman, R. C. (1995) A novel P1-dependent adhesion pathway on neutrophils: a mechanism invoked by dihydrocytochalasin B or endothelial transmigration. FASEB J 9: 1103–1111.PubMedGoogle Scholar
  97. Kunkel, E. J., Jung, U., Bullard, D. C., Norman, K. E., Wolitzky, B. A., Vestweber, D., Beaudet, A. L., and Ley, K. (1996) Absence of trauma-induced leukocyte rolling in mice deficient in both P-selectin and intercellular adhesion molecule-1 (ICAM-1). J. Exp. Med. 183: 57–65.PubMedCrossRefGoogle Scholar
  98. Kunkel, E.J., and Ley, K. (1996) Distinct phenotype of E-selectin deficient mice: E-selectin is required for slow leukocyte rolling in vivo. Circ. Res. 79: 1196–1204.PubMedCrossRefGoogle Scholar
  99. Kunkel, E. J., Jung, U., and Ley, K. (1997) TNF-a induces selectin-dependent leukocyte rolling in mouse cremaster muscle arterioles. Am. J. Physiol. 272: H1391 - H1400.PubMedGoogle Scholar
  100. Kunkel, E.J., Chomas, J. E., and Ley, K. (1998) Role of primary and secondary capture for leukocyte accumulation in vivo. Circ. Res. 82: 30–38.PubMedCrossRefGoogle Scholar
  101. Kunkel, E. J., Dunne, J. L., and Ley, K. (2000) Leukocyte arrest during cytokine-dependent inflammation in vivo. J. Immunol. 164: 3301–3308.PubMedGoogle Scholar
  102. Lawrence, M. B., and Springer, T. A. (1991) Leukocytes roll on a selectin at physiologic flow rates: Distinction from and prerequisite for adhesion through integrins. Cell 65: 859–873.PubMedCrossRefGoogle Scholar
  103. Lawrence, M. B., and Springer, T. A. (1993) Neutrophils roll on E-selectin. J. Immunol. 151: 6338–6346.PubMedGoogle Scholar
  104. Lawrence, M. B., Bainton, D. F., and Springer, T. A. (1994) Neutrophil tethering to and rolling on E-selectin are separable by requirement for L-selectin. Immun. 1: 137–145.CrossRefGoogle Scholar
  105. Lawrence, M. B., Kansas, G. S., Ghosh, S., Kunkel, E.J., and Ley, K. (1997) Threshold levels of fluid shear promote leukocyte adhesion through selectins (CD62L, P, E). J. Cell Biol. 136: 717–727.PubMedCrossRefGoogle Scholar
  106. Lehr, H. A., Leunig, M., Menger, M. D., Nolte, D., and Messmer, K. (1993) Dorsal skinfold chamber technique for intravital microscopy in nude mice. Am. J. Pathof 143: 1055–1062.Google Scholar
  107. Lenter, M., Levinovitz, A., Isenmann, S., and Vestweber, D. (1994) Monospecific and common glycoprotein ligands for E- and P-selectin in myeloid cells. J. Cell. Biol. 125: 471–481.PubMedCrossRefGoogle Scholar
  108. Ley, K., Lindbom, L., and Arfors, K.-E. (1988) Hematocrit distribution in rabbit tenuissimus muscle. Acta Physiol, Scand. 132: 373–383.Google Scholar
  109. Ley, K. (1989) Granulocyte adhesion to microvascular and cultured endothelium. Studia Biophys. 134: 179–184.Google Scholar
  110. Ley, K., Cerrito, M., and Arfors, K. -E. (1991a) Sulfated polysaccharides inhibit leukocyte rolling in rabbit mesentery venules. Am. J. Physiol. 260: H1667 - H1673.PubMedGoogle Scholar
  111. Ley, K., and Gaehtgens, P. (1991) Endothelial, not hemodynamic differences are responsible for preferential leukocyte rolling in venules. Circ. Res. 69: 1034–1041.PubMedCrossRefGoogle Scholar
  112. Ley, K., Gaehtgens, P., Fennie, C., Singer, M. S., Lasky, L. A., and Rosen, S. D. (1991b) Lectinlike cell adhesion molecule-1 mediates leukocyte rolling in mesenteric venules in vivo. Blood 77: 2553–2555.PubMedGoogle Scholar
  113. Ley, K., Gaehtgens, P., and Spanel-Borowski, K. (1992) Differential adhesion of granulocytes to five distinct phenotypes of cultured microvascular endothelial cells. Microvasc. Res. 43: 119–133.PubMedCrossRefGoogle Scholar
  114. Ley, K., Baker, J. B., Cybulsky, M. I., Gimbrone, M. A. Jr., and Luscinskas, F. W. (1993a) Intravenous interleukin-8 inhibits granulocyte emigration from rabbit mesenteric venules without altering L-selectin expression or leukocyte rolling. J. Immunol. 151: 6347–6357.PubMedGoogle Scholar
  115. Ley, K., Linnemann, G., Meinen, M., Stoolman, L. M., and Gaehtgens, P. (1993b) Fucoidin, but not yeast polyphosphomannan PPME inhibits leukocyte rolling in venules of the rat mesentery. Blood 81: 177–185.PubMedGoogle Scholar
  116. Ley, K., Tedder, T. F., and Kansas, G. S. (1993c) L-selectin can mediate leukocyte rolling in untreated mesenteric venules in vivo independent of E- or P-selectin. Blood 82: 1632–1638.PubMedGoogle Scholar
  117. Ley, K. (1994) Histamine can induce leukocyte rolling in rat mesenteric venules. Am. J. Physiol. 267: H1017 - H1023.PubMedGoogle Scholar
  118. Ley, K. (1995) Gene-targeted mice in leukocyte adhesion research. Microcirc. 2: 141–150.CrossRefGoogle Scholar
  119. Ley, K., Bullard, D. C., Arbones, M. L., Bosse, R., Vestweber, D., Tedder, T. F., and Beaudet, A. L. (1995a) Sequential contribution of L- and P-selectin to leukocyte rolling in vivo. J. Exp. Med. 181: 669–675.PubMedCrossRefGoogle Scholar
  120. Ley, K., Zakrzewicz, A., Hanski, C., Stoolman, L. M., and Kansas, G. S. (1995b) Sialylated Oglycans and L-selectin sequentially mediate myeloid cell rolling in vivo. Blood 85: 3727–3735.PubMedGoogle Scholar
  121. Ley, K. (1997) The selectins as rolling receptors. In The Selectins: Initiators of Leukocyte Endothelial Adhesion. D. Vestweber, ed. Amsterdam, The Netherlands: Harwood Academic, pp. 63–104.Google Scholar
  122. Ley, K., Allietta, M., Bullard, D. C., and Morgan, S. J. (1998) The importance of E-selectin for firm leukocyte adhesion in vivo. Circ. Res. 83: 287–294.PubMedCrossRefGoogle Scholar
  123. Lien, D. C., Henson, P. M., Capen, R. L., Henson, J. E., Hanson, W. L., Wagner, W. W., and Worthen, G. S. (1991) Neutrophil kinetics in the pulmonary microcirculation during acute inflammation. Lab. invest. 65: 145–159.PubMedGoogle Scholar
  124. Lipowsky, H. H., and Zweifach, B. W. (1978) Application of the “two-slit” photometric technique to the measurement of microvascular volumetric flow rates. Microvasc. Res. 15: 93–101.PubMedCrossRefGoogle Scholar
  125. Lorant, D. E., Topham, M. K., Whatley, R. E., McEver, R. P., McIntyre, T. M., Prescott, S. M., and Zimmerman, G. A. (1993) Inflammatory roles of P-selectin. J. Clin. Invest. 92: 559–570.PubMedCrossRefGoogle Scholar
  126. Lorenzi, S., Koedel, U., Dimagi, U., Ruckdeschel, G., and Pfister, H. W. (1993) Imaging of leukocyte—endothelium interaction using in vivo confocal laser scanning microscopy during the early phase of experimental pneumococcal meningitis. J. Infect. Dis. 168: 927–933.CrossRefGoogle Scholar
  127. Lu, H. F., Smith, C. W., Perrard, J., Bullard, D., Tang, L. P., Shappell, S. B., Entman, M. L., Beaudet, A. L., and Ballantyne, C. M. (1997) LFA-1 is sufficient in mediating neutrophil emigration in Mac-1 deficient mice. J. Clin. Invest. 99: 1340–1350.PubMedCrossRefGoogle Scholar
  128. Lundberg, C., and Arfors, K.-E. (1983) Polymorphonuclear leukocyte accumulation in inflammatory dermal sites as measured by 51Cr-labelled cells and myeloperoxidase. Inflamm. 7: 247–255.CrossRefGoogle Scholar
  129. Luscinskas. F. W., Ding, H., and Lichtman, A. H. (1995) P-selectin and vascular cell adhesion molecule 1 mediate rolling and arrest, respectively, of CD4’ T lymphocytes on tumor necrosis factor a-activated vascular endothelium under flow. J Exp. Med. 181: 1179–1186.PubMedCrossRefGoogle Scholar
  130. Majuri, M. L., Pinola, M., Niemelä, R., Tiisala, S., Natunen, J., Renkonen, O., and Renkonen, R. (1994) A2,3-Sialyl and a1,3-fucosyltransferase-dependent synthesis of sialyl Lewis x, an essential oligosaccharide present on L-selectin counterreceptors, in cultured endothelial cells. Eur. J. Immunol. 24: 3205–3210.PubMedCrossRefGoogle Scholar
  131. Manjunath N., Shankar, P., Stockton, B., Dubey, P. D., Lieberman, J., and von Andrian, U. H. (1999) A transgenic mouse model to analyze CD8’ effector T cell differentiation in vivo. Proc. Natl. Acad. Sci. U.S.A. 96: 13932–13937.PubMedCrossRefGoogle Scholar
  132. Mayadas, T. N., Johnson, R. C., Rayburn, H., Hynes, R. O., and Wagner, D. D. (1993) Leukocyte rolling and extravasation are severely compromised in P-selectin-deficient mice. Cell 74: 54 1554.Google Scholar
  133. Mayrovitz, H. N., Tuma, R. F., and Wiedeman, M. P. (1980) Leukocyte adherence in arterioles following extravascular tissue trauma. Microvasc. Res. 20: 264–274.PubMedCrossRefGoogle Scholar
  134. Mayrovitz, H. N. (1992) Leukocyte rolling: A prominent feature of venules in intact skin of anesthetized hairless mice. Am. J. Physiol. 262: H157 - H161.PubMedGoogle Scholar
  135. Metcalf, D., Lindeman, G. J., and Nicola, N. A. (1995) Analysis of hematopolesis in max 41 transgenic mice that exhibit sustained elevations of blood granulocytes and monocytes. Blood 85: 2364–2370.PubMedGoogle Scholar
  136. Metchnikoff, M. E. (1893) Lectures on the Comparative Pathology of Inflammation. London, Kegan Paul, Trench & Truebner.Google Scholar
  137. Middleton, J., Neil, S., Wintle, J., Clarklewis, I., Moore, H., Lam, C., Auer, M., Hub, E., and Rot, A. (1997) Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell 91: 385–395.PubMedCrossRefGoogle Scholar
  138. Milstone, D. S., Fukumura, D., Padgett, R. C., O’Donnell, P. E., Davis, V. M., Benavidez, O. J., Monsky, W. L., Melder, R. J., Jain, R. K., and Gimbrone, M. A. (1998) Mice lacking E-selectin show normal numbers of rolling leukocytes but reduced leukocyte stable arrest on cytokine-activated microvascular endothelium. Microcirc. 5: 153–171.Google Scholar
  139. Miyamoto, K., Ogura, Y., Hamada, M., Nishiwaki, H., Hiroshiba, N., Tsujikawa, A., Mandai, M., Suzuma, K., Tojo, S. J., and Honda, Y. (1998) In vivo neutralization of P-selectin inhibits leukocyte–endothelial interactions in retinal microcirculation during ocular inflammation. Microvasc. Res. 55: 230–240.PubMedCrossRefGoogle Scholar
  140. Mizgerd, J. P., Kubo, H., Kutkoski, G. J., Bhagwan, S. D., Scharffetter-Kochanek, K., Beaudet, A. L., and Doerschuk, C. M. (1997) Neutrophil emigration in the skin, lungs, and peritoneum—different requirements for CD11/CD18 revealed by CD18-deficient mice. J. Exp. Med. 186: 1357–1364.PubMedCrossRefGoogle Scholar
  141. Morgan, S. J., Moore, M. W., Cacalano, G., and Ley, K. (1997) Reduced leukocyte adhesion response and absence of slow leukocyte rolling in interleukin-8 (IL-8) receptor deficient mice. Microvasc. Res. 54: 188–191.PubMedCrossRefGoogle Scholar
  142. Mori, E., Del Zoppo, G. J., Chambers, J. D., Copeland, B. R., and Arfors, K. E. (1992) inhibition of polymorphonuclear leukocyte adherence suppresses no-reflow after focal cerebral ischemia in baboons. Stroke 23: 712–718.Google Scholar
  143. Muller, W. A., Weigl, S. A., Deng, X., and Phillips, D. M. (1993) PECAM-1 is required for transendothelial migration of leukocytes. J. Exp. Med. 178: 449–460.PubMedCrossRefGoogle Scholar
  144. Naka, Y., Toda, K., Kayano, K., Oz, M. C., and Pinsky, D.J. (1997) Failure to express the Pselectin gene or P-selectin blockade confers early pulmonary protection after lung ischemia or transplantation. Proc. Natl. Acad. Sci. USA 94: 757–761.PubMedCrossRefGoogle Scholar
  145. Nguyen, L. S., Villablanca, A. C., and Rutledge, J. C. (1995) Substance P increases microvascular permeability via nitric oxide-mediated convective pathways. Am. J. Physiol. 268: R1060 - R1068.PubMedGoogle Scholar
  146. Nobis, U., Pries, A. R., Cokelet, G. R., and Gaehtgens, P. (1985) Radial distribution of white cells during blood flow in small tubes. Microvasc. Res. 29: 295–304.PubMedCrossRefGoogle Scholar
  147. Nolte, D., Schmid, P., Jager, U., Botzlar, A., Roesken, F., Hecht, R., Uhl, E., Messmer, K., and Vestweber, D. (1994) Leukocyte rolling in venules of striated muscle and skin is mediated by P-selectin, not by L-selectin. Am. J. Physiol. 267: H1637 - H1642.PubMedGoogle Scholar
  148. Norgard, K. E., Moore, K. L., Diaz, S., Stults, N. L., Ushiyama, S., McEver, R. P., Cummings, R. D., and Varki, A. (1993) Characterization of a specific ligand for P-selectin on myeloid cells. A minor glycoprotein with sialylated 0-linked oligosaccharides. J. Biol. Chem. 268: 12764–12774.PubMedGoogle Scholar
  149. Norman, K. E., Moore, K. L., McEver, R. P., and Ley, K. (1995) Leukocyte rolling in vivo is mediated by P-selectin glycoprotein ligand-1. Blood 86: 4417–4421.PubMedGoogle Scholar
  150. Olofsson, A. M., Arfors, K. -E., Ramezani, L., Wolitzky, B. A., Butcher, E. C., and von Andrian, U. H. (1994) E-selectin mediates leukocyte rolling in interleukin-l–treated rabbit mesentery venules. Blood 84: 2749–2758.PubMedGoogle Scholar
  151. Palabrica, T., Lobb, R., Furie, B. C., Aronovitz, M., Benjamin, C., Hsu, Y.-M., Sajer, S. A., and Furie, B. (1992) Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature 359: 848–851.PubMedCrossRefGoogle Scholar
  152. Pan, J. L., Xia, L. J., and McEver, R. P. (1998) Comparison of promoters for the murine and human P-selectin genes suggests species-specific and conserved mechanisms for transcriptional regulation in endothelial cells. J. Biol. Chem. 273: 10058–10067.PubMedCrossRefGoogle Scholar
  153. Perry, M. A., and Granger, D. N. (1991) Role of CD11/CD18 in shear rate-dependent leukocyte-endothelial cell interactions in cat mesenteric venules. J. Clin. Invest. 87: 1798–1804.PubMedCrossRefGoogle Scholar
  154. Peschon, J. J., Slack, J. L., Reddy, P., Stocking, K. L., Sunnarborg, S. W., Lee, D. C., Russell, W. E., Castner, B.J., Johnson, R. S., Fitzner, J. N., et al. (1998) An essential role for ectodomain shedding in mammalian development. Science 282: 1281–1284.PubMedCrossRefGoogle Scholar
  155. Picker, L. J., Kishimoto, T. K., Smith, C. W., Warnock, R. A., and Butcher, E. C. (1991a) ELAM-1 is an adhesion molecule for skin-homing T cells. Nature 349: 796–799.PubMedCrossRefGoogle Scholar
  156. Picker, L. J., Warnock, R. A., Burns, A. R., Doerschuk, C. M., Berg, E. L., and Butcher, E. C. (1991b) The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell 66: 921–933.PubMedCrossRefGoogle Scholar
  157. Pittman, R. N., and Ellsworth, M. L. (1986) Estimation of red cell flow in microvessels: Consequences of the Baker-Wayland spatial averaging model. Microvasc. Res. 32: 371–388.PubMedCrossRefGoogle Scholar
  158. Pober, J. S. (1987) Effects of tumor necrosis factor and related cytokines on vascular endothelial cells. Ciba Found. Symp. 131: 170–184.PubMedGoogle Scholar
  159. Pouyani, T., and Seed, B. (1995) PSGL-1 recognition of P-selectin is controlled by a tyrosine sulfation consensus at the PSGL-1 amino terminus. Cell 83: 333–343.PubMedCrossRefGoogle Scholar
  160. Pries, A. R. (1988) A versatile video image analysis system for microcirculatory research. Int. J. Microcirc. Clin. Exp. 7: 327–345.PubMedGoogle Scholar
  161. Ramos, C. L., Smith, M.J., Snapp, K. R., Kansas, G. S., Stickney, G. W., Ley, K., and Lawrence, M. B. (1998) Functional characterization of L-selectin ligands on human neutrophils and leukemia cell lines: Evidence for mucin-like ligand activity distinct from P-selectin Glycoprotein Ligand-1. Blood 91: 1067–1075.PubMedGoogle Scholar
  162. Ramos, C. L., Huo, Y., Jung, U., Ghosh, S., Manka, D. R., Sarembock, I. J., and Ley, K, (1999) Direct demonstration of P-selectin and VCAM-1-dependent mononuclear cell rolling in early atherosclerotic lesions of apolipoprotein E-deficient mice. Circ. Res. 84: 1237–1244.PubMedCrossRefGoogle Scholar
  163. Reneman, R. S., Woldhuis, B., oude Egbrink, M.G.A., Slaaf, D. W., and Tangelder, G.J. (1992) Concentration and velocity profiles of blood cells in the microcirculation. In: Advances in Cardiovascular Engineering. N.H.C. Hwang, V. T. Turitto, and M.R.T. Yen, eds. New York: Plenum Press, pp. 25–40.Google Scholar
  164. Saetzler, R. K., Jallo, J., Lehr, H. A., Philips, C. M., Vasthare, U., Arfors, K. E., and Tuma, R. F. (1997) Intravital fluorescence microscopy—impact of light-induced phototoxicity on adhesion of fluorescently labeled leukocytes. J. Histochem. Cytochem. 45: 505–513.PubMedCrossRefGoogle Scholar
  165. Sartor, R. B. (1992) Animal models of intestinal inflammation. In: Inflammatory Bowel Disease. R. P. McDermott, and W. F. Stenson, eds. New York; Elsevier, pp. 337–353.Google Scholar
  166. Scharffetter-Kochanek, K., Lu, H., Norman, K. E., van Nood, N., Munoz, F., Grabbe, S., McArthur, M., Lorenzo, I., Kaplan, S., Ley, K., Smith, C. W., et al. (1998) Spontaneous skin ulceration and defective T-cell function in CD18 null mice. J Exp. Med. 188: 119–131.PubMedCrossRefGoogle Scholar
  167. Schmid-Schönbein, G. W., Usami, S., Skalak, R., and Chien, S. (1980) The interaction of leu- kocytes and erythrocytes in capillary and postcapillary vessels. Microvasc. Res. 19: 45–70.PubMedCrossRefGoogle Scholar
  168. Schmidt, E. E., MacDonald, I. C., and Groom, A. C. (1990) Interactions of leukocytes with vessel walls and with other blood cells, studied by high-resolution intravital videomicroscopy of spleen. Microvasc. Res. 40: 99–117.PubMedCrossRefGoogle Scholar
  169. Schmits, R., Kündig, T. M., Baker, D. M., Shumaker, G., Simard, JJ.L., Duncan, G., Wakeham, A., Shahinian, A., van der Heiden, A., Bachmann, M. F., et al. (1996) LFA-1 deficient mice show normal CTL responses to virus but fail to reject immunogenic tumor. J. Exp. Med. 183: 1415–1426.PubMedCrossRefGoogle Scholar
  170. Selvan, R. S., Kapadia, H. B., and Platt, J. L. (1998) Complement-induced expression of chemokine genes in endothelium: regulation by IL-1-dependent and-independent mechanisms. J. Immunol 161: 4388–4395.PubMedGoogle Scholar
  171. Singbartl, K., Day, K., and Ley, K. (2000) Development of a CD2-Enhanced Green Fluorescent Protein (CD2-EGFP) transgenic mouse for studying lymphocyte trafficking in inflammation. FASEB J. 14, A704.Google Scholar
  172. Sligh, J. E., Jr., Ballantyne, C. M., Rich, S. S., Hawkins, H. K., Smith, C. W., Bradley, A., and Beaudet, A. L. (1993) Inflammatory and immune responses are impaired in mice deficient in intercellular adhesion molecule-1. Proc. Natl. Acad. Sci. USA 90: 8529–8533.PubMedCrossRefGoogle Scholar
  173. Smith, M. J., Berg, E. L., and Lawrence, M. B. (1999) A direct comparison of selectin-mediated transient adhesive events using high temporal resolution. Biophys. J 77: 3371–3383.PubMedCrossRefGoogle Scholar
  174. Springer, T. A. (1995) Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu. Rev. Physiol. 57: 827–872.PubMedCrossRefGoogle Scholar
  175. Sriramarao, P., von Andrian, U. H., Butcher, E. C., Bourdon, M. A., and Broide, D. H. (1994) Lselectin and very late antigen-4 integrin promote eosinophil rolling at physiological shear rates in vivo. J. Immunol. 153: 4238–4246.PubMedGoogle Scholar
  176. Staite, N. D., Justen, J. M., Sly, L. M., Beaudet, A. L., and Bullard, D. C. (1996) Inhibition of delayed-type contact hypersensitivity in mice deficient in both E-selectin and P-selectin. Blood 88: 2973–2979.PubMedGoogle Scholar
  177. Staunton, D. E., Dustin, M. L., and Springer, T. A. (1989) Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1. Nature 339: 61–64.PubMedCrossRefGoogle Scholar
  178. Steeber, D. A., Engel, P., Miller, A. S., Sheetz, M. P., and Tedder, T. F. (1997) Ligation of Lselectin through conserved regions within the lectin domain activates signal transduction pathways and integrin function in human, mouse, and rat leukocytes. J Immunol. 159: 952–963.PubMedGoogle Scholar
  179. Steeber, D. A., Campbell, M. A., Basit, A., Ley, K., and Tedder, T. F. (1998) Optimal selectinmediated rolling of leukocytes during inflammation in vivo requires intercellular adhesion molecule-1 expression. Proc. Natl. Acad. Sci. USA 95: 7562–7567.PubMedCrossRefGoogle Scholar
  180. Steegmaier, M., Levinovitz, A., Isenmann, S., Borges, E., Lenter, M., Kocher, H. P., Kleuser, B., and Vestweber, D. (1995) The E-selectin-ligand ESL-1 is a variant of a receptor for fibroblast growth factor. Nature 373: 615–620.PubMedCrossRefGoogle Scholar
  181. Subramaniam, M., Frenette, P. S., Saffaripour, S., Johnson, R. C., Hynes, R. O., and Wagner, D. D. (1996) Defects in hemostasis in P-selectin–deficient mice. Blood 87: 1238–1242.PubMedGoogle Scholar
  182. Tangelder, G. J., Slaaf, D. W., Teirlinck, H. C., Alewijnse, R., and Reneman, R. S. (1982) Localization within a thin optical section of fluorescent blood platelets flowing in a microvessel. Microvasc. Res. 23: 214–230.PubMedCrossRefGoogle Scholar
  183. Tedder, T. F., Steeber, D. A., and Pizcueta, P. (1995) L-selectin deficient mice have impaired leukocyte recruitment into inflammatory sites. J. Exp. Med. 181: 2259–2264.PubMedCrossRefGoogle Scholar
  184. Tüzeren, A., and Ley, K. (1992) How do selectins mediate leukocyte rolling in venules? Biophys. J. 63: 700–709.CrossRefGoogle Scholar
  185. Varki, A. (1994) Selectin ligands. Proc. Natl. Acad. Sci. USA 91: 7390–7397.PubMedCrossRefGoogle Scholar
  186. Vollmar, B., Glasz, J., Menger, M. D., and Messmer, K. (1995) Leukocytes contribute to hepatic ischemia/reperfusion injury via intercellular adhesion molecule-l-mediated venular adherence. Surgery 117: 195–200.PubMedCrossRefGoogle Scholar
  187. von Andrian, U. H., Chambers, J. D., McEvoy, L. M., Bargatze, R. F., Arfors, K.-E., and Butcher, E. C. (1991) Two-step model of leukocyte–endothelial cell interaction in inflammation: Distinct roles for LECAM-1 and the leukocyte 132 integrins in vivo. Proc. Natl. Acad. Sci. USA 88: 7538–7542.CrossRefGoogle Scholar
  188. von Andrian, U. H., and Mrini, C. (1998) In situ analysis of lymphocyte migration to lymph nodes. Cell Adhesion Commun. 6: 85–96.CrossRefGoogle Scholar
  189. Wakelin, M. W., Sanz, M. -J., Dewar, A., Albelda, S. M., Larkin, S. W., Boughton-Smith, N., Williams, T. J., and Nourshargh, S. (1996) An anti-platelet–endothelial cell adhesion molecule-1 antibody inhibits leukocyte extravasation from mesenteric microvessels in vivo by blocking the passage thorugh the basement membrane. J. Exp. Med. 184: 229–239.PubMedCrossRefGoogle Scholar
  190. Walcheck, B., Kahn, J., Fisher, J. M.,Wang, B. B., Fisk, R. S., Payan, D. G., Feehan, C., Betageri, R., Dariak, K., Spatola, A. F., and Kishimoto, T. K. (1996a) Neutrophil rolling altered by inhibition of L-selectin shedding in vitro. Nature 380: 720–723.Google Scholar
  191. Walcheck, B., Moore, K. L., McEver, R. P., and Kishimoto, T. K. (1996b) Neutrophil–neutrophil interactions under hydrodynamic shear stress involve L-selectin and PSGL-I—A mechanism that amplifies initial leukocyte accumulation on P-selectin in vitro. J Clin. Invest. 98: 1081–1087.PubMedCrossRefGoogle Scholar
  192. Waller, A. (1846) Microscopic examination of some of the principal tissues of the animal frame, as observed in the tongue of the living frog, toad, etc. Phil. Mag. 29: 271–287.Google Scholar
  193. Walzog, B., Scharffetter-Kochanek, K., and Gaehtgens, P. (1999) Impairment of neutrophil emigration in CD18 null mice. Am. J. Physiol. 276: G1125 - G1130.PubMedGoogle Scholar
  194. Watson, S. R., Fennie, C., and Lasky, L. A. (1991) Neutrophil influx into an inflammatory site inhibited by soluble homing receptor-IgG chimaera. Nature 349: 164–167.PubMedCrossRefGoogle Scholar
  195. Wayland, H., and Johnson, P. C. (1967) Erythrocyte velocity measurement in microvessels by two-slit photometric method. J. App. Physiol. 22: 333–337.Google Scholar
  196. Weyrich, A. S., Ma, X., Lefer, D. J., Albertine, K. H., and Lefer, A. M. (1993) In vivo neutralization of P-selectin protects feline heart and endothelium in myocardial ischemia and reperfusion injury. J. Clin. Invest. 91: 2620–2629.PubMedCrossRefGoogle Scholar
  197. Winn, R. K., Liggitt, D., Vedder, N. B., Paulson, J. C., and Harlan, J. M. (1993) Anti-P-selectin monoclonal antibody attenuates reperfusion injury to the rabbit ear. J. Clin. Invest. 92: 2042–2047.PubMedCrossRefGoogle Scholar
  198. Xie, J. L., Li, R., Kotovuori, P., Vermot-Desroches, C., Wijdenes, J., Arnaout, M. A., Nortamo, P., and Gahmberg, C. G. (1995) Intercellular adhesion molecule-2 (CD102) binds to the leukocyte integrin CD11b/CD18 through the A domain. J. Immunol. 155: 3619–3628.PubMedGoogle Scholar
  199. Xie, X., Raud, J., Hedqvist, P., and Lindborn, L. (1997) In vivo rolling and endothelial selectin binding of mononuclear leukocytes is distinct from that of polymorphonuclear cells. Eur. J. Immunol. 27: 2935–2941.PubMedCrossRefGoogle Scholar
  200. Yang, J., Hirata, T., Croce, K., Merrill-Skoloff, G., Tchernychev, B., Williams, E., Flaumenhaft, R., Furie, B. C., and Furie, B. (1999) Targeted gene disruption demonstrates that P-selectin glycoprotein ligand 1 (PSGL-1) is required for P-selectin-mediated but not E-selectinmediated neutrophil rolling and migration. J. Exp. Med. 190: 1769–1782.PubMedCrossRefGoogle Scholar
  201. Yang, Y. T., Rayburn, H., and Hynes, R. O. (1995) Cell adhesion events mediated by a, integrins are essential in placental and cardiac development. Development 121: 549–560.PubMedGoogle Scholar
  202. Zakrzewicz, A., Grafe, M., Terbeek, D., Bongrazio, M., Auch-Schwelk, W., Walzog, B., Graf, K., Fleck, E., Ley, K., and Gaehtgens, P. (1997) L-selectin-dependent leukocyte adhesion to microvascular but not to macrovascular endothelial cells of the human coronary system. Blood 89: 3228–3235.PubMedGoogle Scholar
  203. Zhang, S. H., Reddick, R. L., Piedrahita, J. A., and Maeda, N. (1992) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258: 468–471.Google Scholar
  204. Zhao, Y. H., Chien, S., and Skalak, R. (1995) A stochastic model of leukocyte rolling. Biophys. J. 69: 1309–1320.PubMedCrossRefGoogle Scholar
  205. Zimmerman, B.J., Paulson, J. C., Arrhenius, T. S., Gaeta, F.C.A., and Granger, D. N. (1994) Thrombin receptor peptide-mediated leukocyte rolling in rat mesenteric venules: Roles of P-selectin and sialyl Lewis X. Am. J. Physiol. 267: H1049 - H1053.PubMedGoogle Scholar
  206. Zwaginga, J. J., Torres, H.I.G., Lammers, J.W J., Sixma, J. J., Koenderman, L., and Kuijper, P.H.M. (1999) Minimal platelet deposition and activation in models of injured vessel wall ensure optimal neutrophil adhesion under flow conditions. Arterioscl. Thromb. Vast. Biol. 19: 1549–1554.CrossRefGoogle Scholar
  207. Zweifach, B. W., and Lipowsky, H. H. (1984) Pressure-flow relations in blood and lymph micro-circulation. In: Handbook of Physiology. The Cardiovascular System: Microcirculation. E. M. Renkin, and C. C. Michel, eds. Bethesda, MD: American Physiological Society, pp. 251–307.Google Scholar

Copyright information

© American Physiological Society 2001

Authors and Affiliations

  • Klaus Ley

There are no affiliations available

Personalised recommendations