Skip to main content

Some Aspects of the Algebraic Theory of Quadratic Forms

  • Chapter
  • First Online:
  • 1501 Accesses

Part of the book series: Developments in Mathematics ((DEVM,volume 31))

Abstract

This article, based on the lectures at the Arizona Winter School on “Quadratic forms”, gives a quick introduction to the algebraic theory of quadratic forms. It discusses some invariants associated to quadratic forms like the Pythagoras number and the u-invariant and touches on some recent progress on these topics.

The author was partially supported by NSF grant DMS-1001872.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arason, J.K., Cohomologische Invarianten quadratischer Formen, J. Algebra, 36 (1975), 448–491.

    Google Scholar 

  2. Cohen, H., Représentations comme sommes de carrés, Séminaire de Théorie des Nombres, 1971–1972 (Univ. Bordeaux I, Talence), Exp. No. 21, (1972). English translation available at http://www.math.u-bordeaux1.fr/~cohen/Cohensquares.pdf

  3. Cassels, J.W.S., Ellison, W.J., Pfister, A., On sums of squares and on elliptic curves over function fields, J. Number Th. 3 (1971), 125–149.

    Google Scholar 

  4. Colliot-Thélène, J.-L., The Noether-Lefschetz theorem and sums of 4 squares in the rational function field \(\mathbb{R}(x,y)\), Compos.Math. 86 (1993), 235–243.

    Google Scholar 

  5. Colliot-Thélène, J.-L., Coray, D., Sansuc, J.-J., Descente et principe de Hasse pour certaines variétés rationnelles, J. Reine Angew. Math., 320 (1980), 150–191.

    Google Scholar 

  6. Colliot-Thélène, J.-L., Jannsen, U., Sommes de carrès dans les corps de fonctions, C. R. Acad. Paris, Sèr. I 312 (1991), 759–762.

    Google Scholar 

  7. Colliot-Thélène, J.-L., Parimala, R., Suresh, V., Patching and local-global principles for homogeneous spaces over function fields of p-adic curves, preprint arXiv:0812.3099.

    Google Scholar 

  8. Elman, R., Karpenko, N., Merkurjev, A., The algebraic and geometric theory of quadratic forms, American Mathematical Society Colloquium Publications, 56 (2008).

    Google Scholar 

  9. Elman, R. and Lam, T.-Y., Quadratic forms and the u-invariant I, Math. Z. 131 (1973), 238–304.

    Google Scholar 

  10. Greenberg, M.J., Rational points in Henselian discrete valuation rings, Inst. Hautes Études Sci. Publ. Math., 31 (1966), 59–64.

    Google Scholar 

  11. Hoffmann, D.W., Pythagoras numbers of fields, J. Amer. Math. Soc., 12 (1999), 3, 839–848.

    Google Scholar 

  12. Heath-Brown, D.R., Artin’s Conjecture on Zeros of p-Adic Forms, Proceedings of the International Congress of Mathematicians, Volume II, 249–257, Hindustan Book Agency, New Delhi, 2010.

    Google Scholar 

  13. Harbater, D., Hartmann, J., Patching over fields, Israel J. Math., 176 2010, 61–107.

    Google Scholar 

  14. Harbater, D., Hartmann, J., Krashen, D., Applications of patching to quadratic forms and central simple algebras, Invent. Math., 178 2009, 2, 231–263.

    Google Scholar 

  15. Izhboldin, Oleg T., Fields of u-invariant 9. Ann. of Math. (2) 154 (2001).

    Google Scholar 

  16. Jacobson, N., Basic algebra I, W. H. Freeman and Company (1985).

    Google Scholar 

  17. Jannsen, U., Principe de Hasse cohomologique, Séminaire de Théorie des Nombres, Paris, 1989–90, Progr. Math., Birkhäuser Boston, 102 121–140 (1992).

    Google Scholar 

  18. Jannsen, U., Hasse principles for higher-dimensional fields, preprint arXiv:0910.2803v1.

    Google Scholar 

  19. Kahn, B., Formes quadratiques sur un corps, Cours Spécialisés, Société Mathématique de France 15 2008.

    Google Scholar 

  20. Kato, Kazuya, A Hasse principle for two-dimensional global fields, with an appendix by Jean-Louis Colliot-Thélène, J. Reine Angew. Math. 366 (1986).

    Google Scholar 

  21. Lam, T.-Y., Introduction to quadratic forms over fields, GSM, AMS 67 (2004).

    Google Scholar 

  22. Landau, E., Über die Darstellung definiter Funktionen durch Quadrate, Math. Ann., 62 (1906), 2, 272–285.

    Google Scholar 

  23. Merkurjev, A.S. On the norm residue symbol of degree 2, Dokl. Akad. Nauk SSSR 261 (1981), 542–547.

    Google Scholar 

  24. Merkurjev, A.S., Simple algebras and quadratic forms, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), 218–224; translation in Math. USSR-Izv. 38 (1992), 1, 215–221.

    Google Scholar 

  25. Orlov, D., Vishik, A., and Voevodsky, V., An exact sequence for K M ∕2 with applications to quadratic forms, Annals of Math. 165 (2007), 1–13.

    Google Scholar 

  26. Pop, F., Summen von Quadraten in arithmetischen Funktionenkorpern, preprint (http://www.math.upenn.edu/~pop/Research/Papers.html).

  27. Pfister, A., Zur Darstellung von? 1 als Summe von Quadraten in einem Krper, J. London Math. Soc. 40 (1965), 159–165.

    Google Scholar 

  28. Pfister, A., Quadratic forms with applications to algebraic geometry and topology, London Mathematical Society Lecture Note Series, Cambridge University Press, 217 (1995).

    Google Scholar 

  29. Parimala, R. and Suresh, V., Isotropy of quadratic forms over function fields in one variable over p-adic fields, Publ. de I.H.É.S. 88 (1998), 129–150.

    Google Scholar 

  30. Parimala, R. and Suresh, V., The u-invariant of the function fields of p-adic curves, Ann. of Math. (2) 172 (2010), 2, 1391–1405.

    Google Scholar 

  31. Scharlau, W., Quadratic and Hermitian forms, Springer-Verlag 270 (1985).

    Google Scholar 

  32. Saltman, D., Division algebras over p-adic curves with an appendix by William Jacob and J.-P. Tignol, Journal of Ramanujan Math. Soc. 12 (1997), 25–47.

    Google Scholar 

  33. Serre, J-P., Galois cohomology, Springer-Verlag (1997).

    Google Scholar 

  34. Springer, T. A., Quadratic forms over fields with a discrete valuation. I. Equivalence classes of definite forms, Nederl. Akad. Wetensch. Proc. Ser. A. 58 = Indag. Math. 17 (1955), 352–362.

    Google Scholar 

  35. Vishik, A., Fields of u-invariant 2 r + 1. Algebra, arithmetic and geometry: in honor of Yu. I. Manin. Vol. II, Progr. Math., Birkhäuser Boston, 270 661–685 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Parimala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Parimala, R. (2013). Some Aspects of the Algebraic Theory of Quadratic Forms. In: Alladi, K., Bhargava, M., Savitt, D., Tiep, P. (eds) Quadratic and Higher Degree Forms. Developments in Mathematics, vol 31. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7488-3_7

Download citation

Publish with us

Policies and ethics