Viewing Abstract Data as Maps

  • Emden R. Gansner
  • Yifan Hu
  • Stephen G. Kobourov
Chapter

Abstract

From telecommunications and abstractions of the Internet to interconnections of medical papers to on-line social networks, technology has spawned an explosion of data in the form of large attributed graphs and networks. Visualization often serves as an essential first step in understanding such data, when little is known. Unfortunately, visualizing large graphs presents its own set of problems, both technically in terms of clutter and cognitively in terms of unfamiliarity with the graph idiom. In this chapter, we consider viewing such data in the form of geographic maps. This provides a view of the data that naturally allows for reduction of clutter and for presentation in a familiar idiom. We describe some techniques for creating such maps, and consider some of the related technical problems. We also present and discuss various applications of this method to real data.

Keywords

Europe Syria Expense Nigeria Metaphor 

Notes

Acknowledgements

We would like to thank Stephen North and Chris Volinsky for helpful discussions and encouragement.

References

  1. 1.
    Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Algorithms for the visualization of Graphs. Prentice-Hall (1999)Google Scholar
  2. 2.
    Blondel, V., Guillaume, J., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of Stat. Mechanics: Theory and Experiment 2008, P10,008 (2008)Google Scholar
  3. 3.
    Brewer, C.: ColorBrewer - selecting good color schemes for maps. www.colorbrewer.org
  4. 4.
    Cappanera, P.: A survey of obnoxious facility location problems. Technical Report TR-99-11, Dipartimento di Informatica, Universit a di Pisa (1999)Google Scholar
  5. 5.
    Cleveland, W.S.: Visualizing Data. Hobart Press, Summit, New Jersey, U.S.A. (1993)Google Scholar
  6. 6.
    Dillencourt, M.B., Eppstein, D., Goodrich, M.T.: Choosing colors for geometric graphs via color space embeddings. In: 14th Symposium on Graph Drawing (GD), pp. 294–305 (2006)Google Scholar
  7. 7.
    Duarte, A., Martí, R., Resende, M., Silva, R.: GRASP with path relinking heuristics for the antibandwidth problem. Networks (2011). Doi: 10.1002/net.20418Google Scholar
  8. 8.
    Erten, C., Harding, P.J., Kobourov, S.G., Wampler, K., Yee, G.V.: Graphael: Graph animations with evolving layouts. In: G. Liotta (ed.) Graph Drawing, Lecture Notes in Computer Science, vol. 2912, pp. 98–110. Springer (2003)Google Scholar
  9. 9.
    Fabrikant, S.I., Montello, D.R., Mark, D.M.: The distance-similarity metaphor in region-display spatializations. IEEE Computer Graphics & Application 26, 34–44 (2006)CrossRefGoogle Scholar
  10. 10.
    Fabrikant, S.I., Montello, D.R., Mark, D.M.: The natural landscape metaphor in information visualization: The role of commonsense geomorphology. JASIST 61(2), 253–270 (2010)Google Scholar
  11. 11.
    Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34, 596–615 (1987). DOI http://doi.acm.org/10.1145/28869.28874. URL http://doi.acm.org/10.1145/28869.28874 Google Scholar
  12. 12.
    Fuchs, G., Schumann, H.: Visualizing abstract data on maps. In: Proceedings of the Information Visualisation, Eighth International Conference, IV ’04, pp. 139–144. IEEE Computer Society, Washington, DC, USA (2004). DOI 10.1109/IV.2004.152. URL http://dx.doi.org/10.1109/IV.2004.152
  13. 13.
    Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for network problems. SIAM J. Comput. 18, 1013–1036 (1989). DOI 10.1137/0218069. URL http://portal.acm.org/citation.cfm?id=75795.75806
  14. 14.
    Gansner, E.R., Hu, Y.F., Kobourov, S.G.: Gmap: Drawing graphs as maps. http://arxiv1.library.cornell.edu/abs/0907.2585v1 (2009)
  15. 15.
    Gansner, E.R., Hu, Y.F., Kobourov, S.G., Volinsky, C.: Putting recommendations on the map - visualizing clusters and relations. In: Proceedings of the 3rd ACM Conference on Recommender Systems. ACM (2009)Google Scholar
  16. 16.
    Gansner, E.R., North, S.C.: An open graph visualization system and its applications to software engineering. Softw., Pract. Exper. 30(11), 1203–1233 (2000)Google Scholar
  17. 17.
    Görke, R., Maillard, P., Staudt, C., Wagner, D.: Modularity-driven clustering of dynamic graphs. In: 9th Symp. on Experimental Algorithms, pp. 436–448 (2010)Google Scholar
  18. 18.
    Graphviz graph visualization software. www.graphviz.org/
  19. 19.
    Hu, Y., Gansner, E.R., Kobourov, S.G.: Visualizing graphs and clusters as maps. IEEE Computer Graphics and Applications 30(6), 54–66 (2010)CrossRefGoogle Scholar
  20. 20.
    Hu, Y., Kobourov, S., Veeramoni, S.: On maximum differential graph coloring. In: Proceedings of the 18th international conference on graph drawing (GD’10), pp. 274–286. Springer-Verlag (2011)Google Scholar
  21. 21.
    Hu, Y., Kobourov, S., Veeramoni, S.: Embedding, clustering and coloring for dynamic maps. In: Proceedings of IEEE Pacific Visualization Symposium. IEEE Computer Society (2012)Google Scholar
  22. 22.
    Hu, Y.F., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: 8th IEEE International Conference on Data Mining (ICDM), pp. 263–272 (2008)Google Scholar
  23. 23.
    Hu, Y.F., Scott, J.A.: A multilevel algorithm for wavefront reduction. SIAM Journal on Scientific Computing 23, 1352–1375 (2001)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Keim, D.A., Panse, C., North, S.C.: Medial-axis-based cartograms. IEEE Computer Graphics and Applications 25(3), 60–68 (2005)CrossRefGoogle Scholar
  25. 25.
    van Kreveld, M.J., Speckmann, B.: On rectangular cartograms. Comput. Geom. 37(3), 175–187 (2007)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research Logistics Quarterly 2(1–2), 83–97 (1955). DOI 10.1002/nav.3800020109. URL http://dx.doi.org/10.1002/nav.3800020109
  27. 27.
    Kuhn, W., Blumenthal, B.: Spatialization: spatial metaphors for user interfaces. In: Conference companion on Human factors in computing systems: common ground, CHI ’96, pp. 346–347. ACM, New York, NY, USA (1996). DOI 10.1145/257089.257361. URL http://doi.acm.org/10.1145/257089.257361
  28. 28.
    Kumfert, G., Pothen, A.: Two improved algorithms for envelope and wavefront reduction. BIT 35, 1–32 (1997)MathSciNetGoogle Scholar
  29. 29.
    Leung, J.Y.T., Vornberger, O., Witthoff, J.: On some variants of the bandwidth minimization problem. SIAM J. Comput. 13, 650–667 (1984)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Lima, M.: Visual Complexity: Mapping Patterns of Information. Princeton Architectural Press (2011)Google Scholar
  31. 31.
    Lloyd, S.: Last square quantization in pcm. IEEE Transactions on Information Theory 28, 129–137 (1982)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103, 8577–8582 (2006)CrossRefGoogle Scholar
  33. 33.
    Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. of the American Statistical Association pp. 846–850 (1971)Google Scholar
  34. 34.
    Raspaud, A., Schröder, H., Sýkora, O., Török, L., Vrt’o, I.: Antibandwidth and cyclic antibandwidth of meshes and hypercubes. Discrete Mathematics 309, 3541–2552 (2009)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Salvini, M.M., Gnos, A.U., Fabrikant, S.I.: Cognitively plausible spatialization of network data. In: Proceedings of the 20th International Cartographic Conference (2011)Google Scholar
  36. 36.
    Scott, J., Hu, Y.: Level-based heuristics and hill climbing for the antibandwidth maximization problem. Technical Report RAL-TR-2011-019, Ritherford Appleton Laboratory, UK (2011)Google Scholar
  37. 37.
    Skupin, A.: A cartographic approach to visualizing conference abstracts. IEEE Computer Graphics & Application 22(1), 50–58 (2002)CrossRefGoogle Scholar
  38. 38.
    Skupin, A.: The world of geography: Visualizing a knowledge domain with cartographic means. Proc. National Academy of Sciences 101(Suppl. 1), 5274–5278 (2004)CrossRefGoogle Scholar
  39. 39.
    Skupin, A.: Discrete and continuous conceptualizations of science: Implications for knowledge domain visualization. Journal of Informetrics 3(3), 233–245 (2009)CrossRefGoogle Scholar
  40. 40.
    Skupin, A., Buttenfield, B.P.: Spatial metaphors for visualizing information spaces. In: Proc. AUTO-CARTO 13, pp. 116–125 (1997)Google Scholar
  41. 41.
    Skupin, A., Fabrikant, S.I.: Spatialization. In: Handbook of Geographic Information Science, pp. 61–80. Blackwell Publishers (2008)Google Scholar
  42. 42.
    Sloan, S.W.: An algorithm for profile and wavefront reduction of sparse matrices. International Journal for Numerical Methods in Engineering 23, 239–251 (1986)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Steele, J., Iliinsky, N.: Beautiful Visualization: Looking at Data through the Eyes of Experts, 1st edn. O’Reilly Media, Inc. (2010)Google Scholar
  44. 44.
    Ullman, J.D.: Elements of ML programming - ML 97 edition. Prentice Hall (1998)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Emden R. Gansner
    • 1
  • Yifan Hu
    • 1
  • Stephen G. Kobourov
    • 2
  1. 1.AT&T Labs – ResearchFlorham ParkUSA
  2. 2.University of ArizonaTucsonUSA

Personalised recommendations