Skip to main content

Heating, Ventilation, and Air Conditioning

  • Chapter
  • First Online:
Book cover Handbook of Food Factory Design
  • 3918 Accesses

Abstract

The heating, ventilation and air conditioning (HVAC) challenges faced in the food-manufacturing industry are: to ensure that the employees benefit from a safe, comfortable, and productive working environment; and to facilitate the manufacture of consistently safe and high-quality products by ensuring that the activities are undertaken in hygienic and temperature/humidity controlled conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson D. A., Tannehill J. C. and Pletcher R. H. (1984) “Computational fluid mechanics and heat transfer”, Taylor and Francis, Bristol, PA 19007.

    Google Scholar 

  • ASHRAE (1999) “Ventilation for acceptable indoor quality”, ASHRAE, Atlanta, GA.

    Google Scholar 

  • BS EN 779 (1993) “Particulate air filters for general ventilation – Requirements, testing, marking”, British Standards Institute, London.

    Google Scholar 

  • CIBSE (1986) “Guide to current practice, Volume 1”, The Chartered Institution of Building Services Engineers, London.

    Google Scholar 

  • CIBSE (2001) “Heating, air conditioning and refrigeration. Guide B2: Ventilation and air conditioning”, ISBN 1903287162, The Chartered Institution of Building Services Engineers, London.

    Google Scholar 

  • Ferziger J. H. and Peric M. (1997) “Computational methods for fluid dynamics”, Springer, New York.

    Google Scholar 

  • Foster A. M. and Quarini, G. L. (2001) “Using advanced modeling techniques to reduce the cold spillage from retail display cabinets into supermarket stores to maintain customer comfort”, Proceedings of the Institution of Mechanical Engineers, Part E 215, pp. 29–38.

    Article  Google Scholar 

  • GOV.UK (2013) “Providing effective building regulations so that new and altered buildings are safe, accessible and efficient. Approved Documents Part F (ventilation)”, February, Dept. for Communities and Local Government, London. Available online at www.planningportal.gov.uk/buildingregulations/approveddocuments/partf/.

  • HMSO (2004) “Review of Approved Document F (Ventilation) – A consultation package”, July, Her Majesty's Stationary Office, London.

    Google Scholar 

  • HSE (2011) “Ventilation of kitchens in catering establishments”, Catering Information Sheet No 10 (rev1), Health and Safety Executive, London, August. Available online at www.hse.gov.uk/pubns/cais10.pdf.

  • HSE (2013) “Health and safety in catering and hospitality”, Health and Safety Executive, London, 11 February. Available online at www.hse.gov.uk/catering/.

  • Jensen, B.B.B. and Friis, A. (2004) “Prediction of flow in mix-proof valve by use of CFD-validation by LDA”, J. Food Process Engineering, Vol. 27, pp. 65–85.

    Article  Google Scholar 

  • Jones, W. P. (2001) “Air conditioning engineering”, 5th edit., Butterworth-Heinemann, New York, ISBN 0 75065074 5.

    Google Scholar 

  • Kikuchi S., Ito K. and Kobayashi N. (2003) “Numerical analysis of ventilation effectiveness in occupied zones for various industrial ventilation systems”. 7th International Symposium on Ventilation for contamination control, Paper PS-9, August 5–8, Hokkaido University, Sapparo, Japan.

    Google Scholar 

  • Kikuchi, S., Kobayahi, N. and Ito, K. (2004) “Numerical analysis of ventilation effectiveness in occupied zones and its air quality control for various industrial ventilation systems by using push-flow”, Trans Society of Heating, Air Conditioning and Sanitary Engineers of Japan, Issue 92, pp. 65–72.

    Google Scholar 

  • Genskow, L.R., Beimesch, W.E., Hecht, J.P., Kemp, I.C., Langrish, T., Schwartzbach, C. and Smith, F.L. (2008) “Psychrometry, evaporative cooling, and solids drying”, Section 12 in Green, D.W. and Perry, R.H. (eds) “Perry’s Chemical Engineers’ Handbook”, 8th edit., McGraw Hill, New York, ISBN 978-0-07-142294-9.

    Google Scholar 

  • Peyret R. (1996) (ed.) “Handbook of computational fluid mechanics”, Academic Press, New York.

    Google Scholar 

  • Robinson, T.J. and Quellet, A.E. (1999) “Filters and Filtration”, ASHRAE Journal, April, pp. 65–68.

    Google Scholar 

  • Rogers G. F.C. and Mayhew Y. R. (1995) “Thermodynamic and transport properties of fluids, SI Units”, Blackwell, Oxford, ISBN 0-631-19703-6.

    Google Scholar 

  • Trott, A. R. and Welch, T. (2000) “Refrigeration and Air-Conditioning”, 3rd edit., Butterworth Heiemann, ISBN 0 75066421 9 X.

    Google Scholar 

  • Wilcox D. C. (1993) “Turbulence modeling for CFD”, DWC Industries Inc., La Canada, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. L. Quarini .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Derivation of Transient Temperature, Humidity, and Pollutant Concentration Equations

Transient Temperature

Consider a room of volume V, with an air exchange rate of Q m3/s. An enthalpy balance on the room yields:

$$ \mathrm{ Rate}\ \mathrm{ of}\ \mathrm{ change}\ \mathrm{ of}\ \mathrm{ enthalpy}=\mathrm{ Heat}\ \mathrm{ in}/\mathrm{ out}+\mathrm{ Energy}\ \mathrm{ generation}+\mathrm{ Heat}\ \mathrm{ transfer}\ \mathrm{ to}\ \mathrm{ room}. $$
$$ \rho V\mathrm{ Cp}\frac{{\mathrm{ d}T}}{{\mathrm{ d}t}}=\rho Q\mathrm{ Cp}\left( {{T_{\mathrm{ a}}}-T} \right)+W+UA\left( {{T_{\mathrm{ a}}}-T} \right), $$
(16.26)

where T and T a are the temperatures (K) of the room and outside air respectively, t is time (s), Cp and ρ are the specific heat (J/kgK) and density (kg/m3) of the air, W is the rate of heat generation inside the room (W), U is the effective heat transfer coefficient (W/m2K) between the air in the room and that outside, and A is the effective coupling area (m2) between the room and outside. Rearranging (16.26) yields:

$$ \frac{{-\mathrm{ d}T}}{{(W/\rho Q\mathrm{ Cp}+UA)+\left( {{T_{\mathrm{ a}}}-T} \right)}}=-\mathrm{ d}t\left( {\frac{Q}{V} + \frac{\;UA }{{\rho V\mathrm{ Cp}}}} \right). $$
(16.27)

Integrating (16.27):

$$ \begin{array}{lll}\ln \left. {\left\{ {\frac{W}{{\left( {\rho Q\mathrm{ Cp}+UA} \right)}}+\left( {{T_{\mathrm{ a}}}-T} \right)} \right.} \right\}=\left[ {-t\left( {\frac{Q}{V} + \frac{\;UA }{{\rho V\mathrm{ Cp}}}} \right)+\mathrm{ Constant}} \right].\end{array} $$
(16.28)

Let the initial temperature of the air in the room be T 0. The boundary condition is then T = T 0 at t = 0. Equation (16.28) then reduces to

$$ \begin{array}{llll}T-{T_{\mathrm{ a}}}=\frac{W}{{\left( {\rho Q\mathrm{ Cp}+UA} \right)}}\left[ {1 - \exp \left\{ {-t\left( {\frac{Q}{V}+\frac{\;UA }{{\rho V\mathrm{ Cp}}}} \right)} \right\}} \right]+({T_0}-{T_{\mathrm{ a}}})\exp \left\{ {-t\left( {\frac{Q}{V}+\frac{\;UA }{{\rho V\mathrm{ Cp}}}} \right)} \right\}.\end{array}$$
(16.29)

The number of air changes per second is n = Q/V. Hence (16.29) can be written:

$$ T-{T_{\mathrm{ a}}}=\frac{W}{{\left( {\rho nV\mathrm{ Cp}+UA} \right)}}\left[ {1 - \exp \left\{ {-t\left( {n+\frac{UA }{{\rho V\mathrm{ Cp}}}} \right)} \right\}} \right]+({T_0}-{T_{\mathrm{ a}}})\exp \left\{ {-t\left( {n+\frac{\;UA }{{\rho V\mathrm{ Cp}}}} \right)} \right\}. $$
(16.30)

which, for steady state, or as t tends to infinity, reduces to

$$ T-{T_{\mathrm{ a}}}=\frac{W}{{\left( {\rho Q\mathrm{ Cp} + UA} \right)}}=\frac{W}{{\left( {\rho nV\mathrm{ Cp} + UA} \right)}}. $$
(16.31)

Transient Humidity

Consider a room of volume V, with an air exchange rate of Q m3/s. A mass balance on the water vapor entering and leaving the room yields:

Rate of change of humidity in room = Humidity transported in/out + Amount generated

$$ V\mathrm{ d}H/\mathrm{ dt}=Q\left( {\mathrm{ Ha}-H} \right)+\mathrm{ Mp}/\rho, $$
(16.32)

where H and Ha are the humidities (kg H2O/kg dry air) of the room and outside air, respectively, and Mp is the moisture production rate (kg H2O/s). Rearranging (16.32) yields:

$$ \left( {-\mathrm{ d}H} \right)/\left( {\mathrm{ Ha}+\mathrm{ Mp}/Q\rho -H} \right)=\left( {-\mathrm{ d}t} \right)/VQ. $$
(16.33)

Integrating (16.33) with the boundary condition H = Ho at t = 0 and substituting n = Q/V yields:

$$ \left( {H-\mathrm{ Ho}} \right)=\left\{ {\mathrm{ Ha}-\mathrm{ Ho}+\mathrm{ Mp}/\rho nV} \right\}\left\{ {1-\exp \left( {-nt} \right)} \right\}. $$
(16.34)

Transient Pollutant

Consider a room of volume V, with an air exchange rate of Q m3/s. A mass balance on the pollutant entering and leaving the room yields:

$$ \begin{array}{lll}\mathrm{ Rate}\ \mathrm{ of}\ \mathrm{ change}\ \mathrm{ of}\ \mathrm{ pollutant}\ \mathrm{ concentration}\ \mathrm{ in}\ \mathrm{ room}\cr =\mathrm{ Pollutant}\ \mathrm{ convected}\ \mathrm{ in}/\mathrm{ out}+\mathrm{ Emissions}-\mathrm{ Removal}\end{array} $$
$$ V\frac{{\mathrm{ d}C}}{\mathrm{ d}\mathrm{ t}}=Q{C_{\mathrm{ a}}}+E-QC-kCV $$
(16.35)

where C and C a are the pollutant concentrations (kg pollutant/kg dry air) of the room and outside air, respectively, E is the emission rate (kg/s), and k is the removal rate (1/s) of the pollutant in the room. Rearranging and integrating (16.35) with the boundary condition C = C o at t = 0 yields:

$$ \begin{array}{llll} C =\left( {\frac{{Q{C_{\mathrm{ a}}}+E}}{Q+kV }} \right)\left\{ {1-\exp \left( {-\left( {\frac{Q}{V}+k} \right)t} \right)} \right\}+{C_{\mathrm{ o}}}\exp \left( {-\left( {\frac{Q}{V}+k} \right)t} \right) \cr =\left( {\frac{{n{C_{\mathrm{ a}}}+E/V}}{n+k }} \right)\left\{ {1-\exp \left( {-\left( {n+k} \right)t} \right)} \right\}+{C_{\mathrm{ o}}}\exp \left( {-\left( {n+k} \right)t} \right) \\\end{array}. $$
(16.36)

At steady state,

$$ C=\frac{{Q{C_{\mathrm{ a}}}+E}}{Q+kV }=\frac{{n{C_{\mathrm{ a}}}+E/V}}{n+k }. $$
(16.37)

Also, if k tends to zero and the air outside is “clean” (C a = 0), then for Co = 0

$$ C=\frac{E}{Q}\left\{ {1-\exp \left( {-\frac{Q}{V}t} \right)} \right\}=\frac{E}{nV}\left\{ {1-\exp \left( {-nt} \right)} \right\}. $$
(16.38)

Appendix 2: Humidity and Condensation

The terms humidity and relative humidity have specific definitions in psychrometry. These are:

Humidity, H, is the ratio of the mass of water vapor per unit mass of dry air,

and,

Relative Humidity, RH, is the ratio of partial vapor pressure, p v to the saturation vapor pressure, p vs, at the same temperature.

$$\begin{array}{lllll}H=\displaystyle\frac{{{M_{\mathrm{ water}}}{p_v}}}{{{M_{\mathrm{ air}}}(p-{p_{\mathrm{ v}}})}}=\frac{{18{p_{\mathrm{ v}}}}}{{29(p-{p_{\mathrm{ v}}})}}=0.622\displaystyle\frac{{{p_{\mathrm{ v}}}}}{{(p-{p_{\mathrm{ v}}})}} \hfill\\{\mathrm{ RH}=\displaystyle\frac{{{p_{\mathrm{ v}}}}}{{{p_{\mathrm{ v}\mathrm{ s}}}}}} \hfill \end{array}. $$
(16.39)

It follows from the perfect gas law that

$$ \begin{array}{llll} H=\displaystyle\frac{{{M_{\mathrm{ water}}}{p_{\mathrm{ v}}}}}{{{M_{\mathrm{ air}}}(p-{p_{\mathrm{ v}}})}}=\frac{{18{p_{\mathrm{ v}}}}}{{29(p-{p_{\mathrm{ v}}})}}=0.622\displaystyle\frac{{{p_{\mathrm{ v}}}}}{{(p-{p_{\mathrm{ v}}})}} \hfill \\{\mathrm{ RH}=\displaystyle\frac{{{p_{\mathrm{ v}}}}}{{{p_{\mathrm{ v}\mathrm{ s}}}}}} \hfill \\\end{array}, $$
(16.40)

where M water and M air are the molar masses of water and air respectively, and p, p v and p vs are the total pressure in the room, the water vapor pressure in the room and the water saturated vapor pressure at the room temperature.

Condensation will start to occur when the relative humidity reaches 100 %. The following procedure can be used to predict whether condensation is likely to occur within a ventilated room:

  1. 1.

    Evaluate H and T from the equations given in Appendix 1.

  2. 2.

    From the estimate of T find p vs from steam tables.

  3. 3.

    From the estimate of H compute p v.

  4. 4.

    Compare the vapor pressure values; if p v > p vs then condensation will occur.

Normally, condensation will occur on the coldest surfaces when the local RH value (this is the RH value computed using the temperature of the cold surface) reaches 100 %. In order to predict the likelihood of condensation on cold surfaces, the same procedure as that identified above can be adopted, using the temperature of the cold surface to estimate p vs, rather than the temperature of the air. The p v is still evaluated using the computed bulk air humidity value, H.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Quarini, G.L. (2013). Heating, Ventilation, and Air Conditioning. In: Baker, C. (eds) Handbook of Food Factory Design. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7450-0_16

Download citation

Publish with us

Policies and ethics