Skip to main content

Dynamic Visualisations and Motor Skills

  • Chapter
  • First Online:
Handbook of Human Centric Visualization

Abstract

Due to their popularity, dynamic visualisations (e.g. video, animation) seem attractive educational resources. However, in the design of any instructional material, not only must the appealing factor be acknowledged, but also the cognitive limitations. To consider the limitations of human cognitive architecture when designing instructional resources has been the leitmotif of cognitive load theory (CLT). CLT research has shown that the transitory nature of dynamic visualisations imposes such a high working memory load that, in many cases, these depictions are no more effective for learning than static visualisations. However, dynamic visualisations have been shown to be superior to static visualisations when the depiction involves human motor skills, a special case which might be explained by the mirror neuron system (MNS) aiding working memory to cope with transitory information.

We will begin this chapter by presenting instructional properties of dynamic visualisations. Next, we will discuss the main differences between dynamic and static visualisations and how each can affect learning. Then, we will describe briefly CLT to give a more detailed account on instructional strategies to improve learning from dynamic visualisations. Next, we will summarise video modelling of motor skills. To end this chapter, we will focus on the MNS and how it aids humans to learn motor skills through observation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambadar Z, Schooler JW, Cohn JF (2005) Deciphering the enigmatic face: The importance of facial dynamics in interpreting subtle facial expressions. Psychological Science 16 (5): 403–410

    Article  Google Scholar 

  2. Arguel A, Jamet E (2009) Using video and static pictures to improve learning of procedural contents. Computers in Human Behavior 25 (2):354–359. doi:10.1016/j.chb.2008.12.014

    Article  Google Scholar 

  3. Ayres P, Paas F (2007) Can the cognitive load approach make instructional animations more effective? Applied Cognitive Psychology 21 (6):811–820. doi:10.1002/acp.1351

    Article  Google Scholar 

  4. Ayres P, Paas F (2007) Making instructional animations more effective: A cognitive load approach. Applied Cognitive Psychology 21 (6):695–700. doi:10.1002/acp.1343

    Article  Google Scholar 

  5. Ayres P, Marcus N, Chan C, Qian N (2009) Learning hand manipulative tasks: When instructional animations are superior to equivalent static representations. Computers in Human Behavior 25 (2):348–353. doi:10.1016/j.chb.2008.12.013

    Article  Google Scholar 

  6. Baddeley A (1992) Working memory. Science 255 (5044):556–559

    Article  Google Scholar 

  7. Baddeley A (2000) The episodic buffer: A new component of working memory? Trends in Cognitive Sciences 4 (11):417–423. doi:10.1016/S1364-6613(00)01538-2

    Article  Google Scholar 

  8. Baggett P (1987) Learning a procedure from multimedia instructions: The effects of film and practice. Applied Cognitive Psychology 1 (3):183–195

    Article  Google Scholar 

  9. Barsalou LW (2008) Grounded cognition. Annual Review of Psychology 59 (1):617–645. doi:10.1146/annurev.psych.59.103006.093639

    Article  Google Scholar 

  10. Barsalou LW (2010) Grounded cognition: Past, present, and future. Topics in Cognitive Science 2 (4):716–724. doi:10.1111/j.1756-8765.2010.01115.x

    Article  Google Scholar 

  11. Bassili JN (1978) Facial motion in the perception of faces and of emotional expression. Journal of Experimental Psychology: Human Perception and Performance 4 (3):373–379. doi:10.1037/0096-1523.4.3.373

    Article  Google Scholar 

  12. Bétrancourt M (2005) The animation and interactivity principles in multimedia learning. In: Mayer RE (ed) The Cambridge handbook of multimedia learning. Cambridge University Press, New York, NY, pp 287–296

    Chapter  Google Scholar 

  13. Bétrancourt M, Chassot A (2008) Making sense of animation: How do children explore multimedia instruction? In: Lowe RK, Schnotz W (eds) Learning with animation: Research implications for design. Cambridge University Press, New York, NY, pp 141–164

    Google Scholar 

  14. Blandin Y, Lhuisset L, Proteau L (1999) Cognitive processes underlying observational learning of motor skills. The Quarterly Journal of Experimental Psychology Section A 52 (4):957–979. doi:10.1080/713755856

    Google Scholar 

  15. Boucheix J-M (2008) Young learners' control of technical animations. In: Lowe RK, Schnotz W (eds) Learning with animation: Research implications for design. Cambridge University Press, New York, NY, pp 208–234

    Google Scholar 

  16. Boucheix J-M, Lowe RK (2010) An eye tracking comparison of external pointing cues and internal continuous cues in learning with complex animations. Learning and Instruction 20 (2):123–135. doi:10.1016/j.learninstruc.2009.02.015

    Article  Google Scholar 

  17. Brünken R, Steinbacher S, Plass JL, Leutner D (2002) Assessment of cognitive load in multimedia learning using dual-task methodology. Experimental Psychology 49 (2):109–119. doi:10.1027//1618-3169.49.2.109

    Article  Google Scholar 

  18. Carroll WR, Bandura A (1982) The role of visual monitoring in observational learning of action patterns: Making the unobservable observable. Journal of Motor Behavior 14 (2): 153–167

    Google Scholar 

  19. Chandler P, Sweller J (1996) Cognitive load while learning to use a computer program. Applied Cognitive Psychology 10 (2):151–170

    Article  Google Scholar 

  20. Clark J, Paivio A (1991) Dual coding theory and education. Educational Psychology Review 3 (3):149–210. doi:10.1007/bf01320076

    Article  Google Scholar 

  21. Clark RC (2005) Multimedia learning in e-courses. In: Mayer RE (ed) The Cambridge handbook of multimedia learning. Cambridge University Press, New York, NY, pp 589–616

    Chapter  Google Scholar 

  22. Cowan N (2001) The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences 24 (01):87–114. doi:10.1017/S0140525X01003922

    Article  Google Scholar 

  23. Cross ES, Hamilton AFdC, Grafton ST (2006) Building a motor simulation de novo: Observation of dance by dancers. NeuroImage 31 (3):1257–1267. doi:10.1016/j.neuroimage.2006.01.033

    Google Scholar 

  24. de Koning BB, Tabbers HK (2011) Facilitating understanding of movements in dynamic visualizations: An embodied perspective. Educational Psychology Review 23 (4):501–521. doi:10.1007/s10648-011-9173-8

    Article  Google Scholar 

  25. de Koning BB, Tabbers HK, Rikers RMJP, Paas F (2009) Towards a framework for attention cueing in instructional animations: Guidelines for research and design. Educational Psychology Review 21 (2):113–140. doi:10.1007/s10648-009-9098-7

    Article  Google Scholar 

  26. de Koning BB, Tabbers HK, Rikers RMJP, Paas F (2010) Learning by generating vs. receiving instructional explanations: Two approaches to enhance attention cueing in animations. Computers & Education 55 (2):681–691. doi:10.1016/j.compedu.2010.02.027

    Article  Google Scholar 

  27. di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G (1992) Understanding motor events: A neurophysiological study. Experimental Brain Research 91 (1):176–180. doi:10.1007/bf00230027

    Article  Google Scholar 

  28. Doody SG, Bird AM, Ross D (1985) The effect of auditory and visual models on acquisition of a timing task. Human Movement Science 4 (4):271–281. doi:10.1016/0167-9457(85)90014-4

    Article  Google Scholar 

  29. Dowrick PW (1991) Analyzing and documenting. In: Dowrick PW (ed) Practical guide to using video in the behavioral sciences. Wiley Interscience, New York, NY, pp 30–48

    Google Scholar 

  30. Dowrick PW (1991) Instructing and informing. In: Dowrick PW (ed) Practical guide to using video in the behavioral sciences. Wiley Interscience, New York, NY, pp 49–63

    Google Scholar 

  31. Dowrick PW (1991) Feedback and self-confrontation. In: Dowrick PW (ed) Practical guide to using video in the behavioral sciences. Wiley Interscience, New York, NY, pp 92–108

    Google Scholar 

  32. Dowrick PW, Hood M (1981) Comparison of self-modeling and small cash incentives in a sheltered workshop. Journal of Applied Psychology 66 (3):394–397

    Article  Google Scholar 

  33. Dowrick PW, Jesdale DC (1991) Modeling. In: Dowrick PW (ed) Practical guide to using video in the behavioral sciences. Wiley Interscience, New York, NY, pp 64–76

    Google Scholar 

  34. Geary DC (2002) Principles of evolutionary educational psychology. Learning and Individual Differences 12 (4):317–345. doi:10.1016/s1041-6080(02)00046-8

    Article  Google Scholar 

  35. Gray JT, Neisser U, Shapiro BA, Kouns S (1991) Observational learning of ballet sequences: The role of kinematic information. Ecological Psychology 3 (2):121–134. doi:10.1207/s15326969eco0302_4

    Article  Google Scholar 

  36. Hall EG, Erffmeyer ES (1983) The effect of visuo-motor behavior rehearsal with videotaped modeling on free throw accuracy of intercollegiate female basketball players. Journal of Sport Psychology 5 (3):343–346

    Google Scholar 

  37. Hari R, Forss N, Avikainen S, Kirveskari E, Salenius S, Rizzolatti G (1998) Activation of human primary motor cortex during action observation: A neuromagnetic study. Proceedings of the National Academy of Sciences of the United States of America 95 (25):15061–15065

    Article  Google Scholar 

  38. Hasler BS, Kersten B, Sweller J (2007) Learner control, cognitive load and instructional animation. Applied Cognitive Psychology 21 (6):713–729. doi:10.1002/acp.1345

    Article  Google Scholar 

  39. Hegarty M (1992) Mental animation: Inferring motion from static displays of mechanical systems. Journal of Experimental Psychology: Learning, Memory, and Cognition 18 (5):1084–1102. doi:10.1037/0278-7393.18.5.1084

    Article  Google Scholar 

  40. Hegarty M (2005) Multimedia learning about physical systems. In: Mayer RE (ed) The Cambridge handbook of multimedia learning. Cambridge University Press, New York, NY, pp 447–465

    Chapter  Google Scholar 

  41. Hegarty M, Kriz S (2008) Effects of knowledge and spatial ability on learning from animation. In: Lowe RK, Schnotz W (eds) Learning with animation: Research implications for design. Cambridge University Press, New York, NY, pp 3–29

    Google Scholar 

  42. Höffler TN (2010) Spatial ability: Its influence on learning with visualizations—a meta-analytic review. Educational Psychology Review 22 (3):245–269. doi:10.1007/s10648-010-9126-7

    Article  Google Scholar 

  43. Höffler TN, Leutner D (2007) Instructional animation versus static pictures: A meta-analysis. Learning and Instruction 17 (6):722–738. doi:10.1016/j.learninstruc.2007.09.013

    Article  Google Scholar 

  44. Höffler TN, Schwartz RN (2011) Effects of pacing and cognitive style across dynamic and non-dynamic representations. Computers & Education 57 (2):1716–1726. doi:10.1016/j.compedu.2011.03.012

    Article  Google Scholar 

  45. Huk T, Steinke M, Floto C (2010) The educational value of visual cues and 3D-representational format in a computer animation under restricted and realistic conditions. Instructional Science 38 (5):455–469. doi:10.1007/s11251-009-9116-7

    Article  Google Scholar 

  46. Jamet E, Gavota M, Quaireau C (2008) Attention guiding in multimedia learning. Learning and Instruction 18 (2):135–145. doi:10.1016/j.learninstruc.2007.01.011

    Article  Google Scholar 

  47. Kalyuga S (2009) Managing cognitive load in adaptive multimedia learning. IGI Global, Hershey, PA

    Google Scholar 

  48. Kalyuga S, Chandler P, Sweller J (1999) Managing split-attention and redundancy in multimedia instruction. Applied Cognitive Psychology 13 (4):351–371

    Article  Google Scholar 

  49. Kilner JM, Paulignan Y, Blakemore SJ (2003) An interference effect of observed biological movement on action. Current Biology 13 (6):522–525. doi:10.1016/s0960-9822(03)00165-9

    Article  Google Scholar 

  50. Kirschner PA, Sweller J, Clark RE (2006) Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist 41 (2):75–86. doi:10.1207/s15326985ep4102_1

    Article  Google Scholar 

  51. Kitsantas A, Zimmerman BJ, Cleary T (2000) The role of observation and emulation in the development of athletic self-regulation. Journal of Educational Psychology 92 (4):811–817. doi:10.1037/0022-0663.92.4.811

    Article  Google Scholar 

  52. Knippels M-CPJ, Severiens SE, Klop T (2009) Education through fiction: Acquiring opinion-forming skills in the context of genomics. International Journal of Science Education 31 (15):2057–2083. doi:10.1080/09500690802345888

    Article  Google Scholar 

  53. Koroghlanian C, Klein JD (2004) The effect of audio and animation in multimedia instruction. Journal of Educational Multimedia and Hypermedia 13 (1):23–46

    Google Scholar 

  54. Kozma R, Russell J (2005) Multimedia learning of chemistry. In: Mayer RE (ed) The Cambridge handbook of multimedia learning. Cambridge University Press, New York, NY, pp 409–428

    Chapter  Google Scholar 

  55. Lin L, Atkinson RK (2011) Using animations and visual cueing to support learning of scientific concepts and processes. Computers & Education 56 (3):650–658. doi:10.1016/j.compedu.2010.10.007

    Article  Google Scholar 

  56. Linek SB, Gerjets P, Scheiter K (2010) The speaker/gender effect: Does the speaker’s gender matter when presenting auditory text in multimedia messages? Instructional Science 38 (5):503–521. doi:10.1007/s11251-009-9115-8

    Article  Google Scholar 

  57. Longcamp M, Tanskanen T, Hari R (2006) The imprint of action: Motor cortex involvement in visual perception of handwritten letters. NeuroImage 33 (2):681–688. doi:10.1016/j.neuroimage.2006.06.042

    Article  Google Scholar 

  58. Low R, Sweller J (2005) The modality principle in multimedia learning. In: Mayer RE (ed) The Cambridge handbook of multimedia learning. Cambridge University Press, New York, NY, pp 147–158

    Chapter  Google Scholar 

  59. Lowe RK, Schnotz W, Rasch T (2011) Aligning affordances of graphics with learning task requirements. Applied Cognitive Psychology 25 (3):452–459. doi:10.1002/acp.1712

    Article  Google Scholar 

  60. Lusk DL, Evans AD, Jeffrey TR, Palmer KR, Wikstrom CS, Doolittle PE (2009) Multimedia learning and individual differences: Mediating the effects of working memory capacity with segmentation. British Journal of Educational Technology 40 (4):636–651

    Article  Google Scholar 

  61. Mayer RE (2004) Should there be a three-strikes rule against pure discovery learning? American Psychologist 59 (1):14–19. doi:10.1037/0003-066x.59.1.14

    Article  Google Scholar 

  62. Mayer RE (2005) Principles for reducing extraneous processing in multimedia learning: Coherence, signaling, redundancy, spatial contiguity, and temporal contiguity principles. In: Mayer RE (ed) The Cambridge handbook of multimedia learning. Cambridge University Press, New York, NY, pp 183–200

    Chapter  Google Scholar 

  63. Mayer RE (2005) Principles of multimedia learning based on social cues: Personalization, voice, and image principles. In: Mayer RE (ed) The Cambridge handbook of multimedia learning. Cambridge University Press, New York, NY, pp 201–212

    Chapter  Google Scholar 

  64. Mayer RE (2005) Principles for managing essential processing in multimedia learning: Segmenting, pretraining, and modality principles. In: Mayer RE (ed) The Cambridge handbook of multimedia learning. Cambridge University Press, New York, NY, pp 169–182

    Chapter  Google Scholar 

  65. Mayer RE (2001) Multimedia learning. Cambridge University Press, New York, NY

    Book  Google Scholar 

  66. Mayer RE (2008) Research-based principles for learning with animation. In: Lowe RK, Schnotz W (eds) Learning with animation: Research implications for design. Cambridge University Press, New York, NY, pp 30–48

    Google Scholar 

  67. Mayer RE, Chandler P (2001) When learning is just a click away: Does simple user interaction foster deeper understanding of multimedia messages? Journal of Educational Psychology 93 (2):390–397. doi:10.1037/0022-0663.93.2.390

    Article  Google Scholar 

  68. Mayer RE, Hegarty M, Mayer S, Campbell J (2005) When static media promote active learning: Annotated illustrations versus narrated animations in multimedia instruction. Journal of Experimental Psychology: Applied 11 (4):256–265. doi:10.1037/1076-898x.11.4.256

    Article  Google Scholar 

  69. Mecklinger A, Gruenewald C, Besson M, Magnié M-N, Von Cramon DY (2002) Separable neuronal circuitries for manipulable and non-manipulable objects in working memory. Cerebral Cortex 12 (11):1115–1123. doi:10.1093/cercor/12.11.1115

    Article  Google Scholar 

  70. Meichenbaum DH (1971) Examination of model characteristics in reducing avoidance behavior. Journal of Personality and Social Psychology 17 (3):298–307

    Article  Google Scholar 

  71. Miller GA (1956) The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review 63 (2):81–97. doi:10.1037/h0043158

    Article  Google Scholar 

  72. Moreno R (2007) Optimising learning from animations by minimising cognitive load: Cognitive and affective consequences of signalling and segmentation methods. Applied Cognitive Psychology 21 (6):765–781

    Article  Google Scholar 

  73. Moreno R (2008) Animated pedagogical agents: How do they help students construct knowledge from interactive multimedia games? In: Lowe RK, Schnotz W (eds) Learning with animation: Research implications for design. Cambridge University Press, New York, NY, pp 183–207

    Google Scholar 

  74. Moreno R, Mayer R (2007) Interactive multimodal learning environments. Educational Psychology Review 19 (3):309–326. doi:10.1007/s10648-007-9047-2

    Article  Google Scholar 

  75. Moreno R, Mayer RE, Spires HA, Lester JC (2001) The case for social agency in computer-based teaching: Do students learn more deeply when they interact with animated pedagogical agents? Cognition and Instruction 19 (2):177–213

    Article  Google Scholar 

  76. Paas F, Sweller J (2012) An evolutionary upgrade of cognitive load theory: Using the human motor system and collaboration to support the learning of complex cognitive tasks. Educational Psychology Review 24 (1):27–45. doi:10.1007/s10648-011-9179-2

    Article  Google Scholar 

  77. Paas F, Tuovinen JE, Tabbers H, Van Gerven PWM (2003) Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist 38 (1):63–71

    Article  Google Scholar 

  78. Park O-C, Hopkins R (1992) Instructional conditions for using dynamic visual displays: A review. Instructional Science 21 (6):427–449. doi:10.1007/BF00118557

    Article  Google Scholar 

  79. Peterson LR, Peterson MJ (1959) Short-term retention of individual verbal items. Journal of Experimental Psychology 58 (3):193–198. doi:10.1037/h0049234

    Article  Google Scholar 

  80. Pramling N (2009) The role of metaphor in Darwin and the implications for teaching evolution. Science Education 93 (3):535–547. doi:10.1002/sce.20319

    Article  Google Scholar 

  81. Rebetez C, Bétrancourt M, Sangin M, Dillenbourg P (2010) Learning from animation enabled by collaboration. Instructional Science 38 (5):471–485. doi:10.1007/s11251-009-9117-6

    Article  Google Scholar 

  82. Rieber LP (1990) Using computer animated graphics in science instruction with children. Journal of Educational Psychology 82 (1):135–140

    Article  Google Scholar 

  83. Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annual Review of Neuroscience 27:169–192. doi:10.1146/annurev.neuro.27.070203.144230

    Article  Google Scholar 

  84. Roncarrelli R (1989) The computer animation dictionary: Including related terms used in computer graphics, film and video, production, and desktop publishing. Springer-Verlag, New York, NY

    Google Scholar 

  85. Ross D, Bird AM, Doody SG, Zoeller M (1985) Effects of modeling and videotape feedback with knowledge of results on motor performance. Human Movement Science 4 (2):149–157. doi:10.1016/0167-9457(85)90008-9

    Article  Google Scholar 

  86. Rummer R, Schweppe J, Fürstenberg A, Seufert T, Brünken R (2010) Working memory interference during processing texts and pictures: Implications for the explanation of the modality effect. Applied Cognitive Psychology 24 (2):164–176

    Article  Google Scholar 

  87. Scheiter K, Gerjets P (2007) Learner control in hypermedia environments. Educational Psychology Review 19 (3):285–307. doi:10.1007/s10648-007-9046-3

    Article  Google Scholar 

  88. Schnotz W, Lowe RK (2008) A unified view of learning from animated and static graphics. In: Lowe RK, Schnotz W (eds) Learning with animation: Research implications for design. Cambridge University Press, New York, NY, pp 304–356

    Google Scholar 

  89. Schnotz W, Rasch T (2008) Functions of animations in comprehension and learning. In: Lowe RK, Schnotz W (eds) Learning with animation: Research implications for design. Cambridge University Press, New York, NY, pp 92–113

    Google Scholar 

  90. Schunk DH, Zimmerman BJ (1997) Social origins of self-regulatory competence. Educational Psychologist 32 (4):195–208. doi:10.1207/s15326985ep3204_1

    Article  Google Scholar 

  91. Schwan S, Riempp R (2004) The cognitive benefits of interactive videos: Learning to tie nautical knots. Learning and Instruction 14 (3):293–305. doi:10.1016/j.learninstruc.2004.06.005

    Article  Google Scholar 

  92. Sharp G (1981) Acquisition of lecturing skills by university teaching assistants: Some effects of interest, topic relevance, and viewing a model videotape. American Educational Research Journal 18 (4):491–502

    Article  Google Scholar 

  93. Spangenberg RW (1973) The motion variable in procedural learning. Educational Technology Research and Development 21 (4):419–436

    Google Scholar 

  94. Spanjers IAE, van Gog T, van Merriënboer JJG (2010) A theoretical analysis of how segmentation of dynamic visualizations optimizes students' learning. Educational Psychology Review 22 (4):411–423. doi:10.1007/s10648-010-9135-6

    Article  Google Scholar 

  95. Sweller J (2008) Instructional implications of David C. Geary's Evolutionary Educational Psychology. Educational Psychologist 43 (4):214–216. doi:10.1080/00461520802392208

    Article  Google Scholar 

  96. Sweller J (2009) Cognitive bases of human creativity. Educational Psychology Review 21 (1):11–19

    Article  Google Scholar 

  97. Sweller J (2010) Element interactivity and intrinsic, extraneous, and germane cognitive load. Educational Psychology Review 22 (2):123–138. doi:10.1007/s10648-010-9128-5

    Article  Google Scholar 

  98. Sweller J, van Merrienboer JJG, Paas F (1998) Cognitive architecture and instructional design. Educational Psychology Review 10 (3):251–296. doi:10.1023/A:1022193728205

    Article  Google Scholar 

  99. Sweller J, Ayres P, Kalyuga S (2011) Cognitive load theory. Explorations in the learning sciences, instructional systems and performance technologies. Springer, New York, NY

    Book  Google Scholar 

  100. Tai YF, Scherfler C, Brooks DJ, Sawamoto N, Castiello U (2004) The human premotor cortex is 'mirror' only for biological actions. Current Biology 14 (2):117–120. doi:10.1016/j.cub.2004.01.005

    Article  Google Scholar 

  101. Tettamanti M, Buccino G, Saccuman MC, Gallese V, Danna M, Scifo P, Fazio F, Rizzolatti G, Cappa SF, Perani D (2005) Listening to action-related sentences activates fronto-parietal motor circuits. Journal of Cognitive Neuroscience 17 (2):273–281

    Article  Google Scholar 

  102. Tosi V (1993) El lenguaje de las imágenes en movimiento (How to make scientific audio-visuals for research) (trans: Broissin M). 2nd edn. Grijalbo, México, México

    Google Scholar 

  103. Tversky B, Morrison JB, Betrancourt M (2002) Animation: Can it facilitate? International Journal of Human-Computer Studies 57 (4):247–262. doi:10.1006/ijhc.2002.1017

    Article  Google Scholar 

  104. Tversky B, Heiser J, Mackenzie R, Lozano S, Morrison JB (2008) Enriching animations. In: Lowe RK, Schnotz W (eds) Learning with animation: Research implications for design. Cambridge University Press, New York, pp 263–285

    Google Scholar 

  105. Valenti SS, Costall A (1997) Visual perception of lifted weight from kinematic and static (photographic) displays. Journal of Experimental Psychology: Human Perception and Performance 23 (1):181–198

    Article  Google Scholar 

  106. van Gog T, Paas F, Marcus N, Ayres P, Sweller J (2009) The mirror neuron system and observational learning: Implications for the effectiveness of dynamic visualizations. Educational Psychology Review 21 (1):21–30. doi:10.1007/s10648-008-9094-3

    Article  Google Scholar 

  107. Watson G, Butterfield J, Curran R, Craig C (2010) Do dynamic work instructions provide an advantage over static instructions in a small scale assembly task? Learning and Instruction 20 (1):84–93. doi:10.1016/j.learninstruc.2009.05.001

    Article  Google Scholar 

  108. Wiley J, Ash IK (2005) Multimedia learning of history. In: Mayer RE (ed) The Cambridge handbook of multimedia learning. Cambridge University Press, New York, NY, pp 375–391

    Chapter  Google Scholar 

  109. Williams R (2001) The animator's survival kit. Faber & Faber, New York, NY

    Google Scholar 

  110. Wong A, Marcus N, Ayres P, Smith L, Cooper GA, Paas F, Sweller J (2009) Instructional animations can be superior to statics when learning human motor skills. Computers in Human Behavior 25 (2):339–347. doi:10.1016/j.chb.2008.12.012

    Article  Google Scholar 

  111. Wouters P, Tabbers H, Paas F (2007) Interactivity in video-based models. Educational Psychology Review 19 (3):327–342. doi:10.1007/s10648-007-9045-4

    Article  Google Scholar 

  112. Yang E-m, Andre T, Greenbowe TJ, Tibell L (2003) Spatial ability and the impact of visualization/animation on learning electrochemistry. International Journal of Science Education 25 (3):329–349. doi:10.1080/09500690210126784

    Google Scholar 

Download references

Acknowledgements

This research was supported by an Australian Research Council grant (DP1095685) to the second and third authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Cristobal Castro-Alonso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Castro-Alonso, J.C., Ayres, P., Paas, F. (2014). Dynamic Visualisations and Motor Skills. In: Huang, W. (eds) Handbook of Human Centric Visualization. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7485-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7485-2_22

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7484-5

  • Online ISBN: 978-1-4614-7485-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics