Skip to main content

Toy Models for D. H. Lehmer’s Conjecture II

  • Chapter
  • First Online:
Quadratic and Higher Degree Forms

Part of the book series: Developments in Mathematics ((DEVM,volume 31))

Abstract

In the previous paper under the same title, we showed that the m-th Fourier coefficient of the weighted theta series of the \({\mathbb{Z}}^{2}\)-lattice and the A 2-lattice does not vanish when the shell of norm m of those lattices is not the empty set. In other words, the spherical 4 (resp. 6)-design does not exist among the nonempty shells in the \({\mathbb{Z}}^{2}\)-lattice (resp. A 2-lattice). This paper is the sequel to the previous paper. We take 2-dimensional lattices associated to the algebraic integers of imaginary quadratic fields whose class number is either 1 or 2, except for \(\mathbb{Q}(\sqrt{-1})\) and \(\mathbb{Q}(\sqrt{-3})\), then, show that the m-th Fourier coefficient of the weighted theta series of those lattices does not vanish, when the shell of norm m of those lattices is not the empty set. Equivalently, we show that the corresponding spherical 2-design does not exist among the nonempty shells in those lattices.

The second author was supported by a JSPS Research Fellowship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Ahlgren, Multiplicative Relations in Powers of Euler’s Product, Journal of Number Theory, 89 (2001), 222–233.

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Bannai, M. Koike, M. Shinohara, M. Tagami, Spherical designs attached to extremal lattices and the modulo p property of Fourier coefficients of extremal modular forms, Mosc. Math. J., 6-2 (2006), 225–264.

    MathSciNet  MATH  Google Scholar 

  3. E. Bannai, T. Miezaki, Toy models for D. H. Lehmer’s conjecture, J. Math. Soc. Japan, 62-3 (2010), 687–705.

    Google Scholar 

  4. D. A. Cox, Primes of the form x 2 + ny 2 . Fermat, class field theory and complex multiplication., A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1989.

    Google Scholar 

  5. P. de la Harpe and C. Pache, Cubature formulas, geometrical designs, reproducing kernels, and Markov operators, Infinite groups: geometric, combinatorial and dynamical aspects, Progr. Math., Birkhäuser, Basel, 248 (2005), 219–267.

    Google Scholar 

  6. P. de la Harpe, C. Pache, B. Venkov, Construction of spherical cubature formulas using lattices, Algebra i Analiz, 18-1 (2006), 162–186,; translation in St. Petersburg Math. J. 18-1 (2007), 119–139.

    Google Scholar 

  7. P. Delsarte, J.-M. Goethals, and J. J. Seidel, Spherical codes and designs, Geom. Dedicata 6 (1977), 363–388.

    Google Scholar 

  8. W. Ebeling, Lattices and codes., Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, Braunschweig, 2002.

    Book  MATH  Google Scholar 

  9. E. Hecke, Mathematische Werke, Vandenhoeck & Ruprecht, Göttingen, 1983.

    MATH  Google Scholar 

  10. N. Katz, An overview of Deligne’s proof of the Riemann hypothesis for varieties over finite fields, Amer. Math. Soc. Proc. Symp. Pure Math., 28 (1976), 275–305.

    Google Scholar 

  11. N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, Berlin/New York, 1984.

    Book  MATH  Google Scholar 

  12. D. H. Lehmer, The vanishing of Ramanujan’s τ(n), Duke Math. J. 14 (1947), 429–433.

    Google Scholar 

  13. T. Miezaki’s website, http://sites.google.com/site/tmiezaki/home/

  14. T. Miyake, Modular forms, Translated from the Japanese by Yoshitaka Maeda. Springer-Verlag, Berlin, 1989.

    MATH  Google Scholar 

  15. K. Ono, The web of modularity:arithmetic of the coefficients of modular forms and q-series, CBMS Regional Conference Series in Mathematics, vol. 102, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2004.

    Google Scholar 

  16. C. Pache, Shells of selfdual lattices viewed as spherical designs, International Journal of Algebra and Computation 5 (2005), 1085–1127.

    Google Scholar 

  17. R. Prime, Hecke character, http://www.math.uconn.edu/~prime/whatthehecke.pdf

  18. Sage, http://www.sagemath.org/

  19. B. Schoeneberg, Das Verhalten von mehrfachen Thetareihen bei Modulsubstitutionen, (German) Math. Ann. 116-1 (1939), 511–523.

    Google Scholar 

  20. B. Schoeneberg, Elliptic modular functions: an introduction, Translated from the German by J. R. Smart and E. A. Schwandt. Die Grundlehren der mathematischen Wissenschaften, Band 203. Springer-Verlag, New York-Heidelberg, 1974.

    Google Scholar 

  21. J.-P. Serre, A course in arithmetic, Translated from the French. Graduate Texts in Mathematics, 7, Springer-Verlag, New York-Heidelberg, 1973.

    Google Scholar 

  22. J.-P. Serre, Sur la lacunarité des puissances de η, Glasgow Math. J. 27 (1985), 203–221.

    Google Scholar 

  23. B. B. Venkov, Even unimodular extremal lattices, (Russian) Algebraic geometry and its applications. Trudy Mat. Inst. Steklov., 165 (1984), 43–48; translation in Proc. Steklov Inst. Math. 165 (1985) 47–52.

    Google Scholar 

  24. B. B. Venkov, Réseaux et designs sphériques, (French) [Lattices and spherical designs], Réseaux euclidiens, designs sphériques et formes modulaires, Monogr. Enseign. Math. 37 (2001), 10–86, Enseignement Math., Geneva.

    Google Scholar 

  25. D. B. Zagier, Zetafunktionen und quadratische Körper: eine Einführung in die höhere Zahlentheorie, Springer-Verlag, Berlin-New York, 1981.

    Google Scholar 

Download references

Acknowledgements

The authors thank Masao Koike for informing us that our previous results in [3] can be interpreted in terms of the cusp forms attached to L-functions with a Hecke character of CM fields, i.e., the imaginary quadratic fields \(\mathbb{Q}(\sqrt{-1})\) and \(\mathbb{Q}(\sqrt{-3})\), and in particular for bringing our attention to Theorem 1.31 in [15]. The authors also thank Junichi Shigezumi for his helpful discussions and computations on this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiichi Bannai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bannai, E., Miezaki, T. (2013). Toy Models for D. H. Lehmer’s Conjecture II. In: Alladi, K., Bhargava, M., Savitt, D., Tiep, P. (eds) Quadratic and Higher Degree Forms. Developments in Mathematics, vol 31. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7488-3_1

Download citation

Publish with us

Policies and ethics